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Abstract

This paper demonstrates that much of visual motion coding in primary visual cortex can
be understood from a theory of efficient motion coding in the multiscale representation. The

theory predicts that cortical cells can have a spectrum of directional indices, be tuned to
different directions of motion, and have spatio-temporally separable or inseparable receptive

fields (RF). The predictions also include the following correlations between motion coding and
spatial, chromatic, and stereo codings: the preferred speed is larger when the cell receptive field

size is larger, the color channel prefers smaller speed than the luminance channel, and both the

optimal speeds and the preferred directions of motion can be different for inputs from different
eyes to the same neuron. These predictions agree with experimental observations. In addition,

this theory makes predictions that have not been experimentally investigated systematically and
provides testing ground for the efficient multiscale coding framework. These predictions are:

(1) if nearby cortical cells of a given preferred orientation and scale prefer opposite directions
of motion and have quadrature RF phase relationship with each other, then they will have

the same directional index; (2) a single neuron can have different optimal motion speeds for
opposite motion directions of monocular stimuli, and (3) a neuron’s ocular dominance may

change with motion direction if the neuron prefers opposite directions for inputs from different
eyes.

1Work supported by the Research Grant Council of Hong Kong.



1. Introduction

Primary visual cortical cells sensitive to motion and selective to motion directions have been

observed physiologically since the works of Hubel and Wiesel (1959, 1962). Simple cells are
found to be tuned to directions of motion to various degrees in addition to their selectivities

to orientation, spatial frequency, ocular origin, etc ( Holub and Morton-Gibson 1981, Foster,
Gaska, Nagler, and Pollen 1985, Reid, Soodak, Shapley 1991, DeAngelis, Ohzawa, and Free-

man 1994). This paper demonstrates that many of the motion sensitive/directional selective
properties in cortical simple cells can be understood as consequences of efficient coding of visual

inputs in a multiscale framework. Such an understanding provides detailed predictions of the

simple cell spatio-temporal receptive field (RF) properties. These predictions can be compared
with known observations or experimentally tested.

Efficiency of information representation has long been advocated as the coding principle
for early stages of sensory processing (Barlow 1961). This is because the natural signals have

structures and regularities. Visual inputs, for example, have correlated signals in image pixels,
making some input signals largely predictable from others. Such regularities make pixel-by-pixel

input representation highly redundant or inefficient, in the sense that the same information is
signalled wastefully many times through different neural channels. An efficient code with re-

duced redundancy not only gives coding and neural implementation economy, but also arguably
provides cognitive advantages (Barlow 1961) due to the knowledge of input statistics, which

has to be inherent in the code to reduce the redundancy.
One of the most noticable visual input redundancies is the pairwise pixel-pixel correlations.

Concentrating on such redundancy, several recent works have formulated efficient coding in the
language of information theory or decorrelation/factorial codes modified appropriately under

noise (Srinivasan Laughlin and Dubs 1982, Linsker 1989, Atick and Redlich 1990, Bialek, Ru-

derman, and Zee 1991, Nadal and Parga 1993). In particular, efficient coding has provided a
theory of retinal processing and predicted the spatio-chromatic receptive fields of the retinal

ganglion cells agreeing with those observed physiologically (Srinivasan et al 1982, Atick and
Redlich 1990, Atick, Li, and Redlich 1992).

There are other types of regularities in natural images that we believe the visual system
beyond the retina takes advantage of. One such regularity is translation and scale invariance,

namely, the image of an object at one location or distance can predict much of the image of
the same object at another location or distance. It has recently been proposed that one of

the preprocessing goals of the early visual cortex is, without compromising coding efficiency,
to produce a representation where actions of translation and scaling are manifested or factored

out towards object invariance (Li and Atick 1994a). The resulting, so-called multiscale, repre-
sentation remaps the visual field into multiple retinotopic maps identical in all respects except

for the densities and RF sizes of their sampling nodes. This representation is also a step to-
wards redundancy reduction when it is followed by attentional mechanisms to compensate the

manifested translation and scaling changes to produce object invariant neural activity patterns

(Li and Atick 1994ab).
Efficient coding in the multiscale representation has predicted many of the simple cell RF

properties in the spatial, chromatic, and stereo domains (Li and Atick 1994ab). These predic-
tions include the simple cell selectivities to orientation, spatial frequency, color, ocular origin,
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disparity, as well as the particular frequency tuning bandwidth, phase quadrature structure
between neighboring cells, and spatio-chromatic-stereo interactions in cell selectivities observed

experimentally. The theoretical understanding further aided the study of the visual system by

motivating experimental tests of some predictions which had not been investigated experimen-
tally (Li, 1995, Anzai, DeAngelis, Ohzawa, and Freeman 1994). However, the temporal input

dimension was ignored in these earlier theoretical works (Li and Atick 1994ab, Li 1995). The
current work demonstrates that including the temporal dimension enables the same framework

to additionally predict simple cell motion sensitivities and directional selectivities that have
been observed or can be tested experimentally.

The primary visual cortex is likely to have other functions in mind in addition to the goal
of efficiency and invariance. Previous works (Li and Atick 1994ab, Li, 1995) did not take into

account other possible cortical functions and were limited to only linear coding mechanisms
as approximations. This necessarily led to unexplained cortical phenomena and quantitative

disagreements between reality and theoretical predictions (see discussion). Extending the pre-
vious approach to motion coding, the current work has the same limitations. However, it helps

to explore the potential and limitations of the efficient coding framework and provide a testing
ground for it with additional predictions which have not yet been experimentally investigated.

Various neurophysiological, psychophysical, and computational motion models have been

proposed (e.g., Reichardt 1961, Torre and Poggio 1978, Marr and Ullman 1981, van Santen and
Sperling 1984, Adelson and Bergen, 1985, Watson and Ahumada 1985). They are mostly de-

signed to model the neuronal mechanisms underlying directionality or to provide computational
algorithms for visual motion detection and computation. Some of them (e.g., Reichardt 1961,

Torre and Poggio 1978, Marr and Ullman 1981, van Santen and Sperling 1984) have highly
non-linear components at an early stage, either to ensure directionality or to compute motion

velocity. Physiological observations, however, reveal essentially linear mechanisms underlying
directionality in simple cells (Reid, Soodak, and Shapley, 1991, Jagadeesh, Wheat, Ferster

1993). Motion models of Adelson and Bergen (1985) and Watson and Ahumada (1985) do
include linear components before a latter-stage non-linearity and are designed for motion sens-

ing or detection within the constraints of known physiological and psychophysical observations.
The current work derives the motion coding using a linear mechanism from the requirement

of efficient multiscale representation, without a priori specifying the purpose of visual motion
computation or selectivity. Its predictions include some that have not been experimentally

investigated in addition to ones that agree with known observations. A special case from the

derivations will be shown to resemble the linear components in the models of Adelson and
Bergen (1985) and Watson and Ahumada (1985).

The next section presents the theoretical formulation of the efficient motion coding in the
multiscale representation. Section 3 explores the predicted RFs and correlations between motion

coding and codings in the space, color, and stereo domains, to compare them with experimen-
tal observations. Section 4 summarizes the results and discusses the limitations and desired

experimental tests of the theory.

2. Efficient motion coding in a multiscale representation

Visual input is inefficient because the input S(x, t), assumed to be of zero mean for simplicity,
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at retina location x and time t is correlated with S(x′, t′) by the amount

Rx,t;x′,t′ ≡ < S(x, t)S(x′, t′) >, (1)

where < · > denotes average over inputs of the visual environment. Without loss of gen-

erality, the retina is taken as one-dimensional. Visual inputs are assumed to be statisti-
cally translation invariant and reflection symmetric, such that Rx,t;x′,t′ = Rx+a,t+τ ;x′+a,t′+τ ≡
R(x − x′, t − t′) = R(±(x − x′),±(t − t′)). Then R can also be characterized by its Fourier
transform2 R(fj, ω) = 1

2π
√

N

∑

x

∫ ∞
−∞ dtR(x, t)e−ifjx−iωt = R(±fj,±ω), which is also the average

input power in frequency (fj, ω). Here N is the total number of input units covering a visual
space x ∈ (0, N) with unit grid spacing.

Under noiseless conditions, a more efficient code O(j, t) can be constructed within the linear

coding scheme by a transform O(j, t) =
∑

x

∫ ∞
−∞ dt′K(j, t; x, t′)S(x, t′) such that the outputs are

decorrelated < O(j, t)O(j ′, t′) >= δjj′δ(t − t′). If higher order input correlations are ignored,

such decorrelated outputs O(j, t) imply that no information is redundantly sent through differ-
ent output units or at different times. The code O(j, t) is thus efficient. One should note that

we require both spatial and temporal decorrelation, in contrast to the mere spatial decorrela-
tion when the temporal dimension was ignored (Li and Atick 1994a). The temporal dimension

cannot be treated like the spatial dimension because of causality. In addition, visual object
scale invariance does not extend from space to time. Accordingly, the multiscale coding, which

is necessitated in the spatial domain by the scale invariance (Li and Atick 1994a), has no a

priori reason to be applied temporally3.

A special efficient code Oj is obtained by passing S(x, t) through a spatial filter K
fj
x , to

achieve spatial decorrelation, and a temporal filter K
fj

t , to achieve temporal decorrelation:

S(x, t) → S(fj, t) ≡
∑

x

Kfj
x (x)S(x, t) → O(fj, t) ≡

∫ ∞

−∞
dt′K

fj

t (t − t′)S(fj, t
′) (2)

Kfj
x (x) ≡ 1√

N
e−ifjx each j has a different spatial frequency fj (3)

K
fj

t (t − t′) ≡ 1

2π

∫ ∞

−∞
dωR−1/2(fj, ω)e−iω(t−t′)−iφ(fj ,ω) (4)

K(j, t, x, t′) ≡ Kfj ≡ K
fj

t (t − t′)Kfj
x (x) (5)

where φ(fj, ω) = −φ(fj,−ω) is chosen such that the temporal filter K
fj

t (t − t′) is causal (

K
fj

t (t < 0) = 0) and has minimum temporal spread4 for each j.

2The same symbol R is used for the correlation function R(x, t) as well as its Fourier Transform R(f, ω).
The arguments (x, t) or (f, ω) specifies the actual function concerned. Such practices are used throughout the
paper for some other functions and variables as well to avoid proliferation of notation.

3There may be a posteriori reasons for multiscale in time, for instance, to compute motion velocity (Grzywacz
and Yuille 1990, see Section 3). However, at least in the primary visual cortex, the selectivity to temporal scale
is much poorer (Holub and Morton-Gibson 1981 and Foster et al 1985) than that to spatial scale.

4Define Afj (t) = 1
π

∫

∞

0
dωR−1/2(fj , ω)e−iω(t−t′)−iφ(fj ,ω), taking envelope(t) and phase(t) as the amplitude

and phase of Afj (t), then K
fj

t (t) = envelope(t) cos(phase(t)). The minimum temporal spread of K
fj

t is defined
when

∫

∞

−∞
dt(t − t̄)2envelope(t), where t̄ =

∫

∞

−∞
dtenvelope(t), is minimum
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Decorrelation in O(j, t) can be verified as follows. The signal S(fj, t) is the spatial Fourier
transform of S(x, t) for spatial frequency fj. Accordingly, S(fj, t) and S∗(fj′, t), for fj 6= fj′

are decorrelated from each other in a translationally invariant system

< S(fj, t)S
∗(fj′, t

′) > =
1

N

∑

x,x′

< S(x, t)S(x′, t′) > e−ifjx+ifj′x
′

=
1

N

∑

x,x′

R(x − x′, t − t′)e−ifj(x−x′)e−i(fj−fj′ )x
′

= R(fj, t − t′)δjj′. (6)

where superscript ∗ denotes complex conjugate. Each S(fj, t) is a temporally correlated sig-

nal, which is temporally decorrelated by the transform S(fj, t) → O(fj, t) =
∫ ∞
−∞ dt′K

fj

t (t −
t′)S(fj, t

′) with the temporal whitening filter K
fj

t , which has Fourier transform K
fj

t (ω) =
R−1/2(fj, ω):

< O(fj, t)O
∗(fj, t

′) > =
∫ ∞

−∞

∫ ∞

−∞
dτdτ ′K

fj

t (t − τ − τ ′)K
fj

t (t′ − τ)R(fj, τ
′)

=
1

2π

∫ ∞

−∞
dωKfj(ω)R(fj, ω)Kfj(−ω)eiω(t−t′)

=
1

2π

∫ ∞

−∞
dωeiω(t−t′) = δ(t − t′) (7)

The spatio-temporal RF Kfj = K
fj
x K

fj

t for this efficient code Oj = KfjS is however not

spatially local or retinotopic, simply because Kfj contains a spatial Fourier wave K
fj
x which is

non-local5. In addition K
fj
x is unique for each output j with unique frequency fj, requiring a

unique RF for each output cell. However, other efficient codes can be constructed from this one

(Li and Atick 1994a) by any unitary transform U (where the bold-faced U denotes a matrix,
UU† = 1, and U† ≡ (U∗)T) with Oj → ∑

j′ Ujj′Oj′ and Kfj → ∑

j′ Ujj′K
f ′

j . Decorrelation is

preserved in the new code since
∑

jj′ Uij(Ui′j′)
∗ < OjO

∗
j′ >= δii′ . As noted in the introduction,

it was propsed that the goal of the cortex is to construct a multiscale representation, which

is also spatially local, retinotopic, and translationally invariant, in the sense that the RF of

each cell is the same as that of many other cells in the same scale except for the RF center
locations. An efficient code of this multiscale nature is achieved (see Li and Atick 1994a for

details) by combining the original filters Kfj or outputs O(fj, t) within each frequency band
fa < |fj| ≤ f a+1 = 3f a by a unitary transform Ua in that band:

O(fj, t) → Oa
n(t) =

∑

fa<|fj |≤fa+1

Ua
njO(fj, t) (8)

Kfj → Ka
n =

∑

fa<|fj |≤fa+1

Ua
njK

fj (9)

where a indicates the spatial scale or frequency band, and Ka
n is the spatiotemporal RF for the

nth output unit in that scale, n = 1, 2, ..., Na ∝ (f a+1 − f a). As is shown in the Appendix, the

5The RFs for this code are not real, but this representation is used for mathematical convenience and it does
not affect the final results.
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general spatiotemporal receptive fields of such nature are:

Ka
n(x; t − t′)

∝
∑

fa<f≤fa+1

∫ ∞

0
dωK(f, ω)(A+ cos(φ(x) + φ(t)) + A− cos(φ(x) − φ(t))) (10)

=
∑

fa<f≤fa+1

∫ ∞

0
dωK(f, ω)((A+ + A−) cos(φ(x)) cos(φ(t))

+ (A− − A+) sin(φ(x)) sin(φ(t))) (11)

with φ(x) = f(xa
n − x) − πn/2 + φx (12)

φ(t) = ω(t − t′) + φ(f, ω) + φt ≈ ω(t − t′ − tp) + φt (13)

(A+, A−, φx, φt) =

{

(A+
e , A−

e , φx, φt
e) if n is even

(A−
e , A+

e , φx, φt
o) if n is odd

(14)

where K(f, ω) ≡ R−1/2(f, ω) denotes the spatio-temporal sensitivity of the filters, (A+)2 +

(A−)2 = 1, xa
n = (N/Na)n or xa

n = (N/Na)(n + n mod 2) is the RF center6 in the unit of the
visual input grid size, and tp > 0 approximates the filter latency which is determined by φ(f, ω).

The five parameters (A+
e , A−

e , φx, φt
e, φ

t
o) specify the RFs for all neural units n = 1, 2, ..., N a,

and different choices of them give different, but equivalently efficient, coding representations.

The RF centers xa
n of the neural units n = 1, 2, ..., Na in this scale a are distributed over the

whole visual space x ∈ (0, N) with the Nyquist sampling rate — the number of neurons N a

in this scale is proportional to the bandwidth f a+1 − f a, with two neurons covering every two

sampling periods 2N/Na (Figure 1).
Let us examine Ka

n(x; t − t′), the spatiotemporal RF of the nth unit in the ath scale. It

is selective to spatial frequencies f ∈ (f a, fa+1) and all temporal frequencies ω with a sensi-
tivity proportional to K(f, ω). The spatial and temporal part of the filter are embodied in

(cos(φ(x)), sin(φ(x))) and (cos(φ(t)), sin(φ(t))), respectively. When x = xa
n, the RF spatial

phase is φ(x) = −πn/2 + φx for all f — phase coherence — implying xa
n as the RF center.

The RF amplitude reaches its peak at x = xa
n and quickly decays as x moves away from it.

This phase coherence and a finite bandwidth f ∈ (f a, fa+1) ensures the filter locality with a

spatial spread ∆x ∼ 1/(f a+1 − f a) by the uncertainty principle. Similarly, the temporal phase
coherence, φ(t) ≈ constant for all ω, is achieved at t− t′ = tp, the temporal latency, as implied

by the temporal locality of the filter7. Translation invariance is achieved since the RFs are the
same for every second neural units n and n + 2, Ka

n(x; t− t′) = −Ka
n+2(x− (xa

n+2 − xa
n); t− t′),

except for a shift in the RF centers and up to a polarity change. (It is not possible to have

6Here both choices, xa
n = (N/Na)n and xa

n = (N/Na)(n + n mod 2), are valid. In Li and Atick 1994a
however, only the first choice is given.

7As we stated earlier, φ(f, ω) is chosen to make Kf
t (t) causal and have minimum temporal spread, implying

the temporal coherence ωτp + φ(f, ω) ≈ constant for all ω given a f . A change φ(f, ω) → φ(f, ω) + α still
satisfies the requirement; and φ(f, ω) → φ(f, ω) − ωτ for τ > 0 merely prolongs the filter latency τp → τp + τ .
Although the minimum latency τp = τmin

p depends on f , it is possible to choose tp as the largest τmin
p within a

limited band (fa, fa+1), such that fxp + ωtp + φ(f, ω) ≈ constant can be satisfied for xp = 0 or any xp without
compromising causality. Since K(f, ω) varies very little within the limited band (see later), tp can be very close
to the shortest latency for every spatial frequency component f in the band. Similar temporal phase structures
have been observed in experiments (Hamilton et al 1989).
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the same RF for every neuron in an efficient code when the spatial frequency bandwidth in
the cortex is larger than one octave (Li and Atick 1994a)). Note that a drifting grating

cos(fx+spatial phase±(ωt+temporal phase )) has a drifting velocity v = ±ω/f . Our neurons

then respond to the two motion directions with relative amplitudes A+ and A−, respectively,
and have a directional index D.I. ≡ ||A+|−|A−||

|A+|+|A−| .

Variations of (A±
e , φx, φt

e, φ
t
o) generate a whole family of spatiotemporal RFs of various di-

rectionality and RF phases. At one extreme when A+ = A−:

Ka
n(x; t − t′) ∝

∑

fa<f≤fa+1

∫ ∞

0
dωK(f, ω) cos(φ(x)) cos(φ(t)) ≈ Ka

n(x)Ka(t − t′) (15)

where
Ka(t − t′) ≡ ∫ ∞

0 dωK(f peak, ω) cos(φ(t))
Ka

n(x) ≡ ∑

fa<f≤fa+1 cos(φ(x))

where f peak =
√

fafa+1. This neuron is not at all directionally selective, as intuitively expected
from equation (15) which approximates the filters as spatiotemporally separable8. From here

on, such filters will be viewed as separable. The other extreme case is when A+ = 1 and A− = 0:

Ka
n(x; t − t′) ∝

∑

fa<f≤fa+1

∫ ∞

0
dωK(f, ω)(cos(φ(x)) cos(φ(t)) − sin(φ(x)) sin(φ(t)))

=
∑

fa<f≤fa+1

∫ ∞

0
dωK(f, ω) cos(φ(x) + φ(t))

which is selective to only one motion direction. This neuron has a spatiotemporally insep-

arable RF composed of a pair of spatio-temporal separable filters,
∑

fa<f≤fa+1

∫ ∞
0 dωK(f, ω)

cos(φ(x)) cos(φ(t)) and
∑

fa<f≤fa+1

∫ ∞
0 dωK(f, ω) sin(φ(x)) sin(φ(t)), with quadrature phase re-

lationship between the two components in both space and time dimensions. Such neurons have
been proposed as the first stage components in the motion models of Adelson and Bergen (1985)

and Watson and Ahumada (1985). All degrees of directionality are possible as A+/A− changes.
The choice of φx on the other hand dictates the spatial phase φn(x = xa

n) = −πn/2 + φx of the

RF, e.g., φx = 0 gives even or odd RF (bar or edge detectors) depending on n; While the value
of φt gives the RF temporal phases at the peak of the temporal response t = t′ + tp.

In contrast to other motion models, the current work in addition predicts a precise relation-
ship between the RFs of the neighboring neural units (i.e., the nth and (n + 1)th units, see Fig.

1):

(A+/A−)n = (A−/A+)n+1 opposite motion direction preferences (16)

(D.I.)n = (D.I.)n+1 same directional index (17)

φn(xa
n) = φn+1(x

a
n+1) + π/2 quadrature relationship between spatial phases (18)

(see equations (14) and (12)). When testing this neighbor relationship in the cortex, one should
choose neurons that (1) have the same optimal spatial frequency since they belong to the same

scale a, (2) are tuned to the same orientation as implied by our one-dimensional mathematical

8This approximation is valid when K(f, ω) is a smooth function of f and changes little within a limited
frequency range (fa, fa+1) (see next section).
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Figure 1: Schematic illustration of the efficient motion coding in the multiscale representation. The RFs for
the two neighboring scales are shown. The space and time are in horizontal and vertical directions respectively.
A perfectly oriented bar or edge in space-time implies complete cell directionality, as is used in this figure for
example. The slope and sign of the orientation correspond to the preferred speed and direction of motion. Note
that (1) the neighboring units have the quadrature phase relationship, opposite preferred directions of motion,
and the same directional index, (2) the preferred motion speed decreases as the cell RF size decreases (see
section 3). The RF centers of the neighboring units are displaced by a distance comparable to the RF sizes,
this displacement is exaggerated in the figure to avoid RF overlap for clear illustration.

treatment, (3) have RF centers xa
n = (N/Na)n or (N/Na)(n + n mod 2) which are displaced

by xa
n+1 − xa

n = 0, or N/Na, or 2N/Na, comparable to that of the efficient Nyquist sampling
period N/Na, which is roughly half a grating period of the optimal spatial frequency. Hence one

should distinguish the neighboring units mentioned here from the anatomical neighboring cells
in the cortex, which could be tuned to different optimal spatial frequencies and orientations,

etc. (see discussion). Furthermore, the two observed cells in experiments may be neighboring
units (nth and n + 1th units) as well as second neighboring units (nth and (n + 2)th units) to

each other, if their RF center displacements are not carefully monitored. In such cases, the
two cells’ directional preferences are likely to be the same as well as opposite. This is observed

physiologically, where neighboring cells tend to prefer the same, and sometimes opposite, but
fewer times orthogonal, directions of motion (Berman, Wilkes, and Payne 1987). It is desirable

to test whether those preferring opposite directions and having quadrature phase relationships
also have the same directional index. In addition, one has the following observation from the

theory. Given any scale and orientation, there is no need to have two filters tuned to opposite

directions at each spatial location in order to have a complete representation. An efficient code
needs an average of only one filter tuned to one direction per sampling interval — a pair of

quadrature filters tuned to opposite directions for every two Nyquist sampling intervals (see
discussion).

To illustrate the spatiotemporal RF, we need the knowledge of K(f, ω), which depends
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Figure 2: On the left is the filter sensitivity K which deviates from the noiseless case Knoiseless = R−1/2

at high frequency, where the signal R is weak, in order to smooth out noise. Ka is the sensitivity for scale a
centered around f = 1 c/deg. The temporal dimension is ignored for clarity in the plot. On the right are RF
examples for pairs of neighboring units, next to each other with the left one as the even unit of the pair, each
under the parameter value set (D.I., φx, φt

e, φ
t
o) which generates them. The space and time are in horizontal and

vertical directions respectively, and each RF is centered at the RF center (x, t) = (xa
n, t′ + tp). The gray levels

depict the filter amplitudes, gray for near zero amplitudes, white and black for larger positive and negative
amplitudes respectively. The preferred spatial frequency is f peak = 1 c/deg. A perfectly oriented bar or edge in
space-time implies complete directionality, and a spatiotemporal separability implies non-directionality. Note
(1) the neighboring units have the quadrature phase relationship, opposite preferred directions, and the same
directional index D.I., (2) changes in the RFs as D.I. decreases in left column, (3) differences in RF phases
between left and right column pairs of the same directionality. These RFs are obtained by the approximation
K

a

n
(x, t) ≈ (A++A−)Kx(x)Kt(t)+(A−−A+)K̃x(x)K̃t(t), where Kt(t) ∝

∫

∞

0 dwKa(fpeak, ω) cos(φ(t)), K̃t(t) ∝
∫

∞

0 dwKa(fpeak, ω) sin(φ(t)), Kx(x) ∝
∫

∞

0 dfKa(f, ωpeak) cos(φ(x)), K̃x(x) ∝
∫

∞

0 dfKa(f, ωpeak) sin(φ(x)).
This approximation and figure format are used in other figures of this paper as well.

on R(f, ω) and should be modified under noise. Different measurements have suggested that

in natural scenes R(f, ω = 0) ∝ 1/f 2 (Field 1987) and R(f = 0, ω) ∝ 1/ω2 (Dong and Atick
1994). Without additional knowledge, this paper models R(f, ω) ∝ (f 2+ξ2ω2)−1, where ξ = 0.4

cycle·second/degree is chosen to give a final contrast sensitivity K(f, ω) peaking around 8 Hz

for low f as observed psychophysically (Nakayama 1985). As one will see below, the qualitative
results in this paper depend only on R(f, ω) decaying with increasing f and ω. Hence the

exact R(f, ω) or ξ is not crucial. The complete decorrelation requires K(f, ω) = (R(f, ω))−1/2

(see equation (10)), which increases with (f, ω) to amplify the lower signal power R(f, ω) at

higher (f, ω). This leads to undesirable noise amplification when at high (f, ω) the weak signal
R(f, ω) is overwhelmed by noise RN , which is assumed to be white noise and therefore RN =

constant over (f, ω). A noise smoothing strategy9 is employed to lower K(f, ω) whenever the

9Noise smoothing gives K(f, ω) ≈ M(f, ω)K(f, ω)|noiseless (following Atick and Redlich 1992, Li and Atick
1994b, and noise smoothing also follows from information theoretical arguments), where M ∝ R(f, ω)/(R(f, ω)+
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Figure 3: Changes of temporal sensitivities and spatiotemporal receptive fields with the optimal spatial
frequency f . The filter orientation in space-time has a steeper slope as f increases, implying decreasing preferred
motion speeds. Parameters used: D.I. = 1, φx = 0, and φt = 90o.

signal-to-noise R(f, ω)/RN is small. The generic feature of K(f, ω) is (Figure 2):

K(f, ω) increases with f, ω when R(f, ω) � RN at small (f, ω) (19)

K(f, ω) decreases with f, ω when R(f, ω)/RN is small at large (f, ω) (20)

K(f, ω) peaks at some intermediate (f, ω), where the signal R(f, ω) starts to be overwhelmed

by noise. Hence if R = S2/(f 2 +ξ2ω2), then K(f, ω) peaks at lower (f, ω) for smaller S2. In the
multiscale representation, we further model (Figure 2)

∑

fa<|f |≤fa+1 K(f, ω) by
∫ ∞
0 dfKa(f, ω),

where Ka(f, ω) = K(f, ω) exp(−(log(f/f peak)/σ)2/2) and σ = log(
√

3) is to model a 1.6 octave

bandwidth (Li and Atick 1994a) of the frequency selective channel with optimal frequency
f peak =

√
fafa+1. Figure 2 illustrates some examples of the spatio-temporal RFs of neighboring

cells using these models.

3 Correlation between motion coding and visual codings in space, color, and stereo

We explore additional predictions from the motion coding theory to compare them with
experimental observations or subject them to experimental tests. This can be carried out by

studying the correlations between motion coding and codings in space, color, and stereo. It was
shown in section 2 that for signal power R = S2/(f 2+ξ2ω2), the peak sensitivity K(f peak, ωpeak)

will occur at a lower frequency (f peak, ωpeak) when the signal power R, or S2, is smaller. In

particular, the temporal sensitivity curve Kf
t (ω) ≡ K(f, ω) for each spatial frequency f also

peaks at some ω = ωpeak(f). Hence ωpeak(f) decreases as S2 decreases or f increases. This

has immediate consequences on cross-channel coding correlations when one notices that the
signal power magnitude R depends on the frequency f , on whether the signal is achromatic or

ocularly opponent, etc., as will be shown below.
Correlation between spatial coding and motion coding

This theory thus predicts that the cell optimal speed decreases with increasing optimal spa-
tial frequency (see Figure 3), as observed in experiments (Holub and Morton-Gibson 1981,

Foster et al 1985). This is because for a neuron with optimal spatiotemporal frequency
(f peak, ωpeak), the preferred motion speed is roughly v ∼ ωpeak/f peak. The prediction follows

since both 1/f peak and, from the argument above, ωpeak, decrease with increasing f . The model
R(f, ω) = S2/(f 2 + ξ2ω2) gives a slowly decreasing or roughly constant ωpeak(f) for a range of

low spatial frequencies f (Fig. 3), suggesting a roughly inverse relationship v ∼ 1/f peak. At a

RN ) is a low pass smoothing filter. In detail, what is used in the paper are: M(f, ω) = (R/(R +
1)) exp[−(f/fc)

1.4], K(f, ω) ∝ M(M2(R+1)+1)−1/2, R = 16.0/(f2+ξω2 +f2
ν ), fν = 0.3 c/deg, fc = 22 c/deg.

9



higher f , whose exact value depends on the signal-to-noise or S2, ωpeak(f) starts to decrease
sharply with f , and temporal sensitivity Kf

t (ω) becomes significantly low-pass and v approaches

zero. The same trend of ωpeak(f) is observed physiologically (Holub and Morton-Gibson 1981)

and psychophysically (Kelly 1979). The physiologically measured ωpeak varies from cell to cell
by up to a factor around 10 for a given cell optimal f (Holub and Morton-Gibson 1981, Foster

et al 1985). Such variations can not be accounted for by the present theory, and may serve
other computational purposes, e.g., Grzywacz and Yuille (1990) have used them for velocity

computation. However, cortical cells have a wide, around 3 octaves, temporal frequency band-
width (Holub and Morton-Gibson 1981, Foster et al 1985). This width is comparable to, and

likely contributed to, the measured spread in ωpeak(f).
Another prediction is:

best sensitivity to contrast reversal grating

sensitivity to drifting grating of preferred direction

{

= 1 if D.I. = 0
→ 0.5 as D.I. → 1

(21)

This stems from equations (10) and (11), which suggest gains of ∝ 1/2(|A+| + |A−|) and
∝ A±, respectively, to the two grating types. Psychophysically, the detection threshold for

counter-phased gratings is almost twice of that for drifting gratings over a wide spatio-temporal
frequency range (Levinson and Sekular 1975, Watson, Thompson, Murphy, and Nachmias 1980).

These observations were explained by noting that two half-contrast drifting gratings of opposite

directions sum to a full contrast reversal grating (see Burr 1991). The current prediction,
however, is on a single cell level and relies on the assumed linear mechanisms. Significant

cortical non-linearity (Reid et al 1991) should give a quantitatively different reality, however,
but the trend of decreasing ratio above with increasing directional index should still hold and

can be tested.
Correlation between color and motion coding

This theory also predicts a smaller optimal speed for the chromatic channel (see Figure
4), since the chromatic signal power (hence ωpeak

chromatic(f)) is smaller than luminance signal

power (or ωpeak
luminance(f)). This is consistent with the observation that the perceived motion

slows down dramatically at isoluminance (Cavanagh, Tyler, and Favreau (1984)). The color

channel is traditionally viewed as insensitive to motion (see Nakayama 1985). However, there are
recent psychophysical and physiological evidences of chromatic contribution to motion detection

(Dobkins and Alright 1992, 1994). At a single striate cortical cell level, chromatic and luminance
signals are multiplexed (see Li and Atick 1994a). Accordingly, the actual motion sensitivity in

a single color selective cell is complicated, and should depend on whether stimuli is isoluminant

or not.
Correlation between stereo and motion coding

Stereo coding (Li and Atick 1994b, Li 1995) is composed of ocular summation (the input
summation from the two eyes) and ocular opponency (the input difference between the two

eyes) channels. Let Ksum(x, t) and Kopp(x, t) be the RFs for the summation and opponency
channels, respectively. We have

Kc(x, t) ∝
∫ ∞

0
df

∫ ∞

0
dωKc(f, ω)(A+

c cos(fx + ωt + φ+
c ) + A−

c cos(fx − ωt + φ−
c )) (22)
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Figure 4: Temporal sensitivity and spatiotemporal RFs for luminance and chrominance channels. Parameters
used D.I. = 1, φx = 0, and φt = 90o, fpeak = 1c/deg, and the signal power in the chromatic channel is 4% of
that in the luminance channel. A smaller optimal motion speed in the chromatic channel is apparent.

for c = sum, opp. Here all phase contributions, e.g., fxa
n, and φ(f, ω) (see equation (10),

that do not depend on (x, t) are summed into variables φ±. (The subscript n for the neuron

and superscript a for scale are omitted for clarity). The binocular RFs in a cortical cell are
(Li and Atick 1994b, Li 1995) Kl(x, t) = Ksum(x, t) + Kopp(x, t) for the left and Kr(x, t) =

Ksum(x, t) − Kopp(x, t) for the right eyes:

Keye(x, t) =
∫ ∞

0
df

∫ ∞

0
dω (K+

eye(f, ω) cos(fx + ωt + φ+
eye) (23)

+K−
eye(f, ω) cos(fx − ωt + φ−

eye)) (24)

with eye = l, r. Here K+
eye(f, ω) and K−

eye(f, ω) are the monocular sensitivities to stimuli of

opposite motion directions. The questions are: what are the directionality and the optimal
speed v±

eye ∼ ω±peak
eye /f±peak

eye for each eye, and how do they depend on the ocular origin and the

motion direction? Here (f±peak
eye , ω±peak

eye ) is the frequency to reach peak sensitivity in the curve

K±
eye(f, ω).

Let A±
c = A±

c eiφ±
c and K±

eye(f, ω) = K±
eye(f, ω)eiφ±

eye, we have

K±
l (f, ω) = Ksum(f, ω)A±

sum + Kopp(f, ω)A±
opp

K±
r (f, ω) = Ksum(f, ω)A±

sum − Kopp(f, ω)A±
opp

(25)

The signal power for ocular summation and opponency are Rsum = (1 + r)R(f, ω) and Ropp =

(1 − r)R(f, ω), respectively, where 0 < r < 1 is the input ocular correlation normalized by
the self-correlation within a single eye10. The inequality Rsum > Ropp immediately gives a

larger optimal speed in the summation channel vsum > vopp, and in addition, the channel
sensitivities Ksum(f, ω) and Kopp(f, ω) should differ and they are not simply related by a gain

factor: Ksum(f, ω) 6∝ Kopp(f, ω). Consequently by equation (25), K+
eye(f, ω) 6∝ K−

eye(f, ω) and
K±

l (f, ω) 6∝ K±
r (f, ω). This means, in a single neuron, the RFs for the two eyes can differ in

detailed form as well as in overall sensitivity, and the contrast sensitivity curves K±
eye(f, ω) of

two directions also differ by more than a gain factor. Accordingly, this theory predicts (1) the

10The temporal dimension of visual inputs was ignored in the earlier works (Li and Atick 1994b, Li 1995)
and the ocular signal powers were denoted as (1 ± r(f))R(f). Here we simply assume that the generalization
(1 ± r(f))R(f) → (1 ± r(f, ω))R(f, ω) holds approximately.
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Figure 5: Interaction between motion and stereo coding. A: Temporal sensitivity functions for the ocular sum-
mation Ksum, ocular opponency Kopp, Ksum+Kopp, and |Ksum−Kopp| channels for spatial frequency fpeak = 2

cycles/degree, which is used in B and C. Here the binocular correlation used is r(f peak) = 0.96e−fpeak/(15c/deg).
B: An example of different preferred velocities for the two eyes (see text). C: An example of different preferred
directions of motion for the two eyes (see text). It is not difficult to see that the optimal speeds for opposite
directions of motion in the same eye are also different, and the ocular dominance changes for this neuron with
motion directions.

optimal speed v±
eye ∼ ω±peak

eye /f±peak
eye can vary with eye origin and the motion direction; (2)

some neurons change their preferred motion direction with ocular origin or change their ocular

dominance with motion direction; (3) the directional index
||K+

eye|−|K−
eye||

|K+
eye|+|K−

eye|
for monocular stimuli

can vary with frequency (f, ω) of the drifting grating presented, as observed physiologically

(Reid et al 1991), since K+
eye/K

−
eye is not a constant of (f, ω).

To illustrate the predictions, consider first the example when A+
sum = A+

opp = A−
sum

= −A−
opp = A (Fig 5A, 5C). Then

K±
l (f, ω) = A(Ksum(f, ω) ± Kopp(f, ω)) (26)

K±
r (f, ω) = A(Ksum(f, ω) ∓ Kopp(f, ω)) = K∓

l (f, ω) (27)

Although both the summation and opponency channels are non-directional, this cell has a

directional RF when considering either eye alone since K+
l > K−

l and K−
r > K+

r , but the

preferred direction changes with the eye. In addition, the ocular dominance changes with
motion direction since K+

l > K+
r (left-dominant) but K−

l < K−
r (right-dominant) by equa-

tion (27), which implies that a direction change is equivalent to a ocular origin change for
this cell. Furthermore, the optimal motion speed for the left eye for example is larger in the

negative direction v−
l > v+

l . This is because the temporal sensitivity curve is a low-pass in
the positive direction K+

l (ω) = Ksum(ω) + Kopp(ω) but a band-pass in the negative direction

K−
l (ω) = Ksum(ω) − Kopp(ω) (Fig. 5A), giving ω−peak

l > ω+peak
l although the preferred spa-

tial frequencies f ∈ (f a, fa+1) are roughly the same for the two directions. Another example

(Fig. 5A, 5B) is when A+
sum = A+

opp = 1 and A−
sum = A−

opp = 0. The the ocular summa-
tion/opponency, and hence the left/right eye, channels are completely directional. The monoc-
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ular RFs have sensitivities K+
l,r = Ksum ± Kopp by equation (25). This cell thus changes its

optimal speed with ocular origin just as the cell in the previous example does with motion direc-

tion (within a single eye). The predicted ocular differences in preferred speeds and directions of

motion have been observed physiologically (Beverley and Regan 1973, Poggio 1992, DeAngelis
et al 1994), and such neurons can sense object motion in depth. The predicted changes in the

monocular optimal speed with motion direction as well as the ocular dominance changes with
direction can be experimentally tested.

4. Summary and Discussion

This paper demonstrates that efficient coding in the multiscale representation can account

for many experimental observations of motion and directional sensitivity in simple cells of the
primary visual cortex. A whole spectrum of neural directional indices and different degrees

of RF spatiotemporal separability are predicted. In addition, the cortical motion coding is
predicted to correlate with the codings in space, color, and stereo domain. Explicitly, the

theory predicts that the cell preferred speeds decrease with their increasing optimal spatial
frequencies, can differ for the two eyes in the same neuron, are much slower in the color sensitive

channel, and that the two eyes in the same neuron can prefer opposite directions of motion.
These predictions agree with physiological or psychophysical observations (Beverly & Regan

1973, Holub and Morton-Gibson 1981, Cavanagh et al 1984, Dobkins and Albright 1993, 94,

Foster et al 1985, Reid et al 1991, Poggio 1992, DeAngelis et al 1994). Furthermore, the theory
gives testable predictions that have not been experimentally investigated systematically. These

predictions are: (1) if two nearby neurons prefer the same optimal spatial frequency, same
orientation, and opposite motion directions, and have quadrature RF phase relationship, then

they should have the same directional index; (2) a single neuron can have different optimal
speeds for opposite directions of motion presented monocularly; and (3) a neuron’s ocular

dominance may change with motion direction when opposite directional preferences occur for
inputs from different eyes.

A special class of predicted neurons by this theory resembles the linear units in the mo-
tion models by Adelson and Bergen (1985) and Watson and Ahumada (1985). While these

computational models are constructed with the goal of motion or velocity computation within
the constraints of physiology and psychophysics, the present theory derives from the efficient

coding in the multiscale representation without a priori requiring motion sensing or computa-
tion. The efficient coding framework provides the following additional features not present in

the previous models: (1) given spatial orientation and scale, a requirement of only one pair of

phase quadrature filters preferring opposite directions for every two Nyquist sampling intervals
in the visual field; (2) a mechanism relating RF properties to input signal powers, leading to

additional predictions on the correlation between the motion coding and the spatial, chromatic,
and stereo coding. The formulation by equation (11) is similar to the model by Hamilton, Al-

brecht, and Geisler (1989), except that the former is derived from efficient coding principles
while the latter is constructed to fit the experimental data.

The current theory uses linear approximation for cortical coding mechanisms. The signifi-
cant cortical non-linearity, such as those that facilitate the neural responses to preferred motion

directions and inhibit the responses to non-preferred directions, as observed by Reid et al (1991),
will lead to quantitative discrepancies between the theory and experiments. However, one can
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make the following observations. First, this work focuses on efficiency by reducing redundancy
between different neural units. Efficiency can be enhanced by using a proper non-linear transfer

function at the single neuron level to achieve maximum information within a limited dynamic

range, i.e., histogram equalization, as was done by Laughlin (1981). Such non-linearity would
be within a single cell and may be similar to the action potential generation mechanism. It

does not affect the cell’s directional preference and the receptive field significantly, and is still
within the goal of efficiency. Experimental evidence (Jagadeesh et al. 1993) also suggested that

most of the non-linearity in simple cell motion selectivity originates from the action potential
generation. Second, coding efficiency is always with respect to a particular visual environment,

characterized by, e.g., signal-to-noise ratio or adaptation levels. To maintain efficiency, environ-
mental changes should lead to coding changes which are necessarily of non-linear mechanisms,

e.g., gain control or normalization (e.g., Heeger 1993), and may involve interactions between
output neurons. The current work does not include such non-linearity because it focuses on

what an efficient code should be but not how it is developed or adapted. Thirdly, the RF char-
acterizes only the effective transform from visual inputs to cortical outputs, it does not exclude

the possible contribution from the cortical feedback interactions (Douglas and Martin 1992)
which could play a significant role in the actual receptive field construction. This argument is

apparent in the linear approximation although the reality is most likely non-linear. Having said

these, one should note that other visual functions beyond efficiency are likely to contribute to
the cortical nonlinearity which can not be understood by the current framework.

A lack of precise knowledge of the natural input power spectrum in the temporal domain
makes most theoretical predictions non-quantitative. In any case, the quantitative predictions

would also depend on the signal-to-noise used in particular experiments.
This theory has further considerable limitations. The derivations in section 2 and Appendix

implicitly assume that there are as many input units (retina ganglion cells) as output units
(primary visual cortical cells). Under that assumption, an efficient representation (10) should

have only one particular parameter set (A±
e , φx, φt

e, φ
t
o), permitting only one directional index

for all cells and two receptive field phase values in quadrature of each other (at least when

considering cells preferring the same orientation and scale). In fact, when spatial and stereo
codings are also included (Li and Atick 1994a,b), it then follows that there should be only

two (orthogonal) choices of preferred orientation as well as one ocular dominance index and
two optimal disparity values for each spatial scale and orientation. In reality, however, there

are about 40 times as many cortical cells in V1 as retinal ganglion cells (Barlow 1981) and a

spectrum of directional indices, preferred orientations and disparities, and ocular dominance
indices in a single cortex (Hubel and Wiesel 1974, Berardi, Bisti, Cattaneo, Fiorentini, and

Maffei 1982, Berman et al 1987). The reasons for the cortical cell proliferation and their
extent are beyond the scope of the efficient coding theory. However, given a larger cortical cell

population compared to that of the retinal ganglion cells, the efficient coding theory can be
generalized and still applied. Essentially the same cell RF properties can be obtained, either in

a statistical mechanics framework by Nadal and Parga (1993, and Nadal private communication
1995) or non-statistically (Li, in preparation). Briefly, when the output units are many times

more numerous than the sensory input units, efficient coding will produce many different copies
of the codes like the ones in section 2. Each copy carries less information than it would if the
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cell population were smaller, and the representations in different copies are not decorrelated
but the overall representation is still the most efficient given the larger population. However,

different copies can have different code parameters (e.g.,A±
e , φx, φt

e, φ
t
o if considering only the

motion coding) and can thus generate a whole spectrum of RF properties observed in the cortex.
Many of the predictions from the efficient coding framework, such as the cell quadrature

phase structures, the spatial frequency bandwidth, the color selective blob cells, and the cor-
relation between spatial and stereo coding, some of which rely heavily on the efficient coding

assumption, agree with experimental observations (see Li and Atick 1994ab and references
there in). In addition, the theoretical framework has already provided predictions which had

not been experimentally investigated and have been subsequently confirmed in experiments (Li
1995, Anzai et al 1994). These facts give credibility to efficient coding as a useful framework for

understanding at least some of the primary visual cortical processings. The current work, with
some of its predictions not yet experimentally investigated, provides more testing grounds to

explore the strength and limitations of the efficient coding framework. In particular, the test on
the prediction of neighboring motion sensitive units is crucial to the theory. This is because the

confirmation of this prediction requires the neighboring cells to (1) have the same directional
index if (2) they are in quadrature phase relationship, (3) have the same optimal spatial fre-

quency and orientation and (4) prefer the opposite motion directions. To simultaneously satisfy

these conditions would be difficult if the neural properties were randomly assigned. Note that
conditions (2) and (3) are to reduce or eliminate the probability that the two neighboring cells

might be from different efficient copies in the output cell population. This is because different
efficient copies are likely to have different orientation preferences and center spatial frequencies,

and in addition, the output neurons in different copies may be anatomically close but have no
a priori reasons for a fixed relationship in their RF properties.
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Appendix

This appendix is to show that equations (10)- (14) depict the general spatiotemporal RFs

in a multiscale linear efficient code that is translation invariant, temporally causal, and spa-
tiotemporally local (i.e., the RFs have finite and minimum spatiotemporal span to ensure finite

synaptic connection length, retinotopy, and minimum delay in information extraction.)
It was shown (Li and Atick 1994a) that the unitary matrix required to combine the non-local

filters in a spatial frequency band in equation (9) is

Ua
nj =















1√
Na ei(fjxa

n−πn/2+φ) if fj > 0

1√
Na e−i(|fj |xa

n−πn/2+φ) if fj < 0
(28)
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for n = 1, 2, ...., Na and arbitrary φ. Combining (28), (9), (3), (4), and (5), we have

Ka
n(x, t− t′) ∝

∑

fa<f≤fa+1

∫ ∞

0
dωK(f, ω) cos(f(xa

n −x)−πn/2+φ) cos(ω(t− t′)+φ(f, ω)) (29)

This is exactly the spatiotemporally separable filters in equation (11) when A+ = A−. This RF

is the most local spatially as implied by the phase coherence at x = xa
n and a finite bandwidth

f ∈ (f a, fa+1). There is translation invariance Ka
n(x, t − t′) = −Ka

n+2(x − (xa
n+2 − xa

n), t − t′)
between every second unit, and quadrature RF phase relationship between neighbors Ka

n and

Ka
n+1. These RF similarities give the best translation invariance possible in a scale of more

than 1 octave bandwidth in the cortex (Li and Atick 1994a). The RF centers xa
n = (N/Na)n

(or xa
n = (N/Na)(n + n mod 2)), for n = 1, 2, ..., Na, are distributed over the input visual field

x ∈ (0, N).

To obtain the general RF, we note that any changes in spatial phase φ in equation (29)
and the temporal phase φ(f, ω) → φ(f, ω) + β for any β will not compromise efficiency, spatial

locality, translation invariance, causality, and the minimum temporal latency and spread. A
code of such kind is denoted by Ka

n(·|φ, β). Equation (9) states that a desired RF has to be

a linear combination of the filters Kfj of equation (5)), with φ(f, ω) → φ(f, ω) + β for any
β and fj ∈ (f a, fa+1). In particular Ka

n(·|φ, β) is so constructed. The desired causality and

locality additionally require the general RF to be composed of only causal and most local filters:
Ka

n =
∑

φ,β w(φ, β)Ka
n(·|φ, β), where w(φ, β) is a weight function.

Note that equation (29) can also be written as

Ka
n(x; t − t′) ∝

∑

fa<f≤fa+1

∫ ∞

0
dωK(f, ω)(cos((f(xa

n − x) − πn/2) + (ω(t − t′) + φ(f, ω)) + φ+)

+ cos((f(xa
n − x) − πn/2) − (ω(t − t′) + φ(f, ω)) + φ−)) (30)

with φ+ = φ + β and φ− = φ − β. Then the general RF Ka
n =

∑

φ,β w(φ, β)Ka
n(·|φ, β) is

Ka
n ∝

∑

fa<f≤fa+1

∫ ∞

0
dωK(f, ω)(A+ cos((f(xa

n − x) − πn/2) + (ω(t − t′) + φ(f, ω)) + φ+)

+ A− cos((f(xa
n − x) − πn/2) − (ω(t − t′) + φ(f, ω)) + φ−)) (31)

with A±eφ±

=
∑

φ,β w(φ, β)eφ±β. The best possible translation invariance Ka
n(x, t − t′) =

(±)Ka
n+2(x − (xa

n+2 − xa
n), t − t′) requires the same (A±, φ±) = (A±

e , φ±
e ) for all the even n

and (A±, φ±) = (A±
o , φ±

o ) for all the odd units. Hence, the general RFs are within this class
of filters and decorrelation between outputs Oa

n =
∫ ∞
−∞ dx

∫ ∞
−∞ dt′Ka

n(xa
n − x, t − t′)S(x, t′), i.e.,

< Oa
n(t)Oa

m(t′) >= δtt′δnm, will restrict the choices of the parameters (A±
e , A±

o , φ±
e , φ±

o ).
The output correlation is

< Oa
n(t1)O

a
m(t2) > =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx1dx2dt′1dt′2K

a
n(xa

n − x1, t1 − t′1)

< S(x1, t
′
1)S(x2, t

′
2) > Ka

m(xa
m − x2, t2 − t′2)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx1dx2dt′1dt′2K

a
n(xa

n − x1, t1 − t′1)

R(x1 − x2, t
′
1 − t′2)K

a
m(xa

m − x2, t2 − t′2)

=
∫ ∞

−∞
df

∫ ∞

−∞
dωKa

n(f, ω)R(f, ω)Ka
m
∗(f, ω)eif(xa

n−xa
m)+iω(t1−t2)
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where Ka
n(f, ω) is the Fourier transform of Ka

n(xa
n−x, t−t′) ≡ ∫ ∞

−∞ df
∫ ∞
−∞ dωKa

n(f, ω)eif(xa
n−x)+iω(t−t′).

Hence for f a < |f | ≤ f a+1

Ka
n(f, ω) = K(f, ω) ·























A+
n ei(−πn/2+φ(f,|ω|)+φ+

n ) if f > 0, ω ≥ 0

A+
n e−i(−πn/2+φ(f,|ω|)+φ+

n ) if f < 0, ω < 0

A−
n ei(−πn/2−φ(f,|ω|)+φ−

n ) if f > 0, ω < 0

A−
n e−i(−πn/2−φ(f,|ω|)+φ−

n ) if f < 0, ω ≥ 0

(32)

where (A±
n , φ±

n ) = (A±
e , φ±

e ) or (A±
o , φ±

o ) when n is even or odd. Since K(f, ω) = R−1/2(f, ω),
denoting complex conjugate by c.c., we have

< Oa
n(t1)O

a
m(t2) > =

∑

fa<f≤fa+1

∫ ∞

0
dω(A+

n A+
meif(xa

n−xa
m)−isgn(f)π(n−m)/2+iω(t1−t2)+i(φ+

n −φ+
m) + c.c.)

+ (A−
n A−

meif(xa
n−xa

m)−isgn(f)π(n−m)/2−iω(t1−t2)+i(φ−
n −φ−

m) + c.c.) (33)

where sgn(f) = 1 or −1 when f > 0 or f < 0, respectively.
To continue, we note that Ua, as given in equation (28), is a unitary matrix, hence,

∑

j Ua
nj(U

a
mj)

∗ = δnm. Then

∑

fa<|f |≤fa+1

ei(f(xa
n−xa

m)−sgn(f)π(n−m)/2) =
∑

fa<f≤fa+1

ei(f(xa
n−xa

m)−π(n−m)/2) + c.c. ∝ δnm (34)

Hence,
∑

fa<f≤fa+1 ei(f(xa
n−xa

m)−π(n−m)/2) ≡ iρ is a pure imaginary number when n 6= m. Similarly
∫ ∞
0 dωe−iω(t−t′) ≡ iη is a pure imaginary number when t 6= t′. By the definition (Li and Atick

1994a) of Ua, fj = 2πj/N (radian/grid) with j = ja + 1, ja + 2, ...., ja+1, Na = 2(ja+1 − ja).

Then

∑

fa<f≤fa+1

ei(f(xa
n−xa

m)−π(n−m)/2)

= e−iπ(n−m)/2+ifja+1(xa
n−xa

m)
Na/2−1

∑

j=0

(exp(i(xa
n − xa

m)2π/N))j

= e−iπ(n−m)/2+ifja+1(xa
n−xa

m)(1 − exp(iπ(xa
n − xa

m)Na/N))/(1 − exp((i2π(xa
n − xa

m)/N)))

=











0 if n = m + 2l 6= n, since xa
n = (N/Na)n or (N/Na)(n + n mod 2);

1/2 (up to a normalization constant), if n = m;
iρ otherwise.

This gives decorrelation < Oa
n(t1)O

a
m(t2) >= 0 in equation (33) for all m = n + 2k 6= n for

any (A±, φ±). While for n = m, we have the temporal decorrelation: < Oa
n(t1)O

a
n(t2) >∝

∫ ∞
−∞ dωeiω(t1−t2) ∝ δt1t2

When m = n + 2k + 1, we differentiate two situations: (1) t1 = t2 and (2) t1 6= t2. Their

respective decorrelation require

< Oa
n(t)Oa

n+2k+1(t) > = (A+
n A+

miρei(φ+
n −φ+

m) + c.c.) + (A−
n A−

miρei(φ−
n −φ−

m) + c.c.)

= −ρ(A+
n A+

m sin(φ+
n − φ+

m) + A−
n A−

m sin(φ−
n − φ−

m)) = 0, (35)
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< Oa
n(t1)O

a
n+2k+1(t2 6= t1) > = 0

= (A+
n A+

miρ
∫ ∞

0
dωeiω(t1−t2)+i(φ+

n −φ+
m) + c.c.)

+(A−
n A−

miρ
∫ ∞

0
dωe−iω(t1−t2)+i(φ−

n −φ−
m) + c.c.)

= (A+
n A+

miρiηei(φ+
n −φ+

m) + c.c.) − (A−
n A−

miρiηei(φ−
n −φ−

m) + c.c)

= −ρη(A+
n A+

m cos(φ+
n − φ+

m) − A−
n A−

m cos(φ−
n − φ−

m)). (36)

Combining equations (35) and (36) gives A+
n A+

mei(φ+
n −φ+

m) = A−
n A−

me−i(φ−
n −φ−

m) for m = n+2k+1.

Hence we have A±
e = γA∓

o , for γ = ±1, and φ+
e + φ−

e = φ+
o + φ−

o . It then concludes that the
general efficient spatiotemporal code is of the form in equations (10) - (14) and is determined

by 5 parameters (A+
e , A−

e , φx ≡ (φ+ + φ−)/2, φt
e ≡ (φ+

e − φ−
e )/2, φt

o ≡ (φ+
o − φ−

o )/2).
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