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1. Introduction

The olfactory system is a phylogenetically primitive part of the cerebral cortex
[1]. In lower vertebrates, the olfactory system is the largest part of the telen-
cephalon. It also has a intrinsically simple cortical structure, which in modified
form is used in other parts of the brain [1]. The odor molecules of the distal ob-
jects to be detected are bound to and crudely recognized by receptor proteins,
giving a relatively well defined input signals, compared to the photoreceptor
and hair cell activities in vision and audition, for object identities. Hence the
olfactory system conceivably handles a relatively simpler computational prob-
lem. Having phylogenetic importance and computational simplicity, the olfac-
tory system promises to yield insight on the principles of sensory information
processing.

What is the olfactory system trying to compute from its sensory input? It
should try to perform some or all of the following tasks: 1. odor detection; 2. if
there is only one odor present, odor identification and concentration estimation
[3]; 3. if there are multiple odors present, odor segmentation — before iden-
tification and concentration estimation can be performed [2][4]; 4. localization
of the odor sources [2]. Tasks 1 and 2 should be performed by any olfactory
system. Task 3 is often necessary for odor recognition and localization since
the olfactory environment is frequently composed of odor mixtures, and any
olfactory model should address it. Task 4 is especially important and neces-
sary for animals, such as insects and nocturnal animals, who depend largely on
chemical senses in their environment [5][6][2].

The olfactory bulb, the first processing stage after the sensory receptors,
is likely to compute towards the computational goals above. It transforms the
input signals, represented by the spatiotemporal activation patterns in the re-
ceptor cells, to input dependent ([7][8][9][10]) spatio-temporal oscillatory ac-
tivities at the output, which are then sent directly to the olfactory cortex for
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about the input odors. The models described in this paper assume that some
of the computational goals above are first attempted by the processings in the
bulb. The computation in the olfactory cortex cannot be understood without
knowing the bulbar processing and outputs.

This article demonstrates the olfactory modelling approach by comprehen-
sive description of two models of the olfactory bulb. One of them [3][4] suggests
that the mammalian bulb detects and identifies an odor and its concentration
by the amplitudes and phases of the oscillation across the bulb (tasks 1 and 2).
Furthermore, it hypothesizes that the bulb detects and identifies a more recent
odor input in the presence of another odor — odor segmentation (task 3) —
by olfactory adaptation. It suggests that the adaptation should be viewed as
a computational strategy instead of as olfactory fatigue. The odor localization
task (task 4), however, is not addressed by this model. The other model[2] has a
different perspective and emphasizes odor segmentation and localization (tasks
3 and 4), even when the odor objects are not familiar and many odors are
simultaneously present. It hypothesizes that the bulb segments or identifies the
individual odors by analyzing the correlations in the input temporal fluctua-
tions. As a result, identities and fluctuations of individual odor components are
identified from the input mixture. Each component fluctuation, which contains
the information about the odor source location, can then be used by higher
brain centers to localize the source. The problem is solved by dynamic changes
of the synaptic strengths, which are proposed to encode the odor identity.

This article is thus not intended as a complete review of all the modelling
and other relevant works in the field, which can be found in the literature [11].
Among other works are studies of odor transduction by receptors [12], detailed
computer simulation using biological parameters to reproduce physiological
observations [13][14], a model to study macroglomerulus neural response varia-
tions to behaviorally relevant input changes in insects [15], a model of efficient
coding in the bulb [16], computational studies of olfactory cortex as a content-
addressable memory and learning [17][18][19], and a discussion on non-linear
neural dynamical processing of odor information [20].

In the next section, some background is given on the olfactory bulb and
its sensory receptor inputs. Sections 3 presents a model of the neural activities
observed in the mammalian bulb. Section 4 shows how this model codes and
segments odors. Section 5 presents Hopfield’s model [2] of odor identity and
fluctuation segmentation in odor mixtures. In section 6, we discuss the differ-
ences between these models, their relationships to the computational tasks and
environments, and relate the computational approaches used in olfaction to
those used in other sensory systems.
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The olfactory bulb contains sharply differentiated cell types located on differ-
ent parallel lamina [1]. Each receptor sends a single unbranched axon to the
topmost layer, terminating in one of the spherical regions of neuropil termed
glomeruli (Fig. [1] A, B). The receptor axons ramify inside the glomeruli,
synapsing on the excitatory mitral cells and the inhibitory short axon cells.

Fig. &.1. A: Olfactory system block diagram. B: Olfactory bulb structure, circles with ‘+’
signs are excitatory mitral cells; with ‘-’ signs are inhibitory granule cells. C: Three examples
of experimentally measured functions (taken from [20]), relating the pulse probability of
single or small groups of mitral cells to the EEG wave amplitudes. This function is used to
model the cell input output relationships[20].

With increased odor concentration, the receptor cell firing rate in verte-
brates [21] increases from the spontaneous background of 1—3 impulses/second,
and may reach 10 — 60 impulses/sec. With an odor pulse delivered to the mu-
cosa, the receptor firing rate increases approximately linearly in time as long
as the pulse is not too long, and then terminates quickly, after the odor pulse
terminates [21]. More than 100 genes for odor receptors have been identified
in mammals [22]. It is not known whether a single type or a few types are ex-
pressed in each receptor cell. Most receptor neurons in vertebrates respond in
different degrees to a broad range of odor molecules, each response spectrum is
unique [12]. Hence there is no clear specificity between odorants and receptor
cells, except between pheromone molecules and a subgroup of specialist recep-
tor neurons in insects [12]. There are also inputs from higher olfactory centers
to the bulb, but little is known about them [1].

The bulbar cell organization is reviewed in detail by Shepherd [1]. The
main cell types of the mammalian bulb are the excitatory mitral cells and
the inhibitory granule cells at different cell layers (Fig. 1B). Each mitral cell
receives inputs from one or several glomeruli [12]. The granule cells inhibit, and
receive excitatory inputs from, the local mitral cells by local dendrodendritic
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additional inputs from the mitral cell axon collaterals. The outputs of the bulb
are carried by the mitral cell axons; while central feedbacks to the bulb are
directed to the granule cells [1].

The activities in the glomeruli layer is odor dependent [9][23]. Stimulation
with odors causes an onset of high-amplitude bulbar oscillations, which may
be detected by surface EEG electrodes and which returns to low-amplitude os-
cillations upon the cessation of odor stimulus [7]. Since the odor stimulation is
usually synchronized with respiration, the EEG [7][24] shows a high amplitude
oscillation arising during the inhalation and stopping early in the exhalation
(Fig.2 B). However, respiration itself does not seem to have an effect on bulbar
activities [25]. The oscillation is an intrinsic property of the bulb itself, persist-
ing after central connections to the bulb are cut off [20][26]. However, Freeman
and coworkers also reported that the central inputs [27] influence oscillation
onset, which exists only in motivated animals. Nevertheless, oscillation disap-
pears when the nasal air flow is blocked [24], although the same group reported
that it can be present without odor inputs [7]. In invertebrates, the oscillation
activities exist without odor inputs, but are modulated by odors [28]. The os-
cillation bursts have a peak frequency in the range of 35-90 Hz in mammals
[24]. Different parts of the bulb have the same dominant frequency but differ-
ent amplitudes and phases [24][8]. A specific odor input, subject to behavoral
conditioning, sets a specific oscillation pattern [8][10].

There are roughly 1000 receptor axons and dendrites from 25 mitral cells in
each glomerulus, while there are about 200 granule cells for each mitral cell [1].
A rabbit has about 50,000 mitral cells [1]. Both the mitral and granule cells
have a non-linear input-output relationship (Fig. 1C, [27]), and a membrane
time constant of 5— 10 milliseconds [29]. Very little is known about the strength
of the synapses in the olfactory bulb.

3. Modeling the neural oscillations in the olfactory bulb

The fact that the oscillatory patterns in the bulb correlate with odor inputs
and disappear when air flow is blocked indicates that the odor information is
very likely carried in the neural oscillation activities. Before discussing how
such activities code odors, we present a model to reproduce the physiologically
observed oscillations. The computational issue of odor coding and segmentation
will then become apparent by analyzing the dependence of oscillatory activities
on the receptor and centrifugal inputs, as will be explained in the next section.
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This model [3] attempts to include enough physiological realism to contain the
essential computational components and facilitate experimental comparison,
yet, nevertheless retains sufficient simplicity to avoid superfluous details. Both
M, the number of granule cells, and N, the number of mitral cells, as well as
their ratio M/N are much reduced from reality in the simulations, although
the mathematical analysis imposes no limit on their actual values. Excitation
and inhibition are kept in balance by correspondingly increasing the strength
of the granule cell (inhibitory) synapses.

Determining how to wire each receptor to the correct glomerulus and then
to the mitral cells for optimal olfactory computation [12][16], is a major com-
putational problem. However, this requires better experimental knowledge of
receptor response spectrum to odors than is currently available. Our model
thus ignores the glomeruli structure and regards receptor cells as effectively
giving inputs I; onto the it mitral cell for 1 < ¢ < N. This input vector I is
a superposition of a true odor signal I,4,- and a background input Ipackground,
ie. I = Iogor + Ipackground- lodor is determined by odor pattern Pp,g,; for
1 < i < N. We use the approximation, based on experimental findings [30],
that for low odor intensity, the direction of vector P,4,. depends only on the
input odor identity, while its length or amplitude increases with the odor con-
centration.

Similarly, the central inputs to the granule cells are modelled as a vector
I. = I packground + Ic,control, Where I packground is the background signal to
the granule cells. I contror 1s the active central input that serves some compu-
tational purpose as will be discussed in the next section. For the moment, it is
assumed that I. contror = 0.

Each I,q.r; 1s taken to be excitatory. We model the I,4, to increase in
time during inhalation, as observed in experiment [21]. Because of the odor
absorption by the lungs, as odors are necessarily highly soluble in water [31],
1,40 is modelled to exponentially return toward the ambient during exhalation,
see Fig. 2A. Both Ipsckground and I packground do not change during a sniff cycle,
their scales being such that when I3, = 0, most of the mitral and granule
cells have their cell internal states just below maximum slope points on their
input-output functional curves.

Each cell is modelled as one unit [3] under the assumption of short dendritic
electrotonic lengths [1]. The state variables, modelling the membrane poten-
tials, are respectively X = {x1,zo,...,2nx}and Y = {y1,y2, ..., ynm } for mitral
and granule cells. Their outputs are respectively, G (X) = {9z (1), 9z(z2), - - -, gz (xn) }}}
and Gy (Y) = {9y(y1), 9y(¥2), - .., 9y(yrm)}. Both g, and g, model the proba-
bility of the cell firing or firing rate, their functional forms resemble their phys-
iological correlate (Fig. 1C). They have a gain or slope that is approximately
zero before the state when the cell response deviates from zero, modelling the
firing threshold. This gain becomes large immediately after the threshold. Such
non-linearity is essential for the proposed odor computations.

The dynamic equations for the cell population is modelled as
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dY/dt = WoGqe(X) — oY + I, 1)

where o = 1/7, and 7 = 7 milliseconds is the cell time constant, assumed to
be the same for both cell populations for simplicity. Weak random noise with
a correlation time of roughly 10 milliseconds is added to I and I. to simulate
the fluctuations in cell potentials. The matrices H, and W, have non-negative
elements and model the synaptic connections. Hence (H,);;g,(y;) models the
inhibition from the j* granule to the it" mitral cell, and (W,);;gz(z;) is the
reciprocal excitation. The cell indices 7 and j approximate cell locations in
the bulb (assuming periodic boundary conditions: the N** mitral and the M*"
granule cells are next to the first mitral and granule cells respectively). Local
interaction implies that (H,);; and (W,);; are non-zero only when ¢ ~ (N/M)j,
i.e., H, and W, are near-diagonal matrices for N = M.

3.2 The olfactory bulb as a group of coupled non-linear oscillators

Computer simulations demonstrate that our model captures the major known
effects of the real bulb. In the example of 10 mitral and 10 granule cells, the
model bulb exhibits the following. (1), Neural oscillations rise with inhalations
and fall with exhalations; (2), all cells oscillate coherently with the same fre-
quency which may depend on inputs; and (3), different odor inputs induce
different amplitude and phase patterns in cells, and some, including the zero-
odor input, do not induce any coherent oscillations. All of the above agree
qualitatively with what are observed in physiology, as demonstrated in Fig. 2
([7][24]). Furthermore, observation (3) demonstrates the model’s capabilities as
a pattern classifier.

Such agreement between the model and real bulbs can be understood using
the following analysis. First, concentrating on the oscillations, notice that a
system such as:

dz/dt = —wy — ax

or d*z/dt* +2adz/dt+ (W + o)z =0 (2)
dy/dt = wr — ay

describes a damped oscillator of frequency w oscillating with time t as
z(t) = roe”*sin(wt + ¢)

where « is the dissipation constant and r,, ¢ the initial amplitude and phase.
When a = 0, the oscillator trajectory in the x-y space is a circle with radius r,.
This system resembles a coupled pair of mitral and granule cells, with external
inputs 4(t) and i.(t) respectively,
dz/dt = —h - gy(y) — ax + i(t),
dy/dt = w - gz(z) — ay +i.(t).

(3)

This is the scalar version of equation (1), with each upper case letter which
represented a vector or matrix replaced by a lower case one representing a



Fig. &.2. A: Simulation results of output from one mitral cell and EEG waves during three
breathing cycles of odor inputs. B: experimentally measured EEG waves with odor inputs,
taken from [24]. C: outputs from the 10 mitral cells during one breathing cycle for a particular
odor input I,40,.- Each cell oscillates with a particular amplitude and phase, depending on
I,4or- D: same as C, but with a different 1,40

scalar. The differences between (2) and (3) are mostly the non-linearity of g,
and g, and the existence of the external inputs. Stationary external inputs can
be eliminated by a shift of origin in x-y space. Let the equilibrium point of this
system be (z,,y,) such that

dzo/dt = —h - gy(yo) — axo +1 =0,
dyo,/dt = w - go(x,) — yo + ic = 0.

(4)

Define 2’ =z — z,, ¥y =y — y,, then

d.’L‘,/dt = _h(gy(y) - gy(yo)) - aa:',

dy'/dt = w(g.(7) — g2(z,)) — ay'.
If g4 (y) — gy (yo) x ' and g, (x)—g4(z,) x &', a direct comparison with equation
(2) can be made. h and w are accordingly related to the oscillation frequency

and « to the damping constant. Indeed, when o = 0, z and y oscillate around
(%0, Yo) in a closed curve

wo‘l'w, yo‘l'y,
R= / w(9z(s) — 9z (x,))ds + / h(gy(s) — 94(yo))ds = constant > 0

To Yo
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and monotonic g, and g, the trajectory spirals toward (z,,y,) as R decreases
to zero:

dR/dt = —aw(gz(%) — g2 (T0)) (T — 20) — ah(gy(y) — 9y(¥0)) (¥ — ¥o) <0

i.e., the oscillation is damped. So we see that a pair of coupled mitral and
granule cells can be approximated as a non-linear damped oscillator.
For small amplitudes, the frequency can be calculated by a linear approxi-
mation around the (z,,y,):
dr/dt = —h- g,(yo)y — az 5)

dy/dt = w - g (vo)x — oy

where (x,y) is now the deviation from (z,,¥,). The solution is z(t) = r,e”*

sin(wt 4+ ¢) with frequency w = \/hwg;E (70) 9y (Yo)-

Under realistic conditions, the odor inputs change on the time scale of the
breathing cycle (the same is true when central inputs are concerned, see below).
However, since this change is much slower than the oscillation period =~ 25
milliseconds, the external inputs can be seen as only adiabatically changing. In
other words, the input dependent oscillation origin (x,,¥,) shifts slowly with
1 and %.. The oscillation frequency w shifts accordingly by its dependence on
(o, Yo). The frequency of this neural oscillator can thus be designed by the
synaptic connections h and w and fine-tuned by the external inputs. This is
how the scales of H, and W, are chosen to have the model oscillate in the
physiologically observed frequency range.

Imagine a group of N such oscillators coupled together by synaptic in-
teractions between cells in different oscillators; it is then a group of coupled
non-linear oscillators. This is exactly the case in the olfactory bulb. That there
are many more granule cells than mitral cells only means that there is more
than one granule cell in each oscillator. For small amplitude oscillations [27],
this group can be mathematically approximated as linear oscillators. Proceed-
ing analogously as from (3) to (5), we can start from equation (1) to the analog
of (5)

dX/dt = —HOG;(YO)Y —aX =—-HY — aX,

6
dY/dt = W,G.(X,)X —aY = WX —aY. (6)

where G7,(X,) and G} (Y;) are diagonal matrices with elements: [G},(X,)]i; =
9z (Ti0), [G(Yo)]i5 = 95(¥j,0)- Since only the mitral cells send bulbar outputs,
we concentrate on them by eliminating Y:

X+2aX+(A+)X =0 (7)

where A = HW = H,G,(Y,)W,G,(X,). This is the equation for a system of
N coupled oscillators (cf. equation (2)). The i** oscillator follows the equation

T; + 2ax; + (A“ + 052).73'1' + Z Aijxj =0 (8)
J#i
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> (Ho)irgy (y1,0) (Wo)159 (25,0) > 0 is the coupling strength from the j%* to the
ith oscillator. It originates from the j** to the i** mitral cell via the intermediate
granule cells in the connection path. Thus, local synaptic connections imply
local oscillator connections, or in other words, A is near-diagonal. However,
unlike a single oscillator, the group is no longer damped and can spontaneously
oscillate, induced by the coupling A, as we will see next.

3.3 Explanation of bulbar activities

Let us see how this model can explain the bulbar activities. First, the single
oscillator analysis (egs. (2)(5)) predicts that local mitral cells oscillate with a
90° phase lead over the local granule cells. This is observed in physiological
experiments [32].

Second, the model predicts that the oscillation should have the same dom-
inant frequency everywhere in the bulb. One can see this by noticing that
equation (7) has N independent mode solutions. The k! mode is

X Xke_atiiﬁkt (9)

where Xj and Ag for £ = 1,2,...N are eigenvectors and eigenvalues of A.
(Fig. [3] gives examples of oscillation modes in a coupled oscillator system.)
Each mode has frequency Rev/Ai, where Re means the real part of a complex
number. If

Re(—a +ivV) >0 (10)

for some k, as can happen for complex Ag, the amplitude of the k** mode

will increase with time. Starting from an initial condition of arbitrarily small
amplitudes, the mode satisfying (10) with the fastest growing amplitude will
dominate the output, the non-linear effect will suppress the other modes, and
the final output will be a single “mode” in a non-linear regime. In that case,
although each oscillator has its own amplitude and phase described by the
components of X, they all share the same oscillation frequency Rev/ Ay, as
observed in the experiments [24][8].

The third consequence is that the oscillation phase will have a non-zero
gradient across the bulb. Each oscillator oscillates only when the neighboring
oscillators give a driving force F; = —A;;x; which overcomes the damping
force —2a; (cf. Eq. (8)). This means the neighbor oscillation z; should have a
component that is parallel to —z; or has a phase difference from x;, generating
a non-zero phase gradient field across the bulb, as observed physiologically
[7][24]. This is not necessarily true if mitral-to-mitral or other couplings exist
to change the oscillator coupling nature [3], however, there is still not much
evidence for mitral-to-mitral connections [1].

The fourth consequence is the experimentally observed rise and fall of os-
cillations with inhalation and exhalation. This is because growing oscillations
require large enough )\, to satisfy Re(—a 4 iv/A;) > 0 for some k. This in turn



Fig. %.3. Two example modes in a system of coupled pendulums. The upper one has all
the pendulums oscillating with the same amplitude and phase, back and forth from right
(solid positions) to left (dashed positions). Each pendulum in the mode of the bottom figure
oscillates 180° out of phase from its neighbors.

implies large matrix elements of A = H,G (Y,)W,G}(X,), i.e., large gains
G"’s. Thus (X,,Y,) should be near the high slope (gain) region of g, and g,
functions past the threshold. As in the single oscillator case, (X,,Y,) depends
on the odor input. When the central inputs are constant,

dX, ~ (a®> + HW) ladI

11
dY, =~ (o® + WH) " 'WdI ()

Before inhalation, (X,,Y,) is in the low gain region below the threshold so that
none of the modes satisfies (10), and the equilibrium point (X,,Y,) is thus
stable. Inhalation, dI > 0, pushes (X,,Y,) into the higher gain region, making
inequality (10) possible for some k. (X,,Y,) then becomes unstable and the
k" mode emerges from noise to visible oscillations across the bulb. Exhalation
reverses this situation and the oscillations cease.

4. A model of odor recognition and segmentation in the
olfactory bulb

Having successfully modelled the bulbar oscillation phenomena, we now discuss
the cognitive value of this model for olfactory computation.
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code the odor identity and strength.

Odor inputs I,4,- influence the emergence and patterns of the bulbar oscillation
via the path I,gor — (Xo, Yo) = A — (Xg, Ak ). Therefore, this model proposes
that the olfactory bulb codes the odor information in the following way. First, it
detects the presence of any relevant odor by the presence of a global oscillation.
Second, if it detects an odor, it determines the odor identity by the specific
oscillation pattern, i.e., the oscillation amplitudes and phases across the bulb,
of the mode X} that emerges. Third, the odor strengths can be roughly coded
in the overall oscillation amplitudes, at least for small odor concentrations.
For large odor concentrations, I,4, is no longer proportional to its value at
a small concentration[30]. As we sometimes perceive, the character of an odor
may depend on its concentration.

Absence of oscillation is apparent with absence of odor I,4,, = 0, as is the
case before inhalation. But some inputs may still be irrelevant or “odorless”
for the animal to detect, and the bulb may choose to ignore them even when
they are large. Equation (10) suggests that only those modes with non-real
Ar can emerge. Hence, only those I,4,- that can make matrix A sufficiently
asymmetric to have large non-real Ag, will cause the bulb to respond. For
illustration, consider an example when both H, and W, are symmetric and
uniform (cyclic):

h W 0 0. 0 W w 0 0 0. 0
K oh K 0. 0 0 0w 0 0. 0
H=|0 » h K 0. 0 W,=|0 0 w 0. 0
B0 .. 0 K h 00 .. 0 w

Each mitral cell only connects to the nearest granule cell with the same strength
w; each granule cell synapses on the nearest mitral cell with strength A, and, in
addition, onto the mitral cells at the neighboring left and right with strength
h'. If in addition, all the mitral (granule) cells are identical and receive the
same receptor (central) input strength I; (I.;), then by symmetry (X,,Y) is
uniform, i.e., each component in X, or Y, is the same. The matrices G, (X,) and
G, (Ys) will be proportional to the identity matrix, A = H,G (Y,)W,G,(X,)
is then symmetric:

a b 0 0 0 b
b a b 0 0 0
A=10 b b 0 0 O
b 0 0 b a

The N oscillation modes will be:



\I'!/J.} \JUD\’I’-L}
( sin(k2) \ { cos(k2) \

E e—atEivAxt : e—atEivAit
sin (k1) cos(ki)

\sin('kN) ) \cos(.kN)

where k = 2r £, K is an integer, 0 < K < &, Ay = a + 2bcos(k). For b < a/2
and A\r > 0, all the modes will be damped oscillations with similar frequencies
close to y/a. Inhalation of a “uniform odor” (Iogori = lodor,; for all ¢, j) only
increases proportionally the values of a and b, and thus Ag, but A remains
symmetric and oscillations never emerge spontaneously.

The bulb can design its responsiveness to selected odors by designing its
synaptic connection strengths. In the above example, the bulb ignores the “uni-
form odor” and only odors activating different receptors differently can possi-
bly induce global oscillations. However, the bulb can choose to respond to this
“uniform odor” by changing the synaptic design above, e.g., by deleting the
connection of each granule cell to the mitral cell to the left, i.e., (H,); i+1 — 0.
Everything else staying the same, we then have a non-symmetric matrix A o« H,
with complex Ag’s (as can be seen on a 3 x 3 matrix) even before inhalation,
ready to be raised by the “uniform odor” to higher values to satisfy (10).

The same influence path Igor — (Xo,Ys) =& A — (Xg, Ax) makes it ap-
parent that each I,4, induces a specific output to code the information by
amplitude and phase pattern Xj;. Xj is selected from the pool of N modes.
Such a pool is itself different for different odors via a different A or dynamic
system (7). Thus, there is potentially a large number of oscillation modes or
a large number of odor types that can be distinguished. In our example of
N = 10, 3 odors were observed [3]. However, it is not known how the odor
number scales with system size. In principle, the frequency Rev/A can also
carry odor information. However, since the frequency is the same across the
bulb, it only contributes to the code by one variable, negligible compared to
the N variables each from the amplitudes and phases.

The bulb codes the odor strength as follows. During inhalation, the input
increases at a rate proportional to the odor concentration. Hence higher odor
concentrations cause Re(—a % iv/\;) to shift sooner from negative to positive
values. Thus the mode X can grow into a higher amplitude oscillation, which
can be interpreted by the olfactory cortex as a higher odor concentration. For
some odors, the bulb requires a smaller concentration than for other odors to
lead to a emergence of oscillation. The bulbar sensitivity can thus be higher for
particular odors.

In principle, it should be possible to design the synaptic connections such
that the bulb can reach a desired correspondence between odor stimuli and
oscillation patterns, different sensitivities for different odors, and different res-
olutions to odor discrimination tasks. Here, low resolution to odor discrimina-
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to design the bulb connections remains an open problem.

4.2 Odor segmentation in the olfactory bulb — olfactory adaptation

It is desirable to recognize the odor components in an odor mixture instead
of simply judging the mixture as a new distinctive odor, as each odor com-
ponent may convey a distinct message (consider for example an odor mixture
which contains odorants from two distinct sources, one a predator the other
some food). Any realistic model for olfactory computation should also solve the
complex problem of odor segmentation in odor mixtures. The present bulbar
model does so by olfactory adaptation.

Since receptors responding to different (non-pheromonal) odors do not seg-
regate to different groups [12], it is not possible to segment the odors by at-
tending to different receptor groups. It was proposed [4] that, in the case of a
two-odor mixture for example, this problem is solved by olfactory adaptation
to one odor and recognizing the other as if it were the only odor component
present. This model suggests that the olfactory adaptation should not be un-
derstood as fatigue, but as an active mechanism to screen out the current and
already detected odor inputs, so that the olfactory system can concentrate on
detecting new odors superposed on the existing ones. Humans have difficulty
in identifying components in odor mixtures [33]. For example, two subtances
odorous singly may be inodorous together — counteraction; or only one odor
type is sensed when two are mixed — masking [31]. Without odor adaptation,
the new input odor superposed on existing ones may be masked and counter-
acted. Since odor receptors do not show much sign of odor adaptation [31] and
the bulb on the other hand does [34], it is reasonable to believe that the odor
segmentation problem is first solved in the bulb. And since adaptation is odor
specific and subjects adapted to one odor can still detect new odors [31], this
suggests that adaptation may involve odor specific control signals from higher
olfactory centers, which have feedback paths to the bulb [1].

In our bulbar model, the odor input I,4,. controls the output by raising
(X6,Y,). Thus odor adaptation can be achieved by a central input I. control
that cancels the effect of I,q0 on (X,,Y,). Equation (11) can be generalized
when Ic,control 7é 0 as

dX, ~ (o + HW) Y (adl — HdI,)

o » (12)
dY, ~ (o + WH) Y (WdI + odl,)

where I = Ibackground + Iodora Ic = de¢,background + Ic,controla and Ibackground
and I pgckground are time invariant within a sniff cycle. The central feedback

I. is sent to the granule cells. It, like Y,, is assumed to have dimension M
(the granule cell number), while I, like X,, has dimension N. A complete
cancellation means a simultaneous satisfaction of the N+ M equations dX, = 0
and dY, = 0. This is generally impossible with only M control variables in ..
Since mitral cells are the only bulbar output cells, one can loosen the demand
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M > N. Then the non-oscillatory output G.(X,) is the same as it is in the
absence of odor. As a result, the oscillatory bulbar output will not exist either
since its emergence requires both X, and Y, to rise above threshold to make A
large enough. We thus reach an effective means of odor adaptation.

I. controi 18 odor specific: from Eq. (12), dX, = 0 leads to dI. controt =
H'adl,g,. It is possible for the central brain to send such an odor-specific
cancelling, or adaptation, signal I. contro1, since adaptation occurs after Ioqo,
has already been recognized by the brain from the previous sniff, and thus the
higher olfactory centers have enough information about the odor to construct
the appropriate I. control-

Computer simulations demonstrated successful adaptations by such a mech-
anism: an input odor can be fully cancelled at the bulbar output as if no odor
input existed. Reducing the adaptation signal I contror by half reduces the bul-
bar output amplitude considerably (from non-adapted situations) as if a much
weaker odor were inhaled (Fig. 4). To test this model on odor segmentation,
two inputs I,gor1 and I,gqor2 representing two different odors are superposed
linearly to give the odor mixture input as Iogor = lodor1 + Lodor2- Such linear
approximation for receptor inputs is assumed valid for small odor concentra-
tions. Without any adaptation signals I. controi, the bulbar output pattern can
be seen to resemble neither output when each odor is presented alone. Then,
I,q0r2 is arbitrarily chosen as the pre-existing and adapted odor, and the cen-
tral feedback I contro is the adapting signal specific to I,gor2. As demonstrated
in Fig. 4, the bulb clearly responds as if only I,40,-1 Were present [4], achieving
odor segmentation. The success of this model depends partly on the fact that
the operating region of the bulb in normal odor environment is essentially lin-
ear, as suggested by physiological experiments for small oscillation amplitudes
[27], although there is a small region of non-linearity when breaking away from
threshold for odor detection [4].

This adaptation model predicts that central feedback to the bulb should
increase after initial exposures to an odor, and that the signal should vary on
the same time scale as the breathing cycle ~ 0.2 — 1 second, instead of the
bulbar oscillatory time scale, ~ 25 milliseconds. The feedback signal should be
odor-specific and directed to the granule cells in a distributed fashion. Exper-
imentally, not much is known of such feedback signals except that feedback
paths do exist anatomically [1]. It has also been demonstrated that when the
central input to the bulb is blocked, the neural oscillatory activity induced by
odor stimulus increases substantially [36] — supporting our proposed source of
adaptation signals. A systematic experimental study on the central feedback
to the bulb will provide a crucial test of this model.



Fig. &.4. A, B, C: Model response to 1,401 Without adaptation, with half strength adapta-
tion, and with full strength adaptation to I,g4or1, respectively. D: model response to I,q0r2-
E: model response to odor mixture of I,gor1 and I,g4oro.- F: model response to the same
odor mixture with adaptation to I,q4,r2 — odor segmentation and detection of I,4,,1 in the
mixture.

4.3 Olfactory psychophysics — cross-adaptation, sensitivity
enhancement, and cross-enhancement

The bulbar model presented above also explains other olfactory psychophysics.
One such phenomenon is olfactory cross-adaptation. Experiments show that
after sniffing one odor, another odor at next sniff smells less strong than it
normally would and may even smell different [31]. The extent to which odor
A is cross-adapted by B is different from that of B by A [35]. Our model
explains such cross-adaptation naturally. After exposure to odor A, the central
brain sends an adapting signal that is specific to A. As recovery from olfactory
adaptation takes 1-3 minutes [31] after a pre-existing odor is removed, the
adapting signal will last for at least a few sniffs even after odor removal. Imagine
that at the next sniff, the odor A is suddenly replaced by odor B. Since the
adapting signal is specific to A, the effect of odor B on the bulb cannot be
completely cancelled by the adapting signal, rather, the bulb’s response to
B will be distorted with the suppressive effect of the adaptation. Computer
simulations confirm such a result [4].
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versing the adaptation signal. Sensitivity enhancement has been observed psy-
chophysically in rats [37], but not yet in humans. Analogous to cross-adaptation
is cross-enhancement, although it is unknown whether it exists psychophysi-
cally. Both enhancement and cross-enhancement have been demonstrated in
computer simulations [4].

5. A model of odor segmentation through odor
fluctuation analysis

The olfactory bulb model described above applies most likely only to animals
that do not depend on olfaction as the primary sense of the world. The com-
putational tasks that model addresses are odor object detection, identification,
and segmentation if multiple odors are initiated unsynchronously. Such goals
are clearly not enough for animals that primarily depend on olfaction to explore
their environment. These animals need olfaction to function as visual animals
need vision, namely, they depend on olfaction for localizing, in addition to
identifying and segmenting, odor sources with respect to their environment. A
recent work by Hopfield [2] addressed this computational problem and proposed
using temporal fluctuations in receptor inputs for such a purpose.

5.1 A different olfactory environment and a different task

Hopfield [2] argued that in most olfactory environments, odors are brought to
the nose by fluctuating and turbulent winds, such that the odor plume contains
a complex spatial structure and is increasingly mixed with odors from other
parts of the environment as time increases. Thus, if there is only one odor object
present, the location of its source can be obtained by analyzing the fluctuations
of the odor intensity with time and relating them to the local wind directions.
On the other hand, if there are multiple odor sources, each at its own location,
the odor plume to the nose will contain all components with different intensities
fluctuating largely independently due to complex mixings by the wind before
reaching the nose. Since receptor neurons activated by different odors overlap
[12], different fluctuations of multiple odors are superposed in the receptor cell
responses. A separation of odors and their fluctuation signals is needed before
each odor location and identity can be decoded. This is so even when the odor
objects are not familiar to the animals [2]. Hopfield hypothesized that the func-
tion of the earliest part of the olfactory processing in highly olfactory animals
is to achieve this separation task, such that the contributions of different odor
sources to the receptor activities can be separated.

Both this model and the previous one presented in last section address the
odor segmentation task. However, there are major differences between the two.
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intensity fluctuates on a time scale of tens of milliseconds [38]. The previous
model assumes an environment that changes slowly, on a time scale longer than
the breathing cycle, before reaching the olfactory mucosa where the breathing
modulates its effects on the receptors. Second, the segmentation tasks are dif-
ferent. The slowly changing environment allows the previous model to segment
mixed odors by subtracting out the pre-existing odors, but it cannot do so when
each odor component in the mixture is initiated at the same time. Hopfield’s
model does not simply subtract out one odor in the mixture, as the fast fluc-
tuations make it difficult. Rather, it simultaneously sorts out individual odor
fluctuations from the mixed multisource input signals.

Behavioral evidence [39] demonstrates that olfactory animals such as the
terrestrial mollusc Limaz maximus [40] use the time fluctuations for olfactory
tasks. When two odors are completely mixed and originate from the same spa-
tial location, and thus have the same temporal fluctuations in their intensities,
they are recognized as one distinct odor different from the two component
odors. But as long as there are differences in temporal fluctuations in the two
components — for example, placing the odor sources at even slightly different
locations — the two odors are individually identified [40]. We will describe be-
low how Hopfield’s model achieves similar performances in cases of independent
odor component fluctuations.

5.2 Odor segmentation in an adaptive network

An idealization of olfactory bulb circuitry was used [2]. However, the odor in-
formation coding is qualitatively different from the previous model. First, the
synaptic strengths between the cells adapt to the odor inputs, an essential
feature for the functioning of Hopfield’s model. Second, the odor identity in-
formation is coded by the synaptic strengths rather than by the cell activities,
which instead code the instantaneous odor strengths.

A network of linear and mutually inhibitory neurons is used [2], each neuron
is denoted as x; in the state vector of X = {z1,z,...xx}. The cell dynamics
are (to compare with the previous model, the notations are modified from that

of [2)):

X=-TX-aX+1 (13)

This can be seen as a drastic simplification from (1), by assuming G, (z) = =
and Gy (y) = y, ignoring central inputs I., and assuming that the granule cells
instantaneously follow their inputs from mitral cells such that ¥ «x W,X.
Substituting Y into equation (6) and assuming T' o< H,W,, we obtain Eq. (13)
where the mitral cells effectively inhibit each other.

The odor input I differs from the previous model in its temporal courses
to reflect the odor concentration fluctuations instead of the regular respiration.
FEach odor k£ at some unit concentration is assumed to excite the mitral cell ¢
with strength Sk;. Its concentration is described by a fluctuating time function
ak(t). Thus, the input to the i** mitral cell will also fluctuate with ¢t as



Li\t) = ) 0g(l)Oki (1<)
k

Let us now look closer at the segmentation problem. There are two mod-
ules of the segmentation needed. The first is to segment the odor concentrations
ak(t), and second is the odor identity defined by Sy;, for all odors k. Both of
these signals are mixed in the inputs I. Because each odor excites many mitral
cells, independent odor fluctuations ag(t) for different odors k will result in
correlated fluctuations in inputs I;(¢) to different cells i. It is these correlations
that define the individual odor objects for the olfactory system [2]. This cru-
cially requires that individual odor fluctuations themselves are uncorrelated,
otherwise “olfactory illusions” should occur [2]. The idea is then to transform
the correlated receptor inputs I to mitral outputs X such that first, the com-
ponents of X, unlike I, are uncorrelated; second, X still carries all the temporal
information in I. This is possible if each component z; depends on no more
than one odor component concentration ag, which in turn is carried in the ac-
tivity of only one output cell. This way, the first module of odor segmentation
— to segment the individual odor concentration ay from I — is achieved at the
X level, and the higher olfactory centers only need to look at one component
of X for each ay.

Let us see if such decorrelation (segmentation of ay) also leads to the seg-
mentation of Sk;, the second module of the segmentation task. To achieve this
decorrelation at X, the synaptic connections T should satisfy some conditions
depending on the odor, or in other words, T should have the knowledge of the
individual odor components Sg;. It would be ideal if, in the case that mitral cell
n (z,) carries concentration fluctuation of odor k, the odor identity information
Sk; is carried in synapses T,,; or T;, associated with the same cell n. This would
not only segment the odor identity Sk;, but also tag this piece of information
to the same cell that carries this odor’s concentration. Using an example of a
two-odor mixture [2], and the simplification of small 7 = 1/« such that one
can assume z; =~ 0 for all ¢, we see that such segmentations are possible [2]: If,
e.g., the first column of matrix o + T is the vector S; and the second column
Sa, then 1 = a1, 2 = ag, and z;59 = 0. Thus all cells are inactive except for
two output cells which convey the odor strengths for the respective odors, and
their synaptic strengths to other cells, i.e., T;; and T;5 respectively, carry the
odor identities Sy; and Sy; respectively.

It is now clear that such tasks require 71" to adaptively change as the odor
sources change with the environment. Hopfield [2] proposed the following synap-
tic dynamics in addition to the cell dynamics above:

Tij = fai - fai[6 + e(fzj — 7 )] (15)

where fx; is a high-pass filtered version of z;, d, €, and ~ are constants deter-
mining the learning speed, which should be much slower than the cell dynamic
speed. Such a synaptic changing rule is local and depends only on the pre-
and postsynaptic neurons. The synapses T will stop changing when each cell
n is assigned to a different odor k, x,, = ag, or inactive, x,, = 0. In that case,
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fluctuations are independent. Thus equations (13) and (15) give the desired
performance. Furthermore, the desired solution for 7' is stable in the sense that
if T is close to the solution, convergence is guaranteed [2].

This adaptive network demonstrates its performance in a computer simu-
lation [2], with six neurons and a two-odor mixture. Fig. 5 shows that before
synaptic learning, all six neurons fluctuate with the inputs, while after synap-
tic learning is turned on only neurons 3 and 6 keep their responses to follow
odors B and A respectively. These two neurons happen to be the recipients
of the strongest components Si; for the respective odors (i.e., (k,7) = (B,3)
and (A,6)), since the inhibition between neurons resulted in the winner-take-
all type output configurations. The final synaptic strengths T;3 and T;g from
neurons 3 and 6 code the odor identities Sp; and S 4; for odors B and A respec-
tively. Such a network should also forget its synaptic strengths with vanished
cell activity, so that it can adapt to new odor mixtures with new inputs from
the environment. Here, the synaptic adaptation captures odor quality informa-
tion S. One should notice that adaptation in this model does not mean to lose
the perception to the odors as in the previous model.

Fig. &.5. Simulation for a bulb of 6 neurons and two independent sources A and B. Synapse
change begins at ¢ = 20. On the left are odor strengths fluctuations and cell potential
variations with time. On the right are synaptic strength development Ty,3 from neuron 3
to other neurons. These strengths carry the odor identity information Sp; for odor B whose
time variation is captured by neuron 3. Taken from Hopfield 1991 [2].

The higher olfactory centers have to somehow querry the synaptic strength
T to get the information about the odor identity Sk;. They need to send a sig-
nal to the dendrites of the principle neuron that is reporting the concentration
of the odor, and reads out the responses of the other neurons to that signal.
Hopfield suggests one possible way to do this by multiplexing these signals
on the same neuronal axons reporting the odor strengths. The low frequency
component of the signals carries the odor concentration signal while the higher
frequency component signals carry the odor identity Sg; information [2]. An-
other possible mechanism was suggested in [41]. One can have multiple copies
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hibits its copies in all n** (n > m) networks such that at the end of adaptation
(equation 15), each network has a different neuron reporting the correspond-
ing odor fluctuation. Since the adaptation selects the winner neuron for each
odor, extending the example of two odors above, the first network selects the
two neurons, 3 and 6, most activated by the two odors respectively; the second
network selects the two second most activated, e.g., 4 and 5, respectively, etc.
The covariation between the neurons in different networks assigns them to the
same odor. The odor concentration can be read out from the corresponding
neuron in any network, while the identities of these neurons code the odor
quality S;x. A modification to make different networks receive different, maybe
overlapping, subsets of receptor inputs, simulating glomeruli structure, could
make the model more biologically plausible [41]. This mechanism makes it pos-
sible to have interesting psychophysics phenomena similar to cross-adaptation.
If new odors are introduced before synaptic recovery from the previous odors,
the winner neurons for the previous odors are more likely to remain winners
by the advantage of their already developed inhibitory synapses over others.
Thus the winning neurons might be different from those if the new odors were
introduced without prior odor exposures, resulting in distorted odor identity
information. Preliminary simulations in a six neuron network exposed to two
odors [42] confirmed such a possibility, although it does not happen most of
the time.

The present model segments the odor sources even before the odor qualities
are known [2]. This demonstrates the model capability to capture the invariants
in the varying sensory inputs. In a typical olfactory environment, although the
receptor inputs I fluctuate with time, the odor qualities Sk; are constant at
least for a short period of time, and there should be a perceptual constancy.
In most cases, the number of neurons N is larger than the number of odors K.
The variation of the input I in the N dimensional input space, ignoring noises,
should be confined to a K dimensional subspace, reflecting the regularities
in the inputs carrying the constant odor qualities. This means, the matrix R
defined by input covariance

Rij =< (Ii— < I; >))(Ij— < Ij) >>= Y "(ar— < ag >)*SkiSk;
K

has only K eigenvalues that are substantially non-zero. This input regularity
enables the network to find the K dimensional subspace, spanned by the K
eigenvectors corresponding to the first K non-zero eigenvalues of R (i.e., to
find the K principle components of the input variations). Furthermore, the
network identifies the K axes or directions Si; for £ = 1, 2, ... K, not necessarily
orthogonal to each other, in that subspace representing the odor qualities.
As we know, except when there is only one odor K = 1, there are infinitely
many choices of axes or directions to span a K > 1 dimensional space. Sg; in
most cases are not in the directions of the individual eigenvectors (principle
components). Not being able to identify them would result in confused odor
quality perceptions. However, the non-Gaussian property of the fluctuating



concentration ag(t), €.g., the non-z€ro third moments < a, -~ about the imearl,
is another regularity of the inputs that enables the network to decipher the odor
quality [2]. Such positive third moments are assumed [2] as the odor strength
distribution is expected to have longer tails above the mean.

The network, including the learning rule, has no prior knowledge of the
odor quality, other than the non-Gaussian statistical knowledge of the odor
fluctuation ay. The € term of the learning rule (15) takes advantage of this
non-Gaussian property to capture the odor quality Sk;. The learning stops
when both the covariance < fz;fz; > and the correlation < (fz;)%fz; >
between neurons vanish. Since the third moment a3 # 0, the elimination of
third order correlation < (fz;)?fz; >= 0, by the € term, is essential to ensure
that the activity of each output neuron depends on no more than one odor
fluctuation.

The present model thus gives an entirely different way of thinking about
the synaptic connections [2]. Unlike conventional neural networks, the synapses
code the sensory information, and are more than just algorithms to compute.
There are no matched filters for the odors in the connections until after the suc-
cessful adaptation. In a sense, recognition can be understood as the capability
of adaptation. This is also reflected in the previous model where adaptation,
although of a different nature, was possible only when the higher olfactory cen-
ters have the odor information. Fast synaptic modulation has been advocated
by others as a computational element [43]. It has also been recently used in
another olfactory model where the inhibitory synapses adjust to transform re-
dundant responses in the receptor population to a more efficient representation
at the output neurons [16].

6. Discussion

Two models of the early olfactory computation have been presented. One [3][4]
samples the environment by discrete breathing cycles; during each cycle the
environment is assumed to change little. It codes the receptor inputs into a
coherent oscillatory output pattern, to be identified as a single distinct odor.
It does not follow the fluctuations of the odor strength on a time scale shorter
than the breathing cycle, and thus cannot as easily decode the odor source
locations by the fluctuation analysis. It segments two coexisting odors when
one of them is present before the other appears, by subtracting the earlier odor
background and thus recognizing the later one. The other model [2] samples the
environment continuously, following the details of the input fluctuations which
have a shorter time scale than the odor recognition process. It segments odor
mixtures without the need to subtract out individual odors and can thus achieve
simultaneous recognition. The neural output carries the time fluctuations of the
odors which may be used to compute source locations, while the odor identities
have to be determined from the synaptic strengths of the output neurons.
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anisms. Leaving aside the difference in mechanisms, it is not certain if different
tasks are emphasized in different animals or in different environmental condi-
tions. Highly olfactory animals certainly need to emphasize more on the odor
source localization task than visual animals, which may also rely heavily on ol-
faction when visual function alone is not enough, e.g., when hunting at night or
searching for plant seeds under heavy leaves [44]. Insects seem to have a much
higher sensitivity to odors than humans do [31]. This enables them to detect
small odor intensity variations which occur on a very short time scale, around
10-100 milliseconds in the outdoor environment [38]. This is possible also be-
cause their receptor cells have a time constant around 10 milliseconds [6]. The
lower animals also have their olfactory reception decoupled from their respira-
tory mechanism, enabling them to follow the odor fluctuations undisturbed and
undisrupted. The vertebrate receptor neurons, on the other hand, have a long
time constant, about 200 milliseconds [12], comparable to the breathing time
scale in mammals (e.g., rats [44], although we humans breath once every 4 sec-
onds). Such a long time constant makes it difficult to detect odor fluctuations
on a finer time scale, and may be a necessary strategy for an insensitive recep-
tor neuron to integrate the signal in time to increase the signal-to-noise ratio.
However, since there is also a long time scale fluctuation in odor concentration
of natural environment [38] — periods of about a couple hundred milliseconds
of relatively strong odor concentration separated by periods of weak odor con-
centration — it is conceivable that this longer time scale variation can also
be used for odor orientation. In an indoor environment, like the underground
burrows of rodents, air is much less turbulent and air flow speed is an order of
10 times slower than it is outdoor. (You can test this by blowing soap bubbles
and watching them flow in the air.) The odor fluctuation will be much slower,
as we notice in the kitchen of an apartment, for example. Such an environment
will have a long lasting background odor, and an odor adaptation model [4] to
subtract the background is conceivably used for odor segmentation.

However, behavioral evidences clearly point to olfactory cues used even
in many mammals for object localization. For example, sunflower seeds and
hazel nuts under the soil surface can be localized by mice; large cats can be
observed to sniff the wind continually and usually approach their preys from
downwind [44]. It is conceivable that many mammals also use temporal fluctu-
ations of odors, although maybe on a longer time scale, to locate odor sources.
Another possible odor localization mechanism maybe to compare the odor con-
centrations between the two nostrils, tentacles, or antennas. Observations from
humans [45] to honeybees [39] indicate that a 10% difference in odor concentra-
tions between the two sides is enough to make bilateral behavioral judgement
on the odor source direction. It was shown that damaging one tentacle or an-
tenna induces the experimental animals to turn towards the undamaged side in
search of the odor source [46][39], supporting the stereo-olfactory mechanism.
Many animals, e.g., hammerhead sharks, have their two nares widely separated
[44] presumably for the purpose of odor source localization. The two olfactory
bulbs, each receiving inputs from the corresponding epithelium, interact with
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cells via anterior olfactory nucleus [47]. Therefore, the two olfactory bulbs may
be the first stage where the stereo-information gets processed.

On the other hand, it has also been observed that some animals can still
localize odors after one tentacle is damaged [46], or after the animal overcomes
the initial confusion caused by the damaged tentacle [39]. Temporal analysis
of odor concentrations is presumable used and sufficient in many cases. It is
conceivable that temporal fluctuation analysis and stereo-olfaction are used in
parallel or complementarily in many animals. Imagine a situation, for instance,
when there are two spatially separated sources with identical odor substance
(e.g., two pheromone emitting females for a male animal), they would be seen
by present early olfaction model as one single odor source whose time fluctu-
ation is a superposition of the fluctuations from the two sources. The higher
olfactory centers need to decouple the fluctuating sequence into two separate
ones, maybe by filtering the signal with two different temporal filters. This re-
quires additional knowledge of the environment [2], e.g., maybe by using wind
sensor signals and/or assuming different temporal characteristic time constants
for the two component fluctuations. This problem is just as difficult, if not more,
if stereo-olfaction mechanism alone were used to localize the two sources. How-
ever, combining the temporal analysis and stereo-olfaction mechanisms would
certainly give an edge, by maybe analyzing the correlations between the sig-
nals in the two nares — if there were only one source, the correlation would be
different. Some animals swing their heads from side to side, or take a zig-zag
path towards a odor source, sampling odor concentration at different spatial
and temporal locations [39]. Such maneuver suggests the use of a combination
of spatial and temporal analysis, and would be more important for animals of
smaller body sizes.

The first bulb model [3][4], subject to interruption by exhalation, will change
its oscillation patterns and amplitudes as the odor mixture inputs fluctuate.
It is not clear how it can simultaneously segment component identities and
fluctuations in the mixed input fluctuating with a short characteristic time.
In a typical outdoor environment, odor concentrations fluctuate with pulses
of strong intensities lasting about several hundred millisecond, separated by
inter-pulses of low odor intensities lasting about 5 times longer [38]. In the
case of low sensitivity and long time constants of the receptor neurons, the
bulb may perceives one odor at each sniff in an environment of two dominant
odor mixtures fluctuating independently, the other odor during its inter-pulse
and the distant faint odors would be unnoticed. In this case, the component
segmentation is approximately achieved by separate sniffs, the bulb could then
in principle follow each odor fluctuation on the time scale of the sniff cycle. To
incorporate stereo-olfaction, interbulb interaction should be introduced into the
bulb.

Hopfield’s model[2] should be sufficient for most olfactory environments
even without stereo-olfaction, provided that the higher olfactory centers could
disentangle the superposed concentration fluctuations. (This is analogous to
individuals of only one functional eye, they segment the visual objects by im-
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shading [2].) Since the biologically realistic bulbs oscillate, it remains to be seen
whether the temporal fluctuation analysis model performs well when both the
excitatory and inhibitory cell interactions are included.

Instead of using a static neural activity pattern, our first model uses oscil-
latory patterns to code odor information, starting from an odor input that is
comparatively much less oscillatory. The olfactory cortex, which receives inputs
from the olfactory bulb, is also intrinsically oscillatory. An intriguing possible
explanation for the oscillatory nature of the cortex is that the oscillations may
provide a natural mechanism for decoding its inputs, for example by selec-
tively resonating with inputs of specific amplitude and phase patterns as well
as frequency. The second model codes the odor identity by synaptic strengths
instead of neural activities, extending the role of synaptic strengths from merely
algorithms of computation to information carriers. Recently, a model of the spe-
cialist olfactory system of insects [15] suggested coding by response duration,
latency, and other variations in the temporal response for the input mixture
ratios, input temporal profiles, and frequency, etc. which are behaviorally rel-
evant. Coding by synaptic strengths, oscillation patterns [48], complex neural
temporal structures [49], and using signal correlations for object binding or
recognition could be used in many other computational contexts [2]. Interact-
ing groups of excitatory and inhibitory neurons are ubiquitous in other cortical
areas [1] and can be easily modelled by extending equation (1) [3].

The computational approaches used in the models are likely to apply to
more than the olfaction. Adaptation to pre-existing stimuli also happens in
vision right at the first stage — the retina. The blood vessels in our eyes form a
permanent and stationary image on our retina, we ourselves usually do not see
them (although we can if we quickly flash a bright light very near our eyes) since
our eyes have adapted to them in order not to be distracted to see other visual
inputs. Adaptation in this sense can be seen as a mechanism to eliminate the
temporal redundancy in the input information, so that output information is
dominated by more recent sensory events. In Hopfield’s model, adaptation is a
mechanism to eliminate spatial redundancys (correlation) in the sensory input,
by constructing matched filters for odors in the synaptic connections, result-
ing in uncorrelated outputs. In vision, for instance, the retinal output ganglion
cells have center-surround receptive fields structure to respond to input spa-
tial contrast [50] instead of input luminance, since input luminance at nearby
receptors are correlated. Hence the ganglion cells have much less correlated ac-
tivities than the photoreceptors. The matched filters or receptive fields indicate
the knowledge acquired by the sensory system about the environment [51][52].
In Hopfield’s model, the knowledge is the odor identity at that moment, in the
retina it is the power spectrum of the input image ensemble [52].

Similarly, the olfactory perceptual shifts, such as cross-adaptation, have
their analogy in vision as illusions and perceptual changes in special situations.
One example is the “waterfall effect” [53]: after staring for a long time at a wa-
terfall, stationary objects appear to move upwards. Another example is color
hue shifts in perception after human subjects are exposed to an unnatural chro-



matlC environment |ozj. 1neoretiCally, 1t nas DECI Pproposcd tiatl tihe Sensory
after-effects are the results of efficient coding schemes for a new environment
[53][55], and quantitative predictions of the post-adaptation color hue shifts
have been compared with the measurements in psychophysical experiments
with reasonable agreements [56]. We hope that similar progresses in olfactory
areas will occur when more systematic quantification of odor molecules and
receptor codings become available. In both olfaction and vision, adaptation
should not be thought of as fatigue, but a computational mechanism to reduce
the spatio-temporal redundancy inherent in the input signals [51][52].

Perceptual constancy, such as the odor quality (Sk;) captured by the
synapses 1" in Hopfield’s model, enables the observer to recognize objects and
remain oriented in the environment despite changes in the physical stimulus.
The odor source location, conveyed by the temporal profile of the concentration
changes, should also be perceptually invariant irrespective of the concentration
scale. A recent olfactory model of insects [15] observed such model neuronal
responses depending only on the input profiles. There are also observations
that perceived odor intensity stays the same for gentle and strong sniffs, but
changes with the flow rate of odorized air, generated by olfactometers, in the
nasal cavity [57], suggesting subjective compensations for the observation mode
to achieve odor concentration constancy. Analogous constancies occur in vision
and audition. For instance, color perception (spectral reflectance) of objects
stays the same irrespective of the illuminance spectrum [58] (color constancy),
recognition of visual objects should not depend on the locations and distances
from the observer [59], and speech can be understood independent of the pitchs
of the speakers.

In summary, two olfactory bulb models have been presented as examples to
discuss the computational tasks, environments, and mechanisms in olfaction.
Studying olfaction can hopefully give us insights on the principles of computa-
tion in other sensory modalities.
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