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A neuron

u: nheuron’'s membrane potential.
7 membrane time constant
I: input current to this neuron.

uw=—u/T+1 (like a capacitor)

Interaction between neurons

g(u): Output value from a neuron, monotonic
(with saturation and thresholds).

W;;: synaptic weight from neuron j to .

I.+: the external input.

I; = Text + > Wijg;(uj)

A neuron
. Wow) -
— : — g(u) @ @

EXxcitatory and Inhibitory Neurons

Excitatory neuron j: — W;; > 0 for all ¢.
Inhibitory neuron j: — W;; <0 for all <.



Organizations of the neural network in
the brain

(1) The cortex is composed of different
cortical modules.

Module 1 Module 2

———————————————————

———————————————————

(2) Different cortical modules interact with
each other, often reciprocally.

(3) Only the excitatory neurons output to
other modules. Neurons that do not output
to other modules are called interneurons.



The basic cortical circuit within
a cortical area (module)

Neurons are often only connected to their
neighbors, neuron groups are often located
In distinctive layers. In this example, the
excitatory neurons receive external inputs and
send outputs from this cortical area.



A simple model of the basic circuit
element

Output . Ic

90 oy

T =—h-gy(y)—ax:v—|—f, (1)

y =w- 9:1:(33) — GyY + L. (2)
xT. excitatory cell’'s membrane potential.
Y. inhibitory cell's membrane potential.
I: external input to the excitatory cell
I.:: external input to the inhibitory cell

h,w: the synaptic weights between cells
1/0z, 1/ay: cells’ membrane time constants



The input-output of this basic element
(1,1c) = gz ().

Find the fixed point (z,y) where x = y = O:

—h-gy(y) —azz+1=0

See how g;(Z) depends on I and I,

_ . aygé(f)

S @01 = o (o)
) B —hgy(9)95(%)
0gx(Z) /0l = agay + hwgy (¥)g;(T)
= ~ha®) s e

Qy

Compare with: 6g.(z)/6I = ¢g/.(Z)/az — when
the inhibitory interneuron (and external input
I.) is absent.



The basic element as a neural oscillator

r = —h-gy(y) —azx +1I,
y =w-gz(x) — ayy + L.

Shift origin of the coordinates:
r—r—x,y—y—y, hence

r = —h-(g(y+9)—9y(¥)) — oz,
v =w-(g(z+7T)—9:(Z)) — ayy
Linearize:
r = —h-g,(y)y — asz,
Yy =w- g (T)r — oy

Compare with:

r = —wy-—oar
Yy = wr—ay
or
#+ 20z + (W?+a?)e=0

Hence: hwg,(Z)g,(j) — w?, frequency, 2ai is the
damping term.

y could be seen as the momentum for .



Oscillation trajectory

When az = oy = 0,  and y oscillate around
(Zz,y) in a closed curve

Lyapunov Function:

x4+
R = | wlg(s)—ga(@)ds
’ y+y'
+ / h(gy(s) — g4(yo))ds = constant > 0
7

When az,ay > 0, the oscillation is damped,

dR/dt = —aw(gz(x) — gz(x0))(x — x0o)
—ah(gy(y) — 9y(y0))(y — o) <O

A non-linear damped oscillator.



Example: Olfactory bulb

Odor Input: I, Higher center feedback I.. x:
the excitatory mitral cells. y : the inhibitory
granule cells.

(Reference reading for oscillation analysis and olfactory
computation: Zhaoping Li (1995) Modeling the
Sensory Computations of the Olfactory Bulb Published
in Models of Neural Networks Vol. 2, Eds. E. Domany,
J. L. van Hemmen, and K. Schulten, page

221-251. Springer-Verlag New York. Available on line at
http://www.gatsby.ucl.ac.uk/ zhaoping/olfaction.html.)

The mean field solution x and oscillation
frequency hwg,(z)g,(y) are input (odor)
dependent.
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Prediction: The inhibitory cells oscillate with a
quarter cycle phase lag behind the neighboring
excitatory cells — observed by Frank Eeckman and W.
Freeman, 1989.

To think about now: This oscillator is damped, i.e.,
does not spontaneously oscillate. However, the
olfactory bulb exhibit spontaneous oscillation (40 Hz)
under odor inputs which does not oscillate. Why?



A slight modification — including
self-excitation

Output
90 [y

—h - gy(y) — azxr + Jogz(x) + 1,
y = w-gz(z)— ayy + L.

..
|

Jog..(Z) can be seen as negative dissipation to
overcome the dissipation caused by a;.

consequences: (1) Input-output I — g(a) has a
larger gain (slope).

(2) Non-damping oscillation possible when J, is strong

enough,



Example: Response of a visual cortical cell, say,
tuned to an oriented bar or edge, to external or

contextual inputs I and I..

r = —z—gy(y) + Jogz(x) +1 (3)
= —y+ guo(z) + I (4)
At equilibrium:
69:(Z) _ 9, (%)
oI T 1+gL(2) gy, (¥) —Jogl (%)’

5 = -9y,



- . 09x(Z) _ 9,(Z)
Gain Control: = = T o) d,(5)—Tode(7)
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Activation function
for excitatory cells for inhibitory cells
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" For higher Ic

Edge response g, (x)
/

Input | to the excitatory cell



Facilitatory and suppressing modulations
Shifting (I,1.) to (I + AL I + AIL) —
Ag,(z) = (09:(x)/61)(AI — g, (y)AL),

Ag:(x) >0 if AI/AL > g, ().
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Increased tendency to oscillation

—h - gy(y) — agx + Jogz(x) + 1,
w - gz(x) — ayy + L.

i
y

Linearize around the fixed point z,y, shifting origin to
x,y:

¢ = —h- g,y — (aw — Jogy(2))z,
y = w-g.(T)x— ayy
Arriving at

2+ (2a — Jog,(z))2 + (hwgy (¥)9;(2) + o® — atog(z))z = 0

The damping 2a — 2a — Jog.(x), when J, is large
enough, the damping becomes negative, giving
growing oscillatory solution

z(t) o e~ (@=L (B)/2t—iwt \yhere
w =/ hwg) ()@ — (Jogl(2))2/4.
There is no excitatory-to-excitatory connections in the

olfactory bulb, which nevertheless exhibits oscillation
— it is a network property, discussed later.

For visual cortical cells, local circuit is such that J, is
not strong enough to give oscillations normally, unless

larger network behaviors are evoked, discussed later.



Summary on the basic neural element:

Output
g(x) )y

e Input (I,1.) — output bw(a:).

e The output g(x) has both a DC and a AC
component.

e The DC component g,(z) increases with I and
decreases with I..

e The AC component is generated by a damped
neural oscillator. The oscillation frequency is
controlled by I and I., and is proportional to the
connnection weights h and w.



Computation by interactions between the
basic elements

Input: I = (I]_,IQ, ), I, = (Ic,17IC,27 ),
Output: O =(01,09,...) = (gz2(x1), gz(x2),...)

O; depends on I;,I.; as well as I;, I, ;



Toy example I — two mutually exciting
elements.

Ol jca 92 2
3 ~ J mutual excitation
| | | connection strength
R
11 12
1y = —h- gy(yl) — o1 + Jogx(xQ) + I3,
y1 = w-ge(x1) —ayyr + L.
2 = —h-gy(y2) — awz2 + Jogu(z1) + I,
y2 = w-gz(x2) — oy + Ic2.

Assume I1 = I», 1.1 = I.», by symmetry, O1 = O> at the

fixed point — the mean field solution.



The equivalent system — toy I.
O e

:

ool

Like an original single element with its
damping reduced ay — agz — Jog.. () — this

leads to a higher input-output gain (when

_ dgx(Z) __ g5 ()
o =1) 5 = 1 @a @)t Na @ 2aNd
stronger outputs, determined by the fixed

point equations.




Dynamics around the mean field solution
— toy 1

r1 = —h-gy(y1) — owz1 + Joge(x2) + I3,
1. = w-gz(z1) —ayyr + I 1.
o = —h- gy(yg) — a2 + Jogx(xl) + Iz,
Yo = w-gz(z2) — ayys + Icp.

(z,y): the mean field solution, linearize around it.

Take x4 =z1 4+ 22, z- = 1 — X2,
Y+ = y1 + Y2, Y- = y1 — Y2,

then
2+ = —h-gy(yy) — cwzy + Jogu(4)
U+ = w-go(z4) — oyys
z- = —h- gy(y—) — azx— — Jogz(z_)
y- = w-ge(r-) — oyy-.

Two normal modes: 4+ and -. The 4+ mode is
stronger, under-damped, when the two oscillators
oscillate in phase. The - mode is weaker,
over-damped, when the two oscillate out of phase.



Stimulus dependent oscillations in visual
corteXx There has been controversies as to whether
the visual cortical neurons exhibit oscillatory behavior,
different experimental data from different labs do not
agree. One possible explanation is that different
experiments used different visual stimulus.

Stimulus 1: I; > 0 and I, = 0 — input only to one cell
being recorded and not other cells near by. This
effectively de-coupled 2 from the system.

Stimulus 2: I; > 0 and I, > 0 — inputs to both cells.

Stimulus 2 recruits the mutual excitation J,, stimulus 1
does not. Stimulus 2 tends to evoke oscillation more
than stimulus 1.

(Reference reading on the network interactions for

visual processing and grouping: Zhaoping Li (2001)
Computational design and nonlinear dynamics of a

recurrent network model of the primary visual cortex,

published in Neural Computation 13/8, p.1749-1780,

2001, available at

http://www.gatsby.ucl.ac.uk/ zhaoping/preattentivevision.html)



Example: A long horizontal line as the
visual input — contour integration

sampled by many cells 7 tuned to horizontal
orientation, lateral connections J;; (colinear excitation)
tend to link between them:

g = —xi— gy(Ui) + Joga(i) + Y Jijga(xs) + T,
JFi
Y = —Yi+ g(x;) + I
Translation symmetry, I; = 1I; =1 for all ¢,5 and J;;

only depends on | — j|, implies that z; = z; = «,
yi = y; =y, and hence:

i = —w—gy(W) + (Jot D Jij)ga(a) + 1
7]
y = —y+g.(z)+ L
This is equivalent to a single neural pair with the
substitution J, — Jo 4 >, Jij. The response to bars in

the array is thus higher than that to an isolated bar. It
also has a stronger tendency to oscilllate.

The longer the line, the stronger is (J, + Zi#j Ji;) and
thus the tendency to oscillate. In fact, a homogeneous
extended input texture also has large (J, + Zi#j Jij)
and thus a strong tendency to evoke oscillation.
Indeed, physiologically, grating stimuli are more likely
to induce oscillations than (short) bar stimuli
(Molotchnikoff, Shumikhina, and Moisan, 1996).



Toy example I — two mutually inhibiting
elements.

E

W: mutual inhibition
synaptic strength.

Assume I = Ip, I.1 = I.», by symmetry,
01 = O> at the fixed point — the mean field
solution.

This solution has a weaker gain

59w(5) — 9;(5)
51 = TFh(wT g, ()g,G)— gy | 1US 3
weaker output given input I; = I».




Around

T1
Y1
()

Yo

the mean field solution — toy II

—h - gy(y1) — azz1 + I3,

w - ge(z1) +w' - g2(z2) — ayy1 + 1.1
—h - gy(y2) — azz2) + I,

w - gz(x2) +w' - ge(z1) — ayyn + I 2.

(z,y): the mean field solution, linearize
around it.

Take z, =1+ 22, x— =21 — 22,
Y4+ =y1 + Y2, Y— = Y1 — Y2,

then

Ty
Y+

—h-gy(y4) — oz y
(w+w') - golz4) — ayyt

—h - gy(y-) — azz—
(w—w') - ga(z_) — ayy—.



Two normal modes: 4+ and -. Both equally
damped (if w’ < w), oscillating with different
frequencies \/h(w + w').

A coarse (opposite) analogy

Two coupled
oscillators

@ @

Mode + Mode -




Example: Visual Response suppression to
a homogeneous texture A texture may be a
regular array of short bars, each gives direct input to
an excitatory pyramidal cell (coupled reciprocally with
a local inhibitory interneuron). Each pyramidal cell is
to receive di-synaptic inhibition (omitting excitation)
from the neighboring cells responding to neighboring
parts of the texture.

z; = —xi— gy(yi) + Jogz(zi) + I;
yi = —vyi+ gu(xi)+ Z Wiigs(x;) + I
JFi

Translation invariance (I; = I; = I and W;; depends
only on ¢ — j) again gives the mean field solution, the
whole texture is equivalent to a single E-I
(excitatory-inhibitory) pair, with a stronger inhibition

r = —z—gy(y)+Jo+1
g = —y+a@A+) Wy)+L
J

_ in- 09:(Z) 9.(%)
Input-output gain: =5 1+(1+) , Wi)gu(@)g, (@)~ Jogs(2)”




Example: asymmetrically coupled damped
oscillators

r; = —H;;-gy(y;) — azz; + I,
Yi — 9:13(5137,) — QyY; + L.

______________________________________

Each inhibitory cell only connects to its left
neighbor.



Simplification: Assume translation invariance,
I, =1; =1, H;; depends only on ¢ — j. Fixed point
r, =x;=x,and y, =y; = y.

Small amplitude approximation around the mean field
solution. (Take a, = oy for simplicity).

r; = —Hijg,(y)y; — ax;
yi = g(Z)zi — ay;.
Take Fourier transform, then each Fourier mode will

be decoupled from each other, and each is like a single
oscillator. The N Fourier modes are:

sin(k1l)
(sin(k2) \
5 o—otEiv/ Nt
sin(ki)
\ sin(kN) /

cos(kl) \
cos(k2)

e—otEiv At
cos(kz')

\ ;:os(kN) )

where k = 2n%, K is an integer, 0 < K < 5



Let mode k has amplitude z* and y*, then

¥ = —HFq (Py* — ow

g = gl(T)z* — oyt
where HF is the Fourier transform of spatial function
H;_;. Fourier modes are eigenvectors of matrix H.

This has solution z(t) o e “+VHL@g,®t  For
asymmetric matrix H, H* is not real, hence it is
possible that z* will have growing or non-decaying
oscillation amplitude. The strongest mode k will
dominate the network behavior.

k

This is an example where a group of damping
oscillators, coupled together without any
excitatory-to-excitatory connections, can generate
oscillations. Olfactory bulb is a complicated version of

such a system.



Are interneurons simply biological
hardware constraints?

If we ignhore oscillations, can we model cortical
networks by a simplified version: delete the
Interneurons, each principal neuron can
arbitrarily excite or inhibit another neuron?

The simplified network model:
z; = —z; + 3 Tij9(xj) + I;

T;j connection strength that can be positive
or negative.

Example: Hopfield network, when T;; = T}
This kind of symmetry may be seen as quite
suitable for visual cortical networks where
there is reflection symmetry in connections.

To be continued ...



