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An international group of researchers met in November 2019 in Beijing to explore the intersection of neuro-
science and AI. The aim was to offer a fertile ground for stimulating discussions and ideas, including issues
such as policy making and the future of neuroscience and AI across the globe.
What is a better model of the human brain: a mouse brain or an

engineered artificial intelligence (AI) system? This was one of

many questions discussed by brain scientists and AI engineers

during the thought-provoking November 2019 ‘‘AI and the Brain’’

conference in Beijing, directed by Cell Press editors Mariela

Zirlinger and Moran Furman and organized as part of a partner-

ship between Cell Press and the Beijing Municipal Science and

Technology Commission.

With more brain scientists than AI engineers being present at

the meeting, many of the discussions naturally centered on

how brain science could benefit from AI and how state-of-the-

art AI systems can be interpreted in the context of current under-

standings in brain science. This has at least two facets. One is

uncontroversial: the observation that methods of machine

learning (ML), which is almost synonymous with modern AI, are

advancing progress in all natural sciences, including brain sci-

ence. The second, which we consider first, is more controversial

and asks whether there is a special connection between AI and

brain science.

Machines have, for decades, been able to do better than hu-

mans in many tasks that would once have been considered to

require some form of intelligence, such as multiplying two

multi-digit numbers. More recently, they have bested us in ever

more challenging cases such as playing chess, Go, or StarCraft.

Thus, it is just a question of when, and in which ways, AI will sup-

plant additional facets of human intelligence, an issue perhaps of

more interest to the general public and science fiction authors

than to the meeting participants. The attendees were, of course,

able to point to many areas for improvement in current technol-

ogies, particularly in tasks humans find easy, such as washing

dishes, playing soccer, learning concepts or tasks from a few

examples, and recognizing partially occluded objects in clut-

tered scenes or out of context (imagine a penguin in a rain forest).

Current AI often lacks robustness; it can be easily fooled so that,

for example, it recognizes a panda in an image as a gibbon when

the image pixel values are modified so slightly that the modifica-

tion is almost imperceptible to humans. Furthermore, current AI

systems typically consume vastly more power than a human

brain for performing the same task.

Meanwhile, the recent rapid progress of AI has prompted

some to wonder whether AI could move forward at a fast pace

with little, or at least limited, input from brain science. What
would progress look like in AI without brain science? Is there any-

thing uniquely interesting about natural, i.e., biological, intelli-

gence? It is important to remember that AI and brain science

have different cultures and value systems. In particular, brain

science (using experimental methods from, e.g., physiology,

anatomy, psychology, and medicine and theoretical/computa-

tional methods from, e.g., physics, computer science, andmath-

ematics) is a discipline in natural sciencewhose practitioners aim

to discover nature’s laws to understand the world, whereas AI is

a discipline in engineering in which researchers invent and inno-

vate technologies, often by applying nature’s laws or guided by

intuition and experience. Historically, corresponding science

and engineering disciplines (e.g., chemistry and chemical engi-

neering) typically helped to spur each other’s progress. This

should also happen between brain science and AI; one could

even envision the formation of a joint discipline of intelligence,

be it artificial or natural. Many researchers are active in both

brain science and AI, while many have their preference for brain

science or AI driven by their interest to discover or invent,

respectively.

Becausemany of the participants work in artificial or biological

vision, and because vision is one of the areas in which AI and

brain science have had many interactions, it is most straightfor-

ward to consider the case of visual intelligence. In the primate

brain, visual information is transformed from pixel inputs as

activation of photoreceptors in the retina to neural responses

in subsequent visual cortical areas, such as V1, V2, V3, V4,

and IT, along the visual pathway. However, even though we

are able to record neural activities at multiple stages of this

pathway, we are surprisingly ignorant about the exact form of

the transformations that lead to our generally exemplary perfor-

mance at tasks such as object recognition. This ignorance is

particularly severe in later stages of the pathway.

Mimicking the hierarchical structure of the visual pathway, the

most successful AI vision networks are built as convolutional

neural networks of many layers. The values of the (often) millions

of parameters defining the precise transformations are deter-

mined by a form of so-called supervised learning involving an

instance of the chain rule of calculus known as backpropagation.

The idea is to present a large number of visual images to the input

layer of the network and to teach the network such that its upper

layer can correctly signal or identify the objects in the images
Neuron 105, February 5, 2020 413

mailto:li.zhaoping@tuebingen.mpg.de
https://doi.org/10.1016/j.neuron.2020.01.014


Neuron

Meeting Report
(Yamins and DiCarlo, 2016). If one excludes cases when the AI

vision can be fooled or be confused, some AI networks can

already achieve human or even super-human performance in

object recognition.

If we can invent an intelligent technology in AI, we can ask

whether we can find the same or corresponding computational

principle or algorithm in a biological brain, allowing that the actual

substrates that implement the algorithms, whether in silicon or in

‘‘wet’’ neurons, could differ. Could we conjecture that if the AI al-

gorithm is sufficiently ingenious (while using limited resources),

then there must be a biological counterpart? If so, the AI vision

network, for example, could guide us in understanding the visual

signal transformations along the visual pathway (and conversely,

AI practitioners could ‘‘invent’’ better solutions by borrowing

brain’s algorithms). James DiCarlo, a vision scientist from MIT,

noted that indeed, among the AI networks that do not employ

too many computational layers, the ones that perform better at

object recognition have their computational units respond to vi-

sual inputs in the same or in a similar way as neurons in monkey

visual cortex, so that the biological neural responses can be

related in a simple linear way to the responses in the artificial neu-

rons (Yamins and DiCarlo, 2016). Mu-ming Poo, director of the

Institute of Neuroscience in Shanghai, found a form of plasticity

in neural synapses resembling backpropagation. Since we can

examine the artificial networks more easily to see the pathways

and transformations from the visual input sensors to individual

nodes in various layers of the networks, the AI networks can

hopefully help us to hypothesize or understand how our brain

builds a representation of the visual world layer by layer, from

the original raw image pixels on retina to neurons signaling com-

plex objects, such as faces, in higher visual cortex.

However, compared to biological vision, current AI visual net-

works have irksome problems: the ease of fooling them and their

fragility to image context, scene clutter, and even partial occlu-

sion. Such shortcomings are not easily overcome, for instance,

by mimicking the biological neural spikes in artificial neurons, re-

ported Jun Zhu from Tsinghua University. Somehow, current AI

vision lacks what one might call visual ‘‘understanding.’’

Many scientists (including me) suggest that this ‘‘understand-

ing’’ is represented in the top-down feedback from higher to

lower visual cortical areas along the visual pathway in the brain

(Zhaoping, 2019). Such feedback, absent in the best AI vision

networks so far, realizes this ‘‘understanding’’ by being able to

synthesize the would-be visual signals in the lower visual areas

for various objects. Synthesis of this sort constitutes internal

knowledge that can help to fill in missing visual input signals

due to occlusion and to dismiss misleading input signals that

are inconsistent with the top-down knowledge.

Wu Li from Beijing Normal University shared lessons his team

learned from feedback from V4 or V2 to V1 in monkey brains

(Chen et al., 2014). DiCarlo, Gabriel Kreiman (from Harvard),

and their collaborators have seen a signature of such feedback

in the higher visual cortical areas of primates: longer latencies

in neural responses to more challenging visual inputs, potentially

due to the interaction between top-down feedback and bottom-

up feedforward signals.

Another important facet of human vision that is incompletely

reflected in AI systems is the critical role played by attentional
414 Neuron 105, February 5, 2020
selection so that only a fraction of sensory inputs is further pro-

cessed by our brain (not the least saving power and processing

resources). Theoretical arguments, backed up by behavioral

data, turn this facet into the prediction that top-down feedback

is likely directed mainly to the central visual field. Indeed, human

vision in peripheral visual fields (which, according to this hypoth-

esis, would lack the benefit of top-down synthesis) is, like AI, also

easily fooled, by being more susceptible to visual illusions

(Zhaoping, 2019).

Extending beyond vision, meeting attendees pondered over

many of the brain’s peculiarities that are novel in AI. Poo and

others emphasized that the brain has lateral connections within

individual brain areas, in addition to the feedforward and

feedback connections, and Virginia de Sa of the University of

California SanDiego shared her insights from using all these con-

nections in her neural network models. Poo also emphasized the

diversity in neuronal types and that it is easier to strengthen or

weaken an existing neural connection through learning than to

create a new connection between neurons (Poo et al., 2016). Shi-

mon Ullman from the Weizmann Institute argued that evolution

may have built in some critical elements of the neural network ar-

chitecture that enables babies’ brains to learn in a way that the

current AI could not. György Buzsáki of New York University

went even further, suggesting, based on his studies, that the

brain, unlike AI, has rich pre-configured neural dynamics and

that the outside world can exert its influence for sensory re-

sponses and learning only through these dynamics. Minmin

Luo of the Chinese Institute for Brain Research shared the won-

ders of neuromodulators such as dopamine and serotonin for

reward learning. Daeyeol Lee of Johns Hopkins University and

Xiaojing Wang of New York University marveled at the different

timescales of neural dynamics across different brain regions

and wondered whether they may be key to adapting to the envi-

ronment at multiple timescales.

The physicist Richard Feynman famously said, ‘‘what I cannot

create, I do not understand.’’ Taking this literally, engineering ro-

bots to produce or mimic biological intelligence behaviorally, in

a robust and energy-efficient manner, should help scientists iden-

tify critical and relevant questions that could otherwise be easily

missed (such as when one looks at visual object recognition

without looking at motor behavior for, or guided by, visual

sensing). Along this line, Tony Prescott of Sheffield University pre-

sented work on robots with artificial, rodent-inspired whiskers.

Yulia Sandamirskaya of ETH Zurich described neuromorphic

cognitive robots that can, for example, manipulate a Rubik’s

cube. Sen Song of Tsinghua University introduced a neuromor-

phic chip architecture that enables researchers to try real-world

intelligent tasks such as an unmanned bicycle riding on a road

(Pei et al., 2019). Julie Grollier of CNRS/Thales France builds

nanodevices to improve neuromorphic computing and energy ef-

ficiency, taking into account that, contrary to commonplace

computing devices, memory and processing need to be together

in the brain. Such endeavors highlight issues that need to

be tackled: for example, spatial coordinate transformations

between sensory andmotor systems, autonomous learning, inter-

actions between sensoryprocessing,memory, and action control.

Let us turn back to the first facet of the link between AI and

brain science mentioned at the opening: applying AI tools to
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the advancement of neuroscience research. Historically, in-

vented tools, such as the telescope and microscope, have

greatly accelerated the pace of scientific discovery. ML

methods, whose development has been turbocharged by the

burgeoning of modern AI, are tools that can greatly aid progress

in brain science. In particular, the ability of thesemethods to pro-

cess large datasets should help brain scientists to analyze and

extract insightful information from the massive and multi-dimen-

sional data that are becoming more and more common in brain

science. Juan Zhou of National University of Singapore shared

the example of her team using ML methods to fuse multimodal

neuroimaging data in their study of neuropsychiatric disorders.

Indeed, the meeting also celebrated the success and power of

ML to decode cognitive or behavioral signals from neural signals.

For example, Edward Chang and colleagues at University of

California, San Francisco, decode articulatory movements for

producing speech from human sensorimotor cortical recordings,

and Kafui Dzirasa and colleagues from Duke University use

neural signals from multiple brain regions to decode human

emotions. Such developments can not only create valuable

medical applications, but also enable discoveries as to how

the brain represents and processes information. For example,

they could reveal whether speech production involves a brain

part different from that used for language processing. This reve-

lation can impact investigations such as those by another

meeting attendee, Liping Wang of Institute of Neuroscience in

Shanghai, on how human and monkeys process and represent

language syntax.

To use ML methods well, researchers need to be properly

trained, and this training is not as simple as the training needed

to use a microscope. This calls for reforms in higher education.

Some would say that it is becoming imperative for students in

life science disciplines to acquire the sort of mathematics and

computer science skills that are currently expected from physics

and engineering students.

How to replicate the admirable pace of the development of

modern AI in brain science also prompted much discussion.

The importance of asking the right questions, formulating them

properly, and communicating the ideas and findings clearly

was noted. AI has certainly benefited hugely from concrete

benchmarks, in particular public datasets on which performance

of different AI solutions can be rigorously quantified and

compared. Benchmarking, no doubt, has its drawbacks, as

nicely reflected in Goodhart’s law: ‘‘when a measure becomes

a target, it ceases to be a good measure.’’ Still, the very process
by which this becomes true has repeatedly led to substantial and

beneficial innovation in engineering and in AI in particular.

In engineering disciplines, the value of an invention, such as an

AI solution, is its utility or performance (such as in benchmarks).

In science, the value of a theory is only available and authentic

through the agreement between the precise theoretical predic-

tions and experimental data, and this value then resides in the

theoretical insights and understanding that enable the predic-

tions that otherwise cannot be easily extrapolated from pre-

existing knowledge. The discussion thus turned to more general

concerns. Brain scientists admonished themselves to adhere to

the scientific value, so as to expect scientific theses to be clearly

presented, in particular to provide precise and experimentally

falsifiable theoretical predictions. In particular, the community

can benefit from self-criticism in the style of the 20th century

physicist Wolfgang Pauli, who reserved his most severe disap-

proval for ideas and claims that were ‘‘not even wrong’’ (Peierls,

1960) because they were so obscurely presented that they could

not be evaluated or tested and thus did not belong within the

realm of science. Both education and leadership should greatly

help to nurture such a community culture in brain science.
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