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Abstract. Stereo images are highly redundant; the left and right frames of typical scenes are
very similar. We explore the consequences of the hypothesis that cortical oe1Is—in addition
to their muldscale coding strategies—are concerned with reducing binocular redundancy due
to correlations between the two eyes. We derive the most ef¿cient coding strategies that
achieve binocular decorrelation. It is shown that multiscale coding combined with a binocular
decorrelation strategy leads to a rich diversity of cell types. In particular, the theory predicts
monocular/binocular cells as well as a family of disparity selective cells, among which one can
identify cells that are tuned�'zero�excitatory, near, far, and tuned inhibitory. The theory also
predicts correlations between ocular dominance, cell size, orientation, and disparity selectivities.
Consequences on cortical ocular dominance column formation from abnormal developmental
conditions such as strabismus and monocular eye closure are also predicted. These ¿ndings are
compared with physiological measurements and suggest experimental tests of the theory.

1. Introduction

It has become clear from recent works that speci¿c properties of natural scenes can predict
many neural computational strategies in the visual pathway (Atick and Redlich 1990, 1992,
Atick at al 1992, 1993 Field 1987). Unlike random collections of pixels, natural images
possess a multitude of regularities that can be quanti¿ed by well�de¿ned statistical measures.
For example, due to the morphological consistency of objects, nearby pixels in natural
images tend to be very similar in their visual appearance, giving a luminosity pro¿le which
changes gradually in space and only abruptly at edges. Such gradual change in the signal also
occurs in the temporal and chromatic domains where there is continuity and smoothness.
This means that natural images possess a high degree of spatio�temporal and chromatic
correlations, and that a pixel�by~pixel representation of such scenes by the photoreceptors
is highly redundant and thus inefficient.

One can argue that efficiency of information representation has evolutionary and
cognitive advantages (Barlow 1961, Atick 1992). This leads to a predictive principle for
sensory processing, namely, the principle of redundancy reduction which advocates that
a major goal of early visual processing is to recode incoming signals into a redundancy�
reduced representation, subject to identi¿able hardware constraints.

This principle, modi¿ed appropriately to take noise into account, has been shown to
provide a quantitative theory of retinal processing (Atick and Redlich 1990, 1992). Actually,
as the ¿rst stage in the visual pathway, the retina can only eliminate the simplest type

* Work supported in part by a grant from the Seaver Institute.
T To whom correspondence should be directed.

0954�898X/94/020 157�£~l8$l9.50 © 1994 [OP Publishing Ltd 157



158 Zhaoping Li and J J Atick

of redundancy��the pairwise pixel correlations—in an image. This predicts the spatio�
chromatic receptive ¿elds of ganglion cells that compare well with experimental data (Atick
and Redlich 1992, Atick er all 1992).

There are other types of regularities in natural images that we believe the visual system
beyond the retina takes advantage of to build more ef¿cient representation of the world.
One such regularity manifests itself in the laws of perspective transfom1ation—an image of
a scene at one distance can predict much of the image of the same scene at another distance.
This means as we move in the 3D world, the successive images entering the visual system
are highly redundant in the sense that most of the changes in them are predictable from
perspective transformations, and they do not represent genuine changes in the input.

In view of this ‘perspective’ redundancy, we have recently proposed that the
preprocessing goal of the early visual cortex is to produce a representation where the action
of perspective transformations (scaling) is manifestt (Li and Atick 1994a). In the retina, the
changes in the neural response with the viewing distance are very complicated. We have
shown that the retinal output, without compromising the eÀiciency achieved by elimination
of pairwise correlations, can be transformed into a representation where neural response
changes with viewing distance are _very simple (Li and Atick 1994a). This, so�called
multiscale representation, requires remapping the visual ¿eld into multiple retinotopic maps
identical in all respects except for the densities and (receptive ¿eld) sizes of their sampling
nodes. As an object recedes or approaches the viewer, the neural activation pattern it evokes
in this representation remains intrinsically the same but shifts its locus from one cell or scale
group to another.

Our previous work on cortical processing ignored the binocular nature of the visual
input for simplicity. However, it is at the cortex where inputs from the two eyes are ¿rst
combined. Binocular vision introduces another input regularity since the left and right
images of the world correspond to slightly shifted views of the same scene and are thus
highly correlated. Although the retina eliminates pairwise correlations within a given eye,
correlations between eyes persist as the signal enters the cortex. One then expects that
accounting for the binocular redundancy will lead to additional computational strategies for
cortical cells. In this paper, we make the hypothesis that cortical cells—in addition to their
multiscale computational strategies predicted earlier in Li and Atick (l994a)—combine
signals from the two eyes in such a way to eliminate the inter�ocular correlations. This
redundancy�reduced stereo coding is thus eflicienti.

A precise theoretical prediction of stereo coding strategies requires knowledge of the
ocular correlation function in the input ensemble. Ocular correlations depend not only on
the inter�eye distance, eye alignment, and the distribution of object distances in the input
ensemble, but also on whether the visual system actively ¿xates on visual objects. We have
measured the inter�ocular correlation function for a stereo camera system with a distance
between the two lenses close to human inter�eye distance (see appendix for details of this
measurement). However, this camera has a static ¿xation distance and can not imitate the
active human ¿xation. Without available information, we have to model the human inter�
i’ Such representation��although not strictly redundancy�reduced in itself—is a major step towards redundancy
reduction when followed by an attentional mechanism that takes advantage of the manifest action of the spatial
group to compensate for viewing conditions, and hence to produce a representation where the same intrinsic neural
activation pattem represents an object as it recedes or approaches the viewer.
i It is important to point out that redundancy reduction is not inconsistent with combining signals from both eyes
to extract depth information. Although the inputs from the two eyes are correlated, it is the difference between them
that carries the stereo inforrnation. The coding that reduces inter�ocular redundancy highlights the non�redundant
stereo infomiation. In other words by not coding ‘sameness’ in the inputs from the two eyes, more computational
resources can be used to code stereo information.
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ocular correlation by extrapolating the results from the stereo camera with some assumptions
on the active ¿xation process. '

We ¿nd from the measurement that the ratio inter�ocular correlationlintra�ocular
correlation depends on orientation and decays asspatial scale gets smaller. Accordingly,
a coupling between stereo coding and spatial scale/orientation emerges in a multiscale
representation. In particular, we identify cells that are selective to new zero, divergent, and
convergent disparities, as well as correlations between cell receptive ¿eld size, orientation,
disparity selectivity, and ocular dominance. For example, the theory predicts that for
disparity sensitive cells, the smaller ones are selective to smaller disparities, and that the
larger one are selective to larger disparities and are more likely to be monocular. These
results have been observed in some experiments (Poggio 1992, Ferster 1981, Horton and
Hubel 1981). In addition, the theory predicts a correlation between horizontally oriented
cells and small optimal disparity, as observed in experiments (De Angelis er al 1991, Barlow
er al 1967), and a correlation between horizontally oriented cells and binocularity which can
be experimentally tested. While this work derives cortical stereo coding from the principle
of redundancy reduction, other relevant works on computational and development models
of cortical stereo codings can be found in (Marr and Poggio 1979, Poggio and Poggio 1984,
Miller at al 1989, Miller and Stryker 1990, Blake and Wilson 1991, Berns et al 1993).

2. Ef¿cient binocular coding in the multiscale representation

Let S"(:r:,,) and SR(:r:,,,) be the photoreceptor activities at retinal locations :r:,, and aim in the
left and‘ right eyes respectively. A light source at the ¿xation plane will induce .S'L(:r:,,) and
SR(:r:,,,) at the same location :r:,, = :r:,,, in the two eyes; otherwise photoreceptors at different
locations in the two eyes are excited. The autocorrelator of the signals is

R,‘:”(==.. mm) E <S"<w.)S"<w..>> (1)
where a, b = L, R and brackets denote ensemble average. Assuming a uniform sampling
grid and translation invariance within a local area, in the sense that Rf’(m,,, :r:,,,) = Rj§"(:z:,, —
mm), then the correlation can be captured by a simpler quantity R“"(f) E (§“ (f)§b(—f)),
where S“ (f) is the Fourier transform of S“ (x) at frequency f. R“"(f) is the power spectrum
of visual inputs for a = b, and the bispectrum when a =,é b. The power spectrum for natural
scenes has been measured by many people (Field 1987, Rudertnan and Bialek 1993). These
measurements show that R’“‘(_f) E R(_f) or 1/|_f]2. The new ingredient that is necessary
here is the inter�eye correlation function RLR(f).

Thus we can write the correlation matrix in ocular space explicitly as:

Rue) RI�W) _ 1 a( Rem ,,RR(f))=(, ’{)Ro"> <2)
where symmetry between left and right eyes is assumed, and r < 1. In general we expect the
parameter r to be a function of frequency _f and it can be complex, r = r(f). A complexi
r = |r|e“” can be tumed real by rede¿ning the right eye signal with §R(f) = e"“1'§'R(_f).
This 1/: can be understood as the mean phase disparity of the visual inputs. However, stereo
information is captured in the variations of disparities around this mean, which is analogous
to the mean light level and does not by itself convey the 3D information in the inputs. Hence,
analogous to adaptation to mean light level, the visual system should be able to adapt to
this mean disparity, by, for example, vergence control to align the two images in the eyes,

T In that case, the correlation man�ix is ( '1, Z )R(f).
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such that rlr could be effectively brought close to zeroi. This paper only deals with stereo
coding strategies assuming that the image alignment is achieved and r(_f) is real.

We have measured r(f) for an ensemble of stereo images (see appendix); ¿gure 1 gives
the results for a horizontal and vertical slices f = (f, 0) and 3° = (0, f). One can see that
r(_'f) % 1 for small 1_f|, suggesting strong ocular correlation when one looks at the inputs
in coarse spatial resolution. In particular, the mean light levels, i.e., _f = O, to the two eyes
are very similar. On the other hand, the inputs to the two eyes are quite different when one
looks at the input in detail, causing r(f) to decay to zero at large f.

There are two kinds of redundancy that contribute to the matrix in equation (2), one
is the binocular redundancy—largely in the inter�ocular correlati0ns—and the other is the
redundancy in space, represented in R(_f). The binocular redundancy can be reduced by
elirnina¿ng the inter�eye correlations by introducing new variables:

s+ = %(s’— + s1‘) (3)

s" = %(sL � $1‘). (4)

This linear transform (Si�',SR) —> (S+,S") is consistent with biological constraints
indicating linear combination of inputs from the two eyes in the striate simple cells
(Ohzawa and Freeman 1986a). The ocular summation Si‘ and the ocular opponency S“
signals are the building blocks from which cortical cell responses can be constructed,
as we shall see below. Unlike SR and SL, 5+ and S“ are uncorrelated, as (S+S‘} =
§((sLs'�) � <sRsR) + (sf�sR) � (sRs’�)) = 0 assuming left—right symmetry. The power
spectra for Si are

R*(f) = (1 =1: =')R(J°)� (5)
After eliminating inter�ocular correlations, one only needs to eliminate the spatial

correlations in 8+ and S‘. As we know, pixels in a spatially white noise signal are
uncorrelated. The power spectrum of such white noise is Àat or independent of f, by
de¿nition. The spatial correlations in S5‘ are reflected in the non�flatness of the power
spectrum Rd‘ (1'). Therefore, spatial correlations can be eliminated by applying the whitening
¿lters K*(f) <>< (R=‘=(f))“‘/2 = If�I/»\/12l2f to the signals Si:

0"’(f) = K*(.f)�5'*(f) (6)
such that the outputs 0* (_f) have ¿at power spectra

(9*(J°)0*(�.f)) = (K*(.f))2(5*(f)$*(—f)) = (K*(f))2R*(f) = Constant
(Atick and Redlich 1992). Intuitively, spatial redurrdancy is reduced by K*(f) oc | f 1
amplifying input spatial changes or edges; binocular redundancy is reduced by ocular ¿lters
K' > K+ amplifying the binocular ‘edge’ S“.

Before we can exhibit the predicted binocular receptive ¿elds, there are three issues that
have to be addressed. All three have been addressed in previous works (Atick er al 1993,
Atick and Redlich 1992, Li and Atick 1994a), here we brieÀy discuss the main conclusions.

The ¿rst issue has to do with the non�uniqueness of the process of decorrelation (Aticlt er
at 1993). One can multiply the signal (O'*', 0“) by any rotation matrix and still maintain a
decorrelated output. Although, all transformations constructed in this manner are equivalent
in their decorrelation properties, they differ drastically in the degree by which they transform

it This vergence control to accommodate for the mean phase disparity 1/r may have to be carried out by different
amounts when attention is directed at different spatial scales.
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Figure 1. Measured r(_f) (data poin$ with error bars) function from stereo images for slices in
horizontal f = (f. 0) and vertical f = (0, f) frequencies

the original signal (SL, SR). In Atick er al (1993) it was proposed that the transformation
favoured biologically is the one that requires the least deformation or the least change to
the original signal (the so�called most ‘local’ transformation) while decorrelating the output.
This was shown to give successful predictions for colour as well as spatial processings and
we will continue to make this proposal in the ocular space. It can be showni‘ that, within a
constant factor, the new variables and the corresponding transformation are:

01 = (0++ 0�) K1 = 1<++K� (7)
02 = (0+ � 0�) K1= K+ � K�.

T For derivation, see Atick at aI (1993). 9
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The second issue has to do with noise. The ¿lter K='=(f) = 1/\/liq?) oz [fl performs
gain control and ampli¿es the signals at high frequency. However, in reality, inputs
contain noise from various sources. This leads to undesirable consequences since, at high
frequencies the noise power, unlike the signal power (which is decaying like ~ 1/]f|2), is
not becoming small. Whitening all the way to the highest frequency leads to unacceptable
levels of noise in the output. Thus, for decorrelation to be useful, it must be combined with
a noise smoothing strategy ensuring that no signi¿cant input noise is passed to the next
stage. This strategy modi¿es the ¿lters K*(_f) such that K*(_f) decays quickly at high
frequencies before the noise overwhelms the signal (Atick and Redlich 1992), while at low
frequency—where noise is not dominant��the ¿lter still whitens the signal. The modi¿ed
¿lters K5‘ (1') look like those in ¿gure 2A (see Atick and Redlich 1992 for details). Their
general features are:
K; > K: when r(f) is signi¿cant, |_f| is small where signal/noise is high

K; < K)‘ when r(f) is signi¿cant, [fl is large where signal/noise is low (3)
K; w KAI" when r(_f) % 0 at very large lfl.

This is because the ocular opponency signal power R‘ = (1 — r)R is always smaller than
the ocular summation signal power R"' = (1 +r)R. Hence at low ]_f I when signal dominates
the noise, K‘ is relatively large to amplify the smaller opponency signal S‘; At high f
when noise is relatively large, R‘ is overwhelmed before R+ by the noise, hence K‘
decays before K"‘, forcing K‘ < K"'. At very high _f, K"‘ w K‘ because the inter�ocular
correlation r z 0, giving R“‘ H R‘. These features will dictate the details of stereo coding
as will be shown in sections 3 and 4.
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Figure 2. The ocular opponeney K" (dashed curves) and ocular summation 15"’ (solid curves)
¿lters before (A) and after (B) mulliscale partitioning ((9) and (10)) They are generated from the
equations K="(f) cc M*((M*)1(R*+ 1) + 1)�1/2 where M* = 12* /(R*+ 1) exp{—(|_f|/f‘�)]“,
R = 4.0/(lflz + fj). R* = (1:l:r)R, with )1, = 0.3c/deg, oz = 1.4, 1, = 22c/deg (see
Atick and Redlich (1992) for details). The r(_f) is modelled as r(f) = 0.96 eXp(��f/fo),
where fg = l5 c/deg. The lowpass blob cell is obtained by eonvoluting K5‘ (f) ¿lters with
frequency envelope exp(—f2/ (2_¿3)) where fl = 0.8 c/deg. The bandpass cells are obtained
by eonvoluting K* with the envelopes exp(—(log(f/f,))2/(2o'2)), where 1:, = 1, 3, 3, 25 e/deg
are the optimal frequencies and 0 =1.6/2 octaves. The same parameters are used in ¿gures 5
and 6.

The third issue is the multiscale coding of the cells. The cells have to perform other
tasks that are a priori non�binocular in nature and that must be taken into account before
a comparison with real cells can be made. Li and Arick (1994a) argued that cortical cells
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form what is called a multiscale representation in space. This means that instead of having
one ¿lter K* at each visual location, each location is covered by multiple ¿lters of different
sizes. In one�dimensional space, these ¿lters are obtained by breaking up the original ¿lter
into one lowpass ¿lter and a set of bandpass ¿lters covering the full range of frequency as
shown in ¿gure 2B. More explicitly:

Lowpass: K§(f) �E r<*(f) exp (�fl/2,52) (9)
Bandpass: K;t(f) E K*(f)exp(i6*) exp [—(l0g(f/f,))2/202] (10)

where fl models the cut�off of the Iowpass ¿lter, and f, is the centre frequency of the
bandpass ¿lter at scale s = 1,2,3, ‘(s is the scale index, and f, increases with s),
0 = 1.6 octave/2 sets the bandwidth of the bandpass ¿lters to 1.6 octaves, as is observed
in experiments (e.g. De Valois at al 1982, Andrews and Pollen 1979), 9* is the phase of
the receptive ¿elds for the bandpass cells, giving for example, even or odd receptive ¿elds
(bar or edge detectors in 2D) when 9* = 0 or 90deg (Li and Atick 1994a). The bold
faced notation K?’ is used to represent the ¿lter as a vector, interpreting the phases 6* as
the vector direction, and the ¿lter strength [Kfi the vector amplitude. Both exp(—f2/2ff)
and exp[— (log(f/f,_))2/20 21 are models to give smooth tuning curves of spatial frequency
sensitivities, instead of the sharp edges in tuning curves originally derived in Li and Atick
(1994a); this is done for convenience. To obtain the two dimensional ¿lters, we only need
to apply a Iowpass ¿lter in the orthogonal spatial direction (Li and Atick l994a), giving
un�oriented cells from Iowpass ¿lters in both directions (K?) and oriented cells (Kf) by a
bandpass in one direction and a Iowpass in the other. In our discussion, we will continue
to suppress the Iowpass in the orthogonal direction for simplicity.

We are now ready to show what the actual ¿lters look like. In ocular space, K2" acts on
the summation of left and right eye signals L + R, while Ks‘ acts on the difference L — R,
where L and R are the basis vectors in the ocular space. The ¿lters K13 = K+ i K‘ in
ocular space and multiscale representation are explicitly:

K} = L(K;’"+ � +R(Kj"� � (11)
K3 = L(K;“� � +R(K"'+ �.She; F5

Without loss of generality, from here on we concentrate on K} to construct the
cell types. The contribution of the left and right eyes respectively to this cell are
KT; E [K1"|exp(1'¢") E K;*+K; and K? E |K§| exp(1'¢R) E K?‘ �—K_f. The receptive ¿eld
forms in space in both eyes are

I<§—�Ru) = I <1f|rg'»R(f)1 cos(21rfx + ¢'~R). (12)

The q{>L'R are the phases of the receptive ¿elds. The optimal phase disparity of the cell
A¢ E ¢L —¢R is the angle between the two vectors Ki‘ and Kl‘. Figure 3 shows graphically
how the receptive ¿elds of both eyes are constructed as vector summations from Kg‘ and
ex,�.

3. Binocular coding in a visual system with a constant ¿xation distance

In this section, we explore the predictions of (11) for a visual system which does not change
its ¿xation distance. This system is like our stereo camera whose optical axes for the two
lenses are ¿xed. Hence the ocular correlation r(_f) of such a system can be approximated
by what we measured (see ¿gure l).
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From equation (11) and ¿gure 3, we can see that the relative sizes of lKs“‘| and |Ks_|,
and their relative angle A6 = 6‘ — 6+, determine the relative strengths of the ¿lters ]K§|
and [Kill as well as the optimal phase disparity A¢>. In particular, since Kg"�R = Kg‘ i Kg,
a dominance of the Kg‘ ¿lter makes the contribution of the two eyes to such a cell relatively
aligned in phase, while a dominance of the K; ¿lter makes them out of phase. Hence the
optimal phase disparities are (see ¿gure 3)

A¢ > 90deg if K; > Kg? (13)
A415 < 90deg if K; <

Since the relative sizes of E depend on spatial scale, there will be a coupling between cell
sizes and optimal disparities.

— +K > K
General case: Extreme cases:
90°<A¢<=rs0°

KL , (A) (B) ,_
// |(_ _ _ ° KIx A9�0 A¢—18o // K�
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Figure 3. Demonstration of binocular receptive ¿eld construction. The receptive ¿eld in the
left eye is K? = Kf + K}, and that of the right eye is K? = Kg!‘ — K; (the subscript s is
omitted in the plot for clarity). Depending on the relative strengths of Kg“ and K;‘, and on
their angle A6, different receptive ¿eld strengths iK}| and |K_§|, as well as their receptive ¿eld
phase difference A¢ are forrned. As A9 changes from 0 to 90 deg, the cell ocular dominance
changes from the strongest monoeularity to complete ocular balance, however, the optimal phase
disparity changes from out of phase A¢ = 180 deg to no less than 90 deg when the K“ ¿lter
dominates, from zero phase A¢ = 0 to no more than 90 deg when the K+ ¿lter dominates.

\\
\

To obtain Kf, we recall from (8) that there are usually three frequency regions of
relative strengths for |Ks“| and |K;*|: when r 96 0, [K§] > |Kj‘| in the large�signal (low
f) region where ampli¿cation of smaller signal S“ is needed, IIQI < |K;"| in the smaller�
signal region (higher f) where noise forces the ¿lters Kf to decay, and ¿nally IKQI w [K_;*'|
when the inter�ocular correlation r(_f) diminishes. However, this simple visual system has
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A Ocular summation (solid curve) and
oppcnency (dashed curve) sensitivities
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Figure 4. K* sensitivities (A) and the receptive ¿elds (B) predicted using the ocular
correlation function r(_f) = 0.96 exp(�f/fq) with fr; = lc/deg. close to the correlation in
our measurements. In (B), the solid and dotted curves are receptive ¿elds for the two eyes
respectively. The top plot in (B) is for a large and unoriented cell type where only 9* = 0 is
allowed (Li and Atick 1993). The rest are oriented cells, and their receptive ¿elds depend on 9*.
Each row has the same optimal spatial frequency, and eachicolumn the same 9*, as indicated.
The receptive ¿eld strengths are normalized such that the largest amplitude is the same for each
cell in the same row. To reveal enough detail of the receptive ¿eld forms, the horizontal and
vertical scales for different rows are different. Hence, the plots only convey qualitatively the
larger and smaller receptive ¿elds and higher or lower cell sensitivities. In reality, for instance,
the larger cells in�the plot should be relatively larger and the smaller cells smaller. Similarly,
the receptive ¿eld amplitudes should be relatively smaller for, e.g., blob cells.

r(f) N 0 at ]f| 2 1.5 c/deg, simply because the input depth variation for this visual system
is of the order ~ 1 deg. Hence |K_§| N |Kj'| is enforced for If I > 1.5 c/deg. If we assume
that this simple visual system resembles human central vision in normal illumination in
the sense that at low spatial frequencies no higher than 1.5 c/deg, the signal is still large
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enough such that the ]K§] < [K_;“[ region can not be realized (see ¿gure 4A). Consequently,
the binocular coding of this system can be divided into the following two different scale
regions.

(i) IKII < ]K;,“| — large tuned inhibitory, near/far cells. Small spatial frequency of this
region leads to large cell sizes. From equation (13), the optimal phase disparity of this cell
is always larger than 90 deg. When Kj' I] Ks“, the two receptive ¿elds from the two eyes are
completely out of phase (¿gures 4Ba,b,c). These cells are thus inhibited by stimuli of zero
disparities and are tuned inhibitory cells. They are likely to be ocularly unbalanced unless
K; strongly dominatest Kg’. When Kg‘ is not parallel to K], the cell is not completely
out of phase and can resemble near/far cells (¿gures 4�Bd,e). Depending on the relative
phases of the two receptive ¿elds, some near/far cells can be binocularly balanced, as when
KI .L K; (see ¿gures 3, 4Bd). (Figures 4�B and 5 only exhibit the far cells, the near cells
can be obtained by either using the K3 ¿lter in (11) or using a negative A9.)

(ii) |Kj‘| H |K;‘| when r(f) H 0 at high f — small monocular cells. Higher optimal
frequency gives smaller cell sizes to this group. When Kj‘ ll Ks“, equation (11) suggests
that these cells have KL = K1," + K,‘ w 2Kj' and KR = Kj‘ — K; w 0. The two eye
contributions are thus very unbalanced and the cells are monocular (¿gures 4Bf,g). In fact,
in this frequency region, the inter�ocular correlation r(f) is so small that the binocular
redundancy reduction step Si = 71�5(SL :l: SR) and the subsequent multiplexing (equation
(7)) are essentially unnecessary. Monocular cells are therefore the most natural choice.

Although the predicted tuned inhibitory cells, nearlfar cells, and the variance in ocular
dominance have been observed in some experiments (Hubel and Wiesel 1970, Poggio and
Fischer 1977, Ferster 1981), the theory does not predict binocular cells tuned to near zero
disparities in this visual system. Tuned�zero�excitatory cells are most excited by stimuli
aligned in both eyes. They appear within this theory only in the scale region where Kj‘ > KS‘
(see equation (13)). Intuitively, summing signals from the two eyes can help to combat noise,
which is signi¿cant at high spatial frequencies. However, this noise smoothing strategy is
only effective if the signals—the edges——�in two eyes are spatially correlated, which is not
the case in this visual system at high spatial frequencies or small scales. However, the
signal integration by tuned excitatory cells will be effective when the images in the two
eyes are aligned. This can be realized by a system which ¿xates dynamically on visual
objects such that images are aligned at a high spatial resolution (i.e. high f), as will be
shown in the next section.

4. A dynamic ¿xating visual system��classi¿cation of predicted cell types and
comparison with experiments

We have so far explored the theory only in simple visual systems which do not actively
¿xate according to object distances. Object depths in such systems distribute randomly
with a large standard deviation around a mean depth which may (or may not) be the static
¿xation distance. In reality, however, active ¿xation reduces the object depths to within a
small range in a local visual area around the ¿xation point, giving much smaller standard
deviation of depth. At this point, we do not know enough about what initiates the vergence

T The dominance of K; over K: can happen at very small f where a relatively small signal R‘ compared to
R"' causes a much stronger ampli¿ca¿cn K; relative to K;l'. However, there the cell sizes are large and thus such
cells are rare.
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eye movement. However, its effect is to modify the binocular input ensemble and we will
use it to model the ocular correlations.

This dynamic ¿xating system has higher ocular correlations. In extreme cases, visual
inputs from objects located exclusively on the horoptor, i.e. zero disparities, give complete
inter�ocular correlation. If the input ensemble consists of visual objects of disparities within
the range Ax, it is only manifested as misaligned stimuli in the two eyes at spatial frequency
If I > 1/Ax. Therefore, the ocular correlation r(.‘f) << l only for |f| 2 l/Ax. As argued
above, the disparity range or disparity variation Ax in a dynamic ¿xating system should be
much smaller than that of static ¿xating systernt. Accordingly, the ocular correlation r(f)
is substantial up to a much higher spatial frequency f.

Unoriented Blob Cell a

Oriented Cells

n+=o 0�=0 tt+=so" 9�=90" 0+=n 0�=90" tt*=�45° tt"=90°
b c d e 10/deg .

f 9 I1 I xik¿sodeg

j k | "1 8c/deg

n o ' p Q _ 25c/deg

~=�'"ie� �"""\;��r°“

Figure 5. Predicted receptive ¿elds under ocular correlation r(f) = 0.96exp(�f/f3) with
fo = 15 c/deg. The K* ¿lters in frequency space are plotted in ¿gure 2B. The format is the
same as in ¿gure 4B.

The consequence of a higher ocular correlation is the creation of the region where
Kj‘ > Ks‘, at high |f| where both r(;f) and the noises are signi¿cant (see equation (8)).
Hence, in addition to the large tuned inhibitory, near/far cells when K; > Kj‘ and the
small monocular cells when K: H K; at high |f|, there will be the following cell classes
(¿gure 5).
T Our measured inter�ocular correlation should roughly approximate that of the visual periphery, where visual
objects randomly distribute in Eront of. behind, and around the ¿xation distance. As one approaches from the
visual periphery to the visual centre, the inter�ocular correlation should continuously increase.
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(iii) [Kj‘[ > [KS1 —� tuned excitatory cells. By (13), the optimal phase disparity of the cell
is small. When Kg‘ || Ki“, the two receptive ¿elds are completely aligned (¿gures 5f,g,j,k),
giving tuned�zero�excitatory cells (Poggio 1992). If K?‘ >> K; (which happens when r(f)
is large enough) or Kg." J. KQ, then |K_{:[ w IK§[ and the contributions from the two eyes
are comparable, giving ocularly balanced cells. As the, frequency in this region is higher
than that of K; > Kj region, the tuned excitatory cell sizes are smaller than other disparity
selective cells.

(iv) |K;*‘] % IKII and r(f) $ O — monocular cells and near¿ar cells . This happens
at the transition from K; > Kj to K; < Kj, hence the ocular correlation is still
signi¿cant. Therefore, unlike the monocular cells of class (ii), the redundancy reduction step
S* = ¿(S'" i SR) and the subsequent multiplexing (equation (7)) are necessary. When
K: |[ Kg, cells become monocular. When disparity tuning is concerned, there are still
two distinct p0ssibilities—before (K§’> Kj") and after (K; < Kj) the curve crossing,
giving tuned inhibitory (¿gure 5b,c) and tuned excitatory monocular cells respectively. A
simple geometric argument shows that |A¢| W 90 deg for almost all other phase angles A6
between K?‘ and KAT, giving near/far cells (Poggio 1992). The ocular dominance index
of these near/far cells can vary from binocularity to monocularity, depending on A6. For
example, when Kg“ J. Ks‘, IKITRI = \/ [Kill + |K§|2 and the cells are binocularly balanced,
e.g. ¿gure 5d, and A9 4 45 deg between K} and K; leads to an imbalance, e.g. ¿gure Se.

The classi¿cation—classes (i), (ii), (iii), (iv) in sections 3 and 4—gives the most
representative properties of the predicted cells. In reality there is a gradual variation from
K; dominance at low f, to the curve crossing, and then to Kg‘ dominance at high f, giving
a continuous spectrum of optimal phase disparity and ocular dominance index, as observed
in experiments (Le)/'ay and Voigt 1988). In addition, there is another cause, due to the phase
changes 451'�R of each eye, for the receptive ¿eld variation when the ocular dominance index
and optimal disparity A¢ are ¿xed. For instance, the left two columns of ¿gures 4B and 5
give the same Aq¿, but different—even and odd—receptive ¿eld forms.

The predicted cell types, tuned excitatory/inhibitory, near/far, monocular/binocular, have
been observed in physiological experiments (Poggio and Fischer 1977, Fischer and Kruger
1979, Ferster 1981 Freeman and Ohzawa 1990, LeVay and Voigt 1988). Unfortunately, it is
not possible at this stage to perform a detailed quantitative comparison between theory and
experiment (see section 5). However, there are certain qualitative trends and correlations
between different cell properties that the theory predicts and can be checked in experiments.

(a) Cell size and disparity tuning range. Within the multiscale representation, phase disparity
A¢ and spatial disparity Ax are related by A¢ = 2:�rfAx. If we assume that all cells have
roughly the same phase disparity range, the spatial disparity range Ax is then proportional
to l/f or the cell sizes, as observed in experiments (Ferster 1981). Figure 6 shows the
disparity tuning curves of the corresponding cells in ¿gure 5 (note the differences in their
horizontal scales). _

(I9) Cell size and optimal disparity. Correlation between smaller (larger) cell size and smaller
(larger) optimal phase disparity can be seen from equations (8) and (13), since cell size
oc 1 / |_f I. This is consistent with the observed proportionality between cell size and disparity
tuning range (Ferster 1981) and the observation that tuned excitatory cells have narrower
tuning range than near/far cells (Poggio and Fischer 1977, Poggio 1992).

(c) Optimal disparity and ocular dominance index. The theory predicts that the near/far cells
(from class (i) and (iv)) can be ocularly unbalanced or balanced. The tuned inhibitory cells
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Figure 6. The disparity tuning curves for the corresponding cells in ¿gure 5. The vertical line
in each plot marks the zero disparity location. The horizontal scale is the same in all the plots,
indicated by the bar at bottom. The tuning curve is normalized such that the maximum response
for each cell is the same, and the bottom of the vertical line marks the zero response levels.
Note that the tuning curves are shallow for cells strongly dominated by one eye (e.g. a, b, e, n,
o); cells in d and e are tuned to same optimal disparity but have different modulations by depths
by their di¿erent ocular dominance. if nonlinearity such as thresholds are added, the tuning
curves can be less shallow for the unbalanced cells. The cell responses at each disparity are
obtained by simulating the sweeping of bars of widths 1/|_f|, where _f is the optimal frequency
of the cell, over the receptive ¿elds. The bars for the two eyes are separated by the measured
disparity value.

are likely to be ocularly unbalanced (¿gures 4Ba,b,c, 5a,b,c). The tuned excitatory cells are
binocularly balanced if Kj’ strongly dominates, and can be balanced as well as unbalanced
if K1‘ dominance is not strong enough (in which case many cells resemble near/far cells).
Experimentally, itwas observed that most tuned excitatory cells are balanced, most ttmed
inhibitorycells and a large fraction of near/far cells are unbalanced (Poggio and Fischer
1977, Fischer and Kruger 1979, Ferster 1981). _
(4) Blob cells and ocular imbalance/opponency. This is so because the so�called blob cells,
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which are unoriented and large (Livingstone and Hubel 1984, Silverrnan et al 1989), can be
seen as a special class of tuned inhibitory cells, which are large (class (i), ¿gures 4Ba, 5a). It
has been observed that all tuned inhibitory cells in monkey area 17 are unbalanced (Poggio
and Fischer 1977), and that the blob cells are monocular (Horton and Hubel 1981, Tootell et
al 1988, Livingstone and Hubel 1984, Ts’o and Gilbert 1988). It will be interesting to see
in experiments if the blob cells do receive opponent signals from the two eyes, especially
when the input signal�to�noise ratio is large.

(e) Cell orientation, ocular dominance and disparity tuning. Natural scenes exhibit higher
ocular correlation in vertical directions, i.e., r(0, f) > r(f,0). Consequently, the ocular
opponency signal power R“ = (1 — r)R is smaller for vertical frequencies, forcing the
K“(f) ¿lter to decay and cross the K"'(_f) curve sooner and giving a stronger K'*‘(_f)
dominance in the small�scale region. From equation (13), the curve crossing marks the
optimal phase disparity crossing from > 90deg to < 90deg. Hence, there should be a
correlation between horizontally oriented cells and small optimal disparities, as observed in
experiments (DeAngelis et at 1991, see related work by Barlow er al 1967). In addition,
equation (11) suggests that a stronger K"‘(_f) dominance leads to more binocular cells,
predicting a correlation between horizontally oriented cells and binocularlty. Experimental
investigation of this correlation can provide a crucial test of the theory.

Here, we present some intuitive reasons for the binocular coding properties. The shift
from binocular opponency (large optimal disparity) for large cells to binocular summation
(small optimal disparity) for smaller cells can be understood as a signal enhancing strategy.
Ocular correlation makes the ocular difference signal S“ smaller than the summation signal
8"’. Hence integration in space with large cells are used to enhance S“, which is best
extracted with ocularly misaligned receptive ¿elds. When the cell sizes are small, there is
little spatial integration, summation in ocular space by aligned receptive ¿elds is used to
amplify the signal. Monocular cells and nearlfar cells of intermediate sizes can be seen
as transition from large cell ocular opponency to small cell ocular summation. A smaller
fraction of large disparity horizontal cells follows from sampling theory which allocates
small sampling density for infrequent signals—large vertical disparities.

This theory can also explain observations on ocular dominance column development (Li
and Atick 1994b). When images in two eyes are misaligned (strabismus) or asynchronous
during development, it gives a smaller inter�ocular correlation like the case in section 3.
Hence a larger number of monocular cellswill form, giving complete ocular dominance
columns and nearly all cells in a column will be driven exclusively by a single eye, as
observed experimentally (I�Iubel and Wiesel 1965, Van Sluyters and Levitt 1980, Miller
and Stryker 1990). The opposite experimental condition where the two eyes receive much
more correlated stimuli than normal gives very high ocular correlations. This makes the
binocular opponency signal S‘ very small and thus the K‘ ¿lter is negligible. Consequently,
Ki‘ >> K" (class (iii)), binocular cells will dominate, or equivalently , ocular dominance
columns will be weak or negligible as observed in experiments (Stryker 1986). Starting
from an ocular correlation matrix that is left�right asymmetric (cf equation 2), this theory
can also explain the unequal sizes of ocular dominance columns for the two eyes resulting
from early monocular deprivations (Hubel Wiesel and LeVay 1977, Shatz and Stryker 1978).

Another theoretical prediction is that there can exist ocular disparities in orientation,
optimal frequency or cell sizes, and tuning widths. This is because the tuning curves of
the two eyes [Kf'R| = |Kj' i K;| can be slightly different, especially when K"'(j’) and
K‘(f) are not proportional to each other within a local scale region. For example, the cells
in ¿gures Sb,c,f,g show different sizes or even shapes from the two eyes. However, since
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the left and right eyes are interchangeable in this theory, the average disparity for the cell
population as a whole, whether it is in optimal frequency, orientation, or in tuning width,
will be zero. Experimentally, slight disparities in orientation, optimal frequency, and other
properties have been observed, with average disparities for the cell population close to zero
(Skottun and Freeman 1984).

5. Limitations

In this paper we have shown that the principle of ef¿cient coding as implemented through
multiscale representation and binocular decorrelation can explain many of the essential
elements of binocular processing observed in the cortex (e.g. disparity selectivity, ocular
dominance, their relationship with cell receptive ¿eld sizes, etc). In our previous work (Li
and Atick 1994a) multiscale coding and decorrelation in colour was shown to account for
many features of spatial and chromatic cortical processing (spatial receptive ¿eld kernels at
different scales, quadratures, colour opponency, etc). The current work further strengthens
our belief in ef¿cient coding as a framework for predicting and understanding neural
processing in the cortex.

It is important to point out that the consequences of efficient coding have been derived
making several simplifying assumptions that may not be true or may be only approximately
true. These include the assumptions of active ¿xation and linear coding. We have also
ignored feedback between binocular coding and vergence movement, which has been
suggested by other researchers (e.g. Poggio 1992). This means that in detailed comparison
with experiments, there will be disagreements for predictions that may be sensitive to
such simplifying assumptions and that depend on the details of the ensemble (such as the
property of true monocularity and the nonlinear effect of binocular facilitation). Our intent
is to develop a framework that we can use to address the complex issues of binocular vision.

Another fundamental problem that we have to deal with in trying to make detailed
comparison with experiments is the fact that there is no clear consensus in the experimental
data when it comes to binocular cell properties. For example, the data of Hubel and
Wiesel (1970) from anaesthetized monkey, differs in many respects from the data of Poggio
and Fischer (1977) on awake behaving monkey. The former found no depth sensitive
cells in area V1 of the monkeys while the latter did; and even in area V2 their observed
cell depth selectivities differ qualitatively (Poggio and Fischer 1977). Another example is
that while DeAngelis et al (1991) found correlations between disparity selectivity and cell
orientation, LeVay and Voigt (1988) failed to show a signi¿cant connection between the two.
Although many experiments have studied correlations between cell disparity selectivities,
ocular dominance indices, and cell orientations etc (see Poggio 1992 and references therein,
LeVay and Voigt 1988) little effort has been made to link these properties to cell sizes
(Freeman and Ohzawa 1990). Since our theory is based on a multiscale representation
and many predictions are related to cell sizes, the comparison between the theory and
experimental observations have to be indirect (e.g. in (la) of section 4). Freeman and
coworkers (Freeman and Ohzawa 1990, DeAngelis et al 1991) have proposed a stereo
coding scheme in which the distribution of cell optimal phase disparities is the same for
all scales (see also Marr and Poggio 1979). This scheme differs from the prediction of
our theory (in (b) of section 4) which allocates different cell optimal phase disparity ranges
for different scales. Unfortunately, the relationship between the range of optimal phase
disparities and cell size cannot be inferred from their published data (Freeman and Ohzawa
1990, DeAngeli's et al 1991).

We hope that our theory will facilitate more systematic exploration of binocular coding
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properties and their interaction with the environment. At this stage, more precise theoretical
predictions require better knowledge and measurements on eye vergence movements and
binocular input ensemble. Nevertheless there are some robust predictions, such as the
correlation between cell sizes and binocular coding properties and between cell orientation
selectivities and ocular dorninances, that can be tested now. In particular, experiments
measuring the sizes of different disparity selective cell types or the ocular dominance
indices of different orientation�selective cells will be able to con¿rm or refute many aspects
of the theory. The theoretical framework can also help organize and relate the seemingly
large varieties of receptive ¿eld properties observed in the cortex under different noise
or light levels and in different input ensembles for different animals (e.g. different inter�
eye distances). At the same time, the theoretical development can bene¿t greatly from
quantitative experimental input.

Appendix: Measurement on the inter�ocular correlation r(_f)

We used a special stereo camera, the so�called Stereo Realist. It has two lenses of parallel
optical axes separated by about '7 cm. Each shot takes two pictures simultaneously, one
for each lens. The shutter speed, aperture size and the focal length are common for the
two lenses. The camera focus ranges from 2.5 feet ('75 cm) to in¿nity. The monocular
¿eld of view is about 34 deg which is considerably less than the ¿eld of view of humans
but nevertheless large enough to give us a preliminary measurement of the inter�ocular
correlation function.

Our ensemble of stereo images consists of 127 shots taken mostly in Central Park of
New York City, in bright enough daylight to allow for large depth of focus with small
apertures. Most objects in most pictures are at least 1 m away from the camera. Roughly
40�50 shots have the dominant objects in the scene approximately 2�4 feet (60—l20 cm)
from the camera.

All images were taken using Kodak T�MAX black and White ¿lm with exposure index
400. The ¿lms were developed and printed on contact sheets and scanned and digitized to
8�bit grey scale. The left and right images of each stereo picture were scanned to about
270 >< 295 pixels each, and then cropped to 256 >< 25.6 pixels for analysis. Controls were
taken to ensure that the corresponding pixels between two images in a stereo pair are ¿xed
from one pair to another within an error of 1 pixel horizontally and vertically. The power
spectrum of the right and left images are both of the order f�2 up to f ~ 0.4 cycles /pixel
(for higher f, noise in images play a large role), in close agreement with other measurements
from (monocular) natural scenes (Field 1987, Ruderman and Bialek 1993).

The inter�ocular correlation |r(_f)] is shown in ¿gure 1. One can see that r N 1
for f W 0, meaning that the average mean light inputs to two eyes are about the same.
However, r(f) decays with f, much faster in the horizontal direction, to r(_f) << 1 for
f ; lc/deg. This means that the images to the two eyes are similar only up to a spatial
resolution of around 1 deg. This is not surprising as many objects in our visual inputs differ
in disparity by that order. The r(_f) is larger in the vertical direction since distribution of
vertical disparities has a smaller mean and variations than that of the horizontal disparities.
It can be shown to have signi¿cant consequence on the correlation between orientation and
disparity selectivity of the cells (see section 4).

We would like to point out that the measurement on lrl depends on the ensemble
of scenes used, on the disparity range or distance of the objects in the scenes (and the
distance between the eyes). We have a biased ensemble since the distribution of object
distances sampled in our measurement is probably not the same as that under natural viewing
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conditions. In particular, limited by the camera focus range, we cannot take images with
objects closer than 2 feet (60 cm) away from the camera.
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