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Abstract

From a computational theory of V1, we formulate an optimization problem to investigate neural

properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search.

The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is

represented by the highest V1 response to it relative to the background responses. The neural

properties probed are those associated with the less known V1 neurons tuned simultaneously or

conjunctively in two feature dimensions. The visual search is to find a target bar unique in color

(C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g.,

CO, MO, or CM) among uniform background bars. A feature singleton target is salient because

its evoked V1 response largely escapes the iso-feature suppression on responses to the background

bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for

a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for

the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the

following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned

conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature

dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more

active than the single feature tuned cells in response to the redundant feature targets, and this

occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than

either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an

MO target.
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Introduction

Background on visual attention, saliency, and their neural substrates

Spatial visual selection, often called spatial attentional selection, enables vision to select a visual

location for detailed processing using limited cognitive resources(1). It can be generated by goal-

dependent (or top-down) mechanisms, such as when we direct our gaze to a book while reading, or

by goal-independent (or bottom-up) mechanisms such as when we are distracted from reading by a

sudden appearance of something in visual periphery. In this paper, an input is said to be salient

when it strongly attracts attention by bottom-up mechanisms, and the degree of this attraction is

defined as saliency. Saliency of a visual location is often measured by the speed of a visual search

to find a target at this location(2), or by its attentional (exogenous) cueing effect (i.e., the degree

it speeds up and/or improves visual discrimination of a probe presented immediately after the brief

appearance of the salient cue)(3; 4).

It has been proposed that the primary visual cortex (V1) is responsible for computing saliency(5;

6). Although this V1 saliency hypothesis is a significant departure from traditional psychological

theories(2; 7; 8; 1), in which the neural substrates are not their main concern, it has received

substantial support(9; 10; 11; 12; 13; 14; 15). In particular, behavioral data confirmed an unexpected

prediction that an eye of origin singleton (e.g., an item uniquely shown to the left eye among other

items shown to the right eye) that is hardly distinctive from other visual inputs can attract attention

and gaze qualitatively just like a salient and highly distinctive orientation singleton does — in fact

observations(13; 15) show that the eye of origin singleton can be more salient than an orientation

singleton. This finding provides a hallmark of the saliency map in V1, because the eye of origin

feature is not explicitly represented in any visual cortical area except V1. Functional magnetic

resonance imaging and event related potential measurements also confirmed that, when top-down

confounds are avoided, a salient location evokes brain activations in V1 but not in the parietal and

frontal regions(14), which are thought to be involved in saliency by traditional views(1).

In another study, Koene and Zhaoping(10) measured RTs for finding a target bar unique in color

(C), orientation (O), motion direction (M), or redundantly in two of these features (CO, MO, or

CM) among background bars which are identical to each other in all features (see Fig. 1). If the RT

for a redundant target (e.g., a CO target) is the shorter one of the two RTs for the corresponding

single feature targets (e.g., the C and O targets), the RT for the redundant target is said to be the

outcome of a race model between the two other RTs (as if to take the RT of the winner in a race

between two racers)(16; 17; 18; 19). Since RTs are stochastic, the RT from a race model is also said

to be the result of a statistical facilitation between the RTs of the individual racers. If the RT for

a redundant target is shorter than predicted from the statistical facilitation, there is a redundancy

gain(20). According to the V1 saliency hypothesis, the presence or absence of the redundancy gain

in behavior should reflect the presence or absence, respectively, of V1 neurons tuned simultaneously

to the two visual features distinguishing the redundant target. We call such cells conjunctively

tuned CO, MO, or CM cells, each denoted by the feature dimensions in which they are tuned.
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Figure 1: A schematic example of the search stimulus by Koene and Zhaoping(10). Data in their
behavioral study are used for the current study. Observers searched for a bar unique in color (C),
orientation (O), or motion direction (M), or a combination of these features. In this illustration,
the target is a double feature CO target, unique in both color and orientation. See Method or the
original paper(10) for the actual stimulus details.

Koene and Zhaoping(10) found this redundancy gain for the CO and MO targets but not the CM

target, supporting the V1 saliency hypothesis since V1 has CO and MO cells(21; 22; 23), but no

CM cells(24).

The finding by Koene and Zhaoping(10) also implies that the extrastriate cortices are unnecessary

for the bottom-up saliency of their singleton targets. This is because extrastriate cortices do have

the CM conjunctive cells(25; 26), which would have led to a redundancy gain in the CM targets.

The implication is consistent with another behavioral observation involving depth cues, which are

believed to be processed in extrastriate but not V1(27; 28; 29; 30; 31; 32). It was found that depth

cue did not speed up attentional guidance to a target location unless this location was not salient

enough to be reported by observers within an RT of one second(33), which is about twice as long as

typical RTs to report a feature singleton in Koene and Zhaoping’s study. Longer RT events are likely

to involve top-down and object/surface recognition processes beyond the bottom-up saliency process

(which dominates only in short RT events(34)), and involve extensive neural connections between

V1 and extrastriate cortices(35; 36; 37). In addition, the findings by Koene and Zhaoping(10) and

others(11) are consistent with the feature combination rule to compute saliency according to the

V1 saliency hypothesis. According to this rule, saliency at a location is determined by the highest

V1 neural response to that location, without combining responses from multiple neurons responding

simultaneously to different input features at the same location. In contrast, the feature combination

rules by the traditional saliency models (reviewed by Itti and Koch(1)) compute the saliency value

at a location by summing responses to this location from various basic feature maps. Apparently,

V1 does not perform any summation across feature dimensions. Hence, higher cortical areas have

to be involved if feature summation is to occur for computing a saliency map.
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Figure 2: The schematic of our method to probe V1 properties through behavior. Visual inputs drive
V1 responses. Meanwhile, the V1 responses determine the behavioral RTs in visual search tasks,
according to the hypothesis that the V1 responses represent saliencies of input locations. Therefore,
one may probe V1 properties through the relationship between the RTs and V1 responses. In
particular, a shorter RT arises from a higher V1 response to the search target relative to those to
the background items. Therefore, from the RT data, one can infer relative response levels of the V1
neurons, thereby probing the feature tuning of the V1 neurons and interactions between the neurons.

The goal and the plan for the current study

Whereas the previous studies used known facts about V1 physiology to test, and confirm, the V1

saliency hypothesis, the current study aims to probe the unknown or less known V1 properties

assuming that the V1 saliency hypothesis holds (Fig. 2). In particular, Koene and Zhaoping(10)

confirmed that the V1 saliency hypothesis is supported by the known facts that V1 contains CO

and MO cells but no CM cells. Meanwhile, many physiological properties associated with these

conjunctive neurons are less known, or have not been systematically studied. In particular, one

would like to ask the following questions. How responsive these conjunctive neurons are compared

to the other neurons? How do the intra-cortical interactions between these neurons vary with the

feature preferences of the interacting neurons? The current study uses the V1 saliency hypothesis

to investigate these less known properties from the behavioral RT data collected by Koene and

Zhaoping(10). To do so, we formulate a computational approach based on the V1 saliency hypothesis

to solve for aspects of the V1 neural properties from the behavioral RT.

For this study, the theoretical basis is the V1 saliency hypothesis. The hypothesis states that the

saliency of a visual location is represented by the highest V1 response to this location relative to the

background responses(5; 6). This is regardless of whether this response is from a neuron tuned to

orientation (O), color (C), motion (M) direction(38; 39), or other features, or conjunctively to two

feature dimensions (e.g. CO or MO)(38; 39; 21; 22; 23). In particular, according to this hypothesis,

the most salient location in a scene is the receptive field (RF) of the most activated V1 neuron

responding to this scene, regardless of the preferred feature(s) of this neuron. A feature singleton,
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such as the search target in Koene and Zhaoping(10) (see Fig. 1), can evoke the highest response

to the scene because of a neural property called iso-feature suppression(40). Iso-feature suppression

means that V1 neurons tuned to the same or similar features tend to suppress each other’s responses

via intra-cortical neural connections when their RFs are close to each other(41; 42; 43). For example,

a unique vertical bar is very salient in a background of horizontal bars, since different neurons (pre-

ferring horizontal orientation) responding to different and neighboring horizontal bars suppress each

other by iso-orientation suppression(42), while the neuron (preferring vertical orientation) respond-

ing to the unique vertical bar escapes such suppression. Iso-color(44) and iso-motion-direction(45)

suppressions are other known examples of iso-feature suppression. To make the highest response

to the feature singleton target sufficiently higher than those to the background bars, the following

two conditions are required. First, the intra-cortical interactions are sufficiently feature specific such

that iso-feature suppression is only substantial between two neurons whose preferred feature(s) are

sufficiently similar. (In principle, it should also work if the iso-feature suppression is much stronger

when the two neurons prefer sufficiently similar feature(s) than otherwise.) Second, the input feature

preference of the neurons should sufficiently differentiate the target and background features. We

call these two elements feature tuning of intra-cortical interactions and feature tuning of individual

neurons respectively. Sometimes, feature tuning of individual neurons is also referred to as feature

tuning of input preferences.

Usually the feature singleton search target in Koene and Zhaoping(10) evokes responses from

many cells tuned to different features. Some of these cells are tuned to color (C), orientation (O), or

motion direction (M), and some are tuned to conjunctions (e.g., CO, MO) of them. We call a neuron

a C, O, or M neuron if it is tuned in a single corresponding feature dimension, and a CO, MO, or CM

neuron if it is tuned conjunctively in the two corresponding feature dimensions. According to the

V1 saliency hypothesis, the highest response among the responses (to the target) from all neurons

determines the saliency of the target. This saliency in turn determines the RT to find the target.

For example, for a color singleton, a C cell’s response is expected or assumed (see Discussion) as

most likely to dictate its saliency. Meanwhile, for a CO singleton target in Fig. 1, the dictating

response could come from a C, O, or a CO cell, depending on the feature tunings of these cells and

of the intra-cortical interactions. We will show that some aspects of these neural properties can be

revealed from the RT data through the solution of an optimization problem formulated from the V1

saliency hypothesis.

Previous works(5; 40; 46; 6; 47) have introduced a V1 model to simulate and analyze the intra-

cortical mechanisms in order to understand the neural mechanisms behind the V1 saliency hy-

pothesis. We like to point out that the current work probes the V1 neural properties using the

V1 saliency hypothesis, the theory, rather than this V1 model. The theory presents a hypothesis

about the functional role of the V1 responses, and states that the intra-cortical mechanisms serve

to highlight V1 responses to conspicuous locations where input statistics deviates from translation

invariance(5; 40; 6). In contrast, by simulating the mechanisms in V1 that give rise to these re-

sponses, the model tests whether it is feasible that V1 responses might play the hypothesized role.
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For simplicity, this V1 model, or model V1, has so far included only model neurons tuned to orienta-

tion, except in two examples in which model neurons tuned to color or color-orientation conjunctions

are also included(6; 9). However, the theoretical hypothesis is general regarding input feature di-

mensions and neural mechanisms as it refers to the real, physiological, V1, rather than the simplistic

and inaccurate model V1. Indeed, various behavioral tests of the hypothesis have included both

the modeled and not modeled feature dimensions: orientation, color, motion direction, and ocular

origin(9; 10; 11; 12; 13; 14), since the model V1 is unnecessary when the physiological V1 in human

observers are available for these behavioral experiments. Similarly, our formulation, method, and

results in the current study depend only on the V1 saliency hypothesis and the general knowledge

about the physiological V1, and not on the model.

Our predicted V1 properties from applying the V1 saliency hypothesis to the behavioral data can

serve two purposes. First, they can motivate physiological experiments to test the predictions, thus

providing further test of the V1 saliency hypothesis. Second, they enable the use of a computational

theory as a tool to investigate physiological properties from behavioral data without physiological

experiments. We will discuss the implication of our findings in the Discussion.

Method

Behavioral data

The RT data are collected by Koene and Zhaoping(10), which contained all experimental details.

In that study, verbal consents from all participants were obtained, as documented by the subject

information in the data. The study and the consent procedure were approved by the ethics committee

in University College London. Briefly, the search display contained an array of 30×22 colored, tilted,

and moving bars. Observers were instructed to find the target bar as soon as possible, and their

RTs to find it were measured. There were only two possible iso-luminant colors (green or purple of

the same saturation), orientations (left or right tilted from vertical by the same angle), and motion

directions (moving to the left or right at the same speed) for all stimulus bars in any search trial.

All non-target bars were identical to each other in color, orientation, and motion direction (see

Fig. 1), and the target differed from the non-target bars in color, orientation, motion direction,

or redundantly in more than one feature dimension. In each search trial, the choices of the target

and non-target features were random, and the choice of feature dimension(s) in which the target

differed from the non-target was also random. Hence, the possible target conditions included C, O,

M, CO, MO, and CM, each defined by the feature dimensions in which the target feature was unique.

Each bar was about 1 degree long and 0.2 degree wide. The positions of the bars were randomly

jittered from their regular grid locations, such that the horizontal distance between neighboring

bars ranged between 1.2 to 3.3 degree and the vertical distance between them ranged between 1.1

to 2.0 degrees. The data considered in this study are from the search trials in which the target

bar was at a random location roughly 12.8 degrees from the display center, and at least 11 degrees

horizontally. The observers were instructed to press a left or right button as soon as possible for a
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target (present in each trial) in the left or right half of the stimulus array, respectively. For a given

target condition and a given subject, the mean and standard deviation of the RTs for the correctly

performed trials were obtained, and RT outliers are defined as those shorter than 0.2 second or longer

than 3 standard deviations from the mean. RTs included for this study exclude the RT outliers and

those in trials with an incorrect button press. When the target was unique in color, orientation, or

motion direction only, it is called a single feature target; when a target was unique in two features, it

is called a double or redundant feature target. For each subject, the orientation and color difference

between the target and non-targets, and the motion speed, were roughly pre-adjusted, such that the

subject had a mean RT of about 600 ms for each single feature target type. Typically, the average

RTs for the double feature targets were around 500 ms as a consequence. Each subject did about

320 search trials for each target type. The percentage of trials excluded in our data analysis, due

to button press errors or to the RT being an outlier, is no more than 9.2% (about 5% in average)

for each subject in each condition. There were eight subjects, including the authors, Koene and

Zhaoping, and six naive subjects.

Extracting properties of the conjunctive cells from behavioral data

For simplicity, we will often narrate as if there is only one cell of each cell type responding to

each visual location (or bar) in a search stimulus. This one cell should be understood as the most

activated cell of the given cell type. This is because, as far as saliency is concerned, the less activated

cells by inputs at a given visual location are irrelevant according to the V1 saliency hypothesis. For

the same reason, we often omit an entire cell type when considering neurons and their responses

to a visual location, as long as the omitted cells are not the most responsive. For example, to a

color singleton target among non-target bars, which have the same orientation as the target bar, the

dominating responses are most likely from the C cells rather than the O cells, which are suppressed

by iso-orientation suppression. In such a case, the analysis will often omit mentioning the O cells at

all.

Linking V1 responses with search RT

Due to iso-feature suppression, the most activated V1 neuron to the search stimuli is most likely the

ones responding to the target. For example, a C neuron preferring green will respond most vigorously

to a green singleton target among purple distractors. Meanwhile, the population responses to non-

targets should be approximately those evoked by a stimulus identical to the search stimulus except

for replacing the target by a non-target bar. The level of this population response pattern should

be independent of whether this uniform group of bars are green or purple (of the same luminance

and saturation), left or right tilted (by the same angle from vertical), and moving to the left or right

(at the same speed). Therefore, we make the approximation to view the level of the population

responses to the non-targets as independent of the target conditions. Consequently, within the class

of the search stimuli in our analysis, the target’s saliency is a monotonic function of the highest
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Figure 3: A schematic of the relationship between V1 responses and search RTs. In this example,
a CO target activates three types of V1 neurons, tuned to C, O, and CO respectively. Their
responses, rC, rO, and rCO , are influenced by intra-cortical mechanisms in V1. Their maximum
rmax = max(rC, rO, rCO) determines the target’s saliency. Thus the behavioral RT is a function
of rmax (with distractor responses normalized to 1), through a monotonically decreasing mapping
RT (rmax) determined by the brain mechanisms for saliency read-out and ocular-motor functions.
Equivalently, the behavioral RT is min(RTC, RTO, RTCO), as the result of a race between the racers
C, O, and CO, whose RTs are, respectively, RTC = RT (rC), RTO = RT (rO), and RTCO = RT (rCO).

response r evoked by the target. Since a more salient target leads to a shorter RT by definition,

a higher response r maps monotonically to a shorter RT by a mapping RT (r), which depends on

the mechanisms of saliency read-out and ocular-motor functions. For example, let rC be the highest

response from the C cells to the color singleton target. Given an observed RT (rC) to find the

target, one can infer the unobserved neural response rC if the mapping RT (r) is known. Stochastic

nature of the neural system gives a distribution of RT (rC) from many search trials, arising from a

corresponding distribution of rC’s.

Obtaining properties of conjunctive cells from the RTs using a race model

Throughout the rest of the Method section, we often use a CO target as an example to derive and

illustrate how to probe neural properties, e.g., the relative levels of neural responses rCO, associated

with conjunctively tuned cells. The methods and arguments apply analogously to the cases of other

double feature targets and neurons.
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The saliency for a CO target is not necessarily dictated by rCO, the response from a CO cell,

but by the maximum of rC, rO, and rCO, the responses from the C, O, and CO cells, respectively.

In other words, the RT for the target is RTtarget = RT (max(rC, rO, rCO)), where max(...) denotes

the maximum of the arguments. This method to obtain the RT for a double feature target is called

a race model(16; 17; 18; 19; 20), which intuitively assigns as the RT for the target the winning RT

in a race between three racers whose respective RTs are RT (rC), RT (rO), and RT (rCO) (Fig. 3,

4). For notational convenience, RT (rC), RT (rO), and RT (rCO) are also denoted as RTC, RTO, and

RTCO, respectively. Therefore (Fig. 3),

RTC = RT (rC) (1)

RTO = RT (rO) (2)

RTCO = RT (rCO) (3)

RTtarget = RT (max(rC, rO, rCO))

= min(RTC, RTO, RTCO),
(4)

where min(...) denotes the minimum of the arguments.

The neural activities rC (or rO) are assumed to follow the same probability distribution whether

the target is a single feature C (or O) target or a double feature CO target. Hence, the probability

distributions of RTC, RTO, and RTtarget are sampled by behavioral RT data from C, O, and CO

target trials respectively. Additionally, rC, rO, and rCO are assumed to be randomly and inde-

pendently drawn from their respective distributions. Consequently, RTC RTO and RTCO are also

randomly and independently drawn from their respective distributions. Meanwhile, RTCO, which

cannot be measured behaviorally, can be inferred from other behavioral data. For example, if a

RTtarget sample is shorter than all samples of RTC and RTO, it is likely to represent an underlying

RTCO sample according to equation (4). More generally, even when a RTtarget is not shorter than

all samples of RTC and RTO, it is still possible to represent a RTCO sample if its occurrence is more

likely than expected from random races between only two racers with RTC and RTO respectively.

More formally, an optimization method (see a later section on technical details) can be used to

infer the underlying distributions of RTC RTO and RTCO from the behavioral RT samples. Since

a monotonic function relates r and RT, relative activity levels among rC, rO, and rCO can then be

inferred from the relative values among RTC RTO and RTCO, even though the exact form of the

mapping from r to RT (r) is not known and is subject dependent.

Obtain the impacts or contributions of different cells in visual search

The contribution of a neuron to the saliency of a double feature target can be obtained even if the

neural activities are not absolutely known. For a CO target, for example, the contribution of the CO

cells to the target’s saliency is defined as the probability that the CO cell gives the highest evoked
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Figure 4: Deriving contributions by various V1 neurons to a double feature target’s saliency from the
RT. This is illustrated by the example of a CO double feature target. The stochastic V1 responses
rC, rO, and rCO lead to stochastic RTC = RT (rC), RTO = RT (rO), and RTCO = RT (rCO),
with probability distributions pC(RTC), pO(RTO), and pCO(RTCO) respectively. The C, O, or
CO cell is the winner of the race with probability ΓC, ΓO, and ΓCO respectively, giving target
RTtarget = min(RTC, RTO, RTCO). Samples from the probability distributions pC(RTC), pO(RTO),
and ptarget(RTtarget) are measured as the behavioral RT data for targets C, O, and CO, respectively.
From these data, the underlying probability distributions pCO(RTC), pCO(RTO), and pCO(RTCO)
can be inferred by an optimization procedure, and the three contributions ΓC, ΓO, and ΓCO can
then be calculated.
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response (or, equivalently, wins the race among the three racers), i.e.,

ΓCO ≡ Probability(rCO > rC, rO)

= Probability(RTCO < RTC, RTO).
(5)

Similarly, the contributions from the C and O cells are, respectively,

ΓC ≡ Probability(RTC < RTO, RTCO), and (6)

ΓO ≡ Probability(RTO < RTC, RTCO). (7)

In our data analysis, probability distributions of the RTs are described by probabilities of the

RTs in discrete time bins. Due to the finite sizes of these time bins, there is a non-zero probability

that more than one racer jointly win a race (by being in the same bin), giving ΓC + ΓO + ΓCO < 1.

However, this does not change our qualitative conclusions.

One can easily imagine that if the mean RTCO is substantially longer than those of RTC and

RTO, the contribution ΓCO by the conjunctive CO cell will be likely close to zero. In contrast, if

contribution ΓCO ≈ ΓC, ΓO, the responses by the conjunctive cells are comparable to those by the

single feature tuned neurons.

Assessing the significance of the roles of the conjunctive cells

By definition, the ΓCO will never be negative. Meanwhile, the finite numbers of behavioral samples

in our data imply that our sampled probabilities pC(RTC), pO(RTO), and ptarget(RTtarget) are noisy

versions of the actual probabilities. Consequently, a positive contribution ΓCO is likely obtained even

if RTtarget were sampled from the race between RTC and RTO only. We define Γchance as the chance

level ΓCO value obtained by replacing the RTtarget data by as many trials (as the number of the

CO target trials) of this simulated race winner min(RTC, RTO) between the two racers using Monte

Carlo method(10). We obtained 1000 evaluations of Γchance, each from a random set of sampled RTs

of the race winner. ΓCO is said to be significant if it is larger than 95% of these Γchance values, i.e.,

p < 0.05.

The verification of consistency and validity of our method

To verify the consistency of our method, we checked after optimization whether RTrace3 ≡ min(RTC, RTO, RTCO),

the race winner among the three racers C, O, and CO, has the same distribution as that of our be-

havioral RTtarget for the CO target. A large difference between these two distributions indicates a

poor performance of our optimization method, and consequently, unreliable results and conclusions

from the method. This consistency can be quantified by ∆ (defined as ∆ ≡ D/H , where D is the

K-L divergence between ptarget(RTtarget) and prace3(RTrace3), H is the entropy of ptarget(RTtarget),

and both RT distributions are discretized by the same time bins for the calculation), such that a

∆ ≪ 1 indicates a good agreement between the two distributions. Fig. 5 shows the best and worst

consistency cases. For all subjects and double feature target conditions, ∆ < 0.01, and typically
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Figure 5: Visualization of the consistency of our method. Shown are the best and the worst consis-
tencies in using our optimization method to probe the double feature tuned cells, among all subjects
and all double feature target conditions. A better consistency means a better match between the
two curves ptarget(RTtarget) and prace3(RTrace3). Here, ptarget(RTtarget) is the distribution of the
behavioral RT data for a double feature target. Meanwhile, prace3(RTrace3) is the corresponding
distribution of the winning RT from a race between the three RT racers (e.g., see Fig. 4) whose
probability distributions are inferred from the behavioral RT data by our optimization method. In
most cases (not shown here), the two curves are not visually distinguishable, similar to that in the
plot for the best case.

the curves of ptarget(RTtarget) and prace3(RTrace3) are not visually distinguishable. An analogous

∆ value can also be calculated for the probability distributions for any given single feature target,

when ptarget(RTtarget) and prace3(RTrace3), respectively, are replaced by the measured and inferred

(by the optimization) probability distributions of a given singleton target. For all subjects and all

single feature targets, such ∆ values are all smaller than 0.005. Hence, our optimization method is

highly reliable and gives consistent results.

Meanwhile, our calculated contributions Γ by the various feature tuned cells depend on the

number and the placement of the time bins to discretize the RT data. Smaller bins give fewer RT

samples in each bin, making the sampled distributions noisier and Γchance larger. Larger bins give

coarser distributions, making it more difficult to distinguish the race winner, since joint winners in

a race are more likely. Given the number N of the bins, we place the bins such that each of the

first N − 1 bins contains roughly the same total number of RT samples from all target types, while

the last bin is the reserve for possible long RTs (from the double feature cells) which never wins the

race. Given our RT data, when N is between 7-13, such that the probability that the race is won by

joint winners is on average between 10-20%, our results do not qualitatively depend on the number

N of the bins. This paper shows the results for when N = 8.
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Technical details in the methods

Optimization method to calculate RT distributions generated by the responses of var-

ious types of neurons

For each subject and each target type, the RTs in the N time bins are described by a vector

n = (n1, n2, . . . , nN ), with ni = the number of RT samples in the ith time bin with ti−1 ≤ RT < ti.

Let nC, nM, nO, nCM-target, nCO-target, and nMO-target denote these vectors for targets C, M, O, CM-

target, CO-target, and MO-target respectively for a given subject. Let the probability distributions

pC, pM, pO, pCM, pCO, and pMO denote the probability of RTC, RTM, RTO, RTCM, RTCO and

RTMO respectively in these same time bins. Their likelihood given nC, nM, nO, nCM-target, nCO-target,

and nMO-target is

L(pC,pM,pO,pCM,pCO,pMO) ∝

N∏

a

pCa
nCa ·

N∏

b

pMb
nMb ·

N∏

c

pOc
nOc ·

N∏

d

pCM-race3d
nCM-targetd ·

N∏

e

pCO-race3e
nCO-targete ·

N∏

f

pMO-race3f
nMO-targetf (8)

In the above equation, nXi and pXi denote the ith element in the vector nX and pX respectively, for

X = C, M, O, CM-target, CO-target, MO-target, CM-race3, CO-race3, or MO-race3. Meanwhile,

pCM-race3 is the probability distribution of the RTs as the result of a race between three racers whose

RTs follow probability distributions pC, pM, and pCM respectively, i.e.,

pCM-race3i =pCi(
N∑

j=i+1

pMj)(
N∑

k=i+1

pCMk) + pMi(
N∑

j=i+1

pCj)(
N∑

k=i+1

pCMk)

+pCMi(

N∑

j=i+1

pCj)(

N∑

k=i+1

pMk) + pCipMi(

N∑

j=i+1

pCMj)

+pCipCMi(
N∑

j=i+1

pMj) + pMipCMi(
N∑

j=i+1

pCj) + pCipMipCMi

(9)

Similarly, the components of pCO-race3 and pMO-race3 are

pCO-race3i =pCi(

N∑

j=i+1

pOj)(

N∑

k=i+1

pCOk) + pOi(

N∑

j=i+1

pCj)(

N∑

k=i+1

pCOk)

+pCOi(

N∑

j=i+1

pCj)(

N∑

k=i+1

pOk) + pCipOi(

N∑

j=i+1

pCOj)

+pCipCOi(
N∑

j=i+1

pOj) + pOipCOi(
N∑

j=i+1

pCj) + pCipOipCOi

(10)
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pMO-race3i =pMi(

N∑

j=i+1

pOj)(

N∑

k=i+1

pMOk) + pOi(

N∑

j=i+1

pMj)(

N∑

k=i+1

pMOk)

+pMOi(
N∑

j=i+1

pMj)(
N∑

k=i+1

pOk) + pMipOi(
N∑

j=i+1

pMOj)

+pMipMOi(

N∑

j=i+1

pOj) + pOipMOi(

N∑

j=i+1

pMj) + pMipOipMOi

(11)

We obtain the most likely pC, pM, pO, pCM, pCO, and pMO by minimizing the negative log likeli-

hood − lnL(pC,pM,pO,pCM,pCO,pMO). For this optimization, we use the “fmincon” function in

MATLAB, imposing the constraint that each of pC, pM, pO, pCM, pCO, and pMO has non-negative

components and is normalized, e.g.,
∑N

i=1 pCi = 1.

Quantifying the consistency of our optimization method

To quantify the consistency of our optimization method, we first obtain an unbiased estimation of

pCO-target of the RTCO-target as

pCO-targeti
=

nCO-targeti∑N

j=1 nCO-targetj

. (12)

The difference between pCO-race3 (as in equation (10) above) and pCO-target can be measured by

Kullback-Leibler divergence

D =

N∑

i=1

pCO-targeti
ln

pCO-targeti

pCO-race3i

. (13)

The quality of the consistency of our optimization is quantified by ∆ = D/H , where H is the entropy

of pCO-target

H = −

N∑

i=1

pCO-targeti
ln pCO-targeti

. (14)

Calculating the contributions by various cell types to the saliency of double feature

targets

For example, for the CO target, the contributions ΓC, ΓO, and ΓCO are respectively

ΓC =

N∑

i=1

pCi(

N∑

j=i+1

pOj)(

N∑

k=i+1

pCOk), (15)

ΓO =

N∑

i=1

pOi(

N∑

j=i+1

pCj)(

N∑

k=i+1

pCOk), (16)

ΓCO =

N∑

i=1

pCOi(

N∑

j=i+1

pCj)(

N∑

k=i+1

pOk). (17)
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The contributions in the case of other double feature targets are obtained analogously.

The policy of placing the time bins

Let RTmin and RTmax be, respectively, the minimum and maximum RTs of a subject regardless

of target types. Let ti−1 < ti be the boundaries of the ith time bin containing RTs satisfying

ti−1 ≤ RT < ti. Given the number N of time bins, the boundaries t0 < t1 < ... < tN are chosen

such that t0 = RTmin − 0.0001 second, tN−1 = RTmax + 0.0001 second, tN = ∞, and, if i < N ,

nCi +nMi +nOi +nCM-targeti
+nCO-targeti

+nMO-targeti
≈ constant which does not depend on i. The

last time bin bounded by tN−1 < tN = ∞ serves as a reservoir for the possibility of the long RTCM,

RTCO, and RTMO which never win the races and thus could not be manifested in (or determined

by) the behavioral RT data.

Results

For the CO target, Fig. 6A shows the probabilities of RTC, RTO, RTtarget from the behavioral data

and that of the inferred RTCO by the optimization for a typical subject. As expected for the RTs of

the race winner, the RTtarget is generally smaller than all the other RTs (of the individual racers).

Fig. 6B shows that, for this subject, the saliency of the CO target is determined most likely by the

V1 neuron tuned to the O feature, with ΓO = 0.42, and least likely by the neuron tuned to the CO

feature, with ΓCO = 0.13. However, ΓCO is significantly larger than Γchance which is typically around

0.05 for all subjects and double feature target conditions. Hence, for this subject, the CO neuron is

so responsive to the CO target that it has a substantial probability of ΓCO = 0.13 to respond more

vigorously than the single feature tuned C and O cells to the CO target.

In Fig. 6A, the distribution of the inferred RTCO is multi-modal, unlike typical RT distributions.

This does not mean that our optimization is faulty, as it is caused by the following. First, the

race model is better at determining the shorter RTCOs which are more likely to win the race to

be manifested as RTtarget. The longer RTCOs are under-determined and are largely determined by

the probability normalization constraint. Meanwhile, these longer RTCOs matter little to ΓCO since

they do not win the race. In fact, Fig. 6A omitted the last time bin, which contains no behavioral

RT samples for any target types but absorbs the longer RTCOs which never even jointly win the

race. Second, our RT data do not allow us to determine how likely it is that the CO cell is the

most activated neuron by the C or O target to dictate RTC or RTO, respectively. We have thus for

simplicity assumed that the CO cells never dictate RTC or RTO for the C or O targets respectively.

If, however, CO cells do dictate RTC and RTO occasionally, the RTs by the C and O neural racers

should be longer than those shown in Fig. 6A, and, consequently, some more trials of RTtarget should

be attributed to RTCO to make pCO(RTCO) resemble typical RT distributions. The analysis above

implies that our inferred ΓCO is in fact the additional contribution by the CO neurons beyond their

hidden contribution which has been attributed to the C and O cells for simplicity (see Discussion
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A: Probabilities in the case of a CO target B: Contributions by various neurons
to the saliency of the CO target

Figure 6: The results for the CO target from a typical subject. A: probability densities for RTC,
RTO, RTCO, and RTtarget. Each density function is plotted as piece-wise lines linking discrete
points, with the ith point at RT = (ti + ti−1)/2 horizontally and pi/(ti − ti−1) vertically, where pi

is the probability that the corresponding RT is in the ith time bin (ti−1 ≤ RT < ti). All curves
start at p0 = 0 at t0. For RTC, RTO, and RTtarget, the probability pi = ni/(

∑
j nj), where ni

is the number of RT samples in the ith time bin for the corresponding target. For RTCO, pi is
from the outcome of the optimization. The error bars are generated as follows. For each target
type, let RT1 < RT2 < ...RTa < ... < RTM be all the behavioral RT samples included, and let
the cumulative RT distribution cdf(RT ) for this target be approximated by a function which has
piece-wise interpolations between discrete functional values cdf(RT = RTa) = (a− 0.5)/M and has
cdf(RT < RT1) = 0 and cdf(RT > RTM ) = 1. Randomly generate M simulated RT samples using
this cdf(RT ). Using these simulated RT samples (as if they were the original RT data) for all target
types, we obtain another measurement of the probability densities for all target types and, via our
optimization method, all neuron types. Repeat such measurements 500 times. Each error bar has its
lower and higher values at the 16th and 84th percentiles, respectively, of the corresponding density
measurements. B: Contributions ΓC, ΓO, and ΓCO of the C, O, and CO neurons, respectively, to
the saliency of the CO double feature target for this subject. Each contribution is the probability
that the corresponding neuron dictates the saliency of the CO target (by giving the highest response
among responses from all three types of neurons to the CO target). In obtaining their values,
probabilities of RTC and RTO from optimization outcomes, rather than behavioral data, were used.
The ‘*’ on top of ΓCO indicates that ΓCO is significantly different from Γchance whose mean value is
marked by the magenta line.
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for more details). Third, the probabilities inferred from finite numbers of RT samples are noisy,

contributing to the irregularity in the inferred RTCO distribution.

Fig. 7 shows the contributions by various feature tuned neurons to the saliencies of different

double feature targets for all subjects. Fig. 7A shows that, among 8 subjects, 5, 7, and 2 subjects

have their conjunctive cells contributing significantly to the corresponding double feature targets

CO, MO, and CM respectively. A t-test is used to see whether the subject-averaged contribution by

any double feature neuron is significantly larger than the subject averaged chance level Γchance. The

answer is affirmative except for the CM cells, confirming the conclusion by Koene and Zhaoping(10)

that the behavioral RTs for a double feature CO target or MO target, but not the CM target, is

significantly shorter than predicted from a race between the RTs for the two corresponding single

feature targets. In addition, the current results reveal quantitatively the impacts of the double

feature tuned neurons to the saliencies of the double feature targets, and compare them with the

impacts of the single feature tuned neurons. Averaged across subjects, ΓMO is not significantly

different from ΓM and ΓO, but ΓCO is significantly lower than ΓO and marginally lower than ΓC.

Hence, the MO cells have a larger impact than the CO cells on the saliency of their corresponding

double feature target. In particular, the chance ΓMO for the MO cell to be the highest responding

neuron to dictate the saliency of a MO double feature target is no less than that (ΓM or ΓO) for

either of the single feature tuned M and O cells. Meanwhile, the chance ΓCO for the CO cell to be

the highest responding neuron to dictate the saliency of a CO double feature target is substantial,

but is only about half of that (ΓC or ΓO) for either of the single feature tuned C and O cells. These

results will be used to infer the less known properties of the double feature cells in Discussion.

Note that the relative contributions ΓC, ΓM, and ΓO in our results cannot be generally interpreted

as relative significance of the roles played by the corresponding single feature tuned cells. For

example, if a much smaller orientation contrast between a target and non-targets were employed in

our stimuli for O, CO, and MO targets (note that the same orientation contrast was used in these

targets by our experimental design), then the saliency of the CO target would be due more to its

unique color rather than its unique orientation, and, similarly, the saliency of the MO target would

be due more to its unique motion direction rather than its unique orientation. Consequently, the

ratio ΓO/ΓC for the CO target and the ratio ΓO/ΓM for the MO target will be reduced. Nevertheless,

our conclusions regarding the contributions by the conjunctive cells relative to those by the single

feature tuned cells should not be as sensitive to the exact feature contrasts in the stimuli, since the

conjunctive cells have to be more active than both of the corresponding single feature cells to make

an impact.

Discussion

Summary of the results and their predictions on V1 physiology

Using RTs in visual search for feature singletons to assess the saliencies of the search targets, and

using the V1 saliency hypothesis, this study probes the properties of the less-known V1 cells tuned

17



C M CM

0.2

0.4

0.6

0.8
CM target

C
on

tr
ib

ut
io

n 
Γ

CM targetCM targetCM targetCM targetCM targetCM targetCM target

C O CO

0.2

0.4

0.6

0.8
CO target

C
on

tr
ib

ut
io

n 
Γ

A: Results for individual subjects, marked by different colors

CO targetCO targetCO targetCO targetCO targetCO targetCO target

M O MO

0.2

0.4

0.6

0.8
MO target

C
on

tr
ib

ut
io

n 
Γ

MO targetMO targetMO targetMO targetMO targetMO targetMO target

C M CM

0.2

0.4

0.6

0.8

C O CO

0.2

0.4

0.6

0.8

n.s. p=0.06

B: Averages across subjects

M O MO

0.2

0.4

0.6

0.8

n.s.
n.s.

Neurons by their feature selectivities

Contributions by various neurons to the saliencies of various double feature targets

Figure 7: Contributions by various feature-tuned neurons to the three types of double feature targets.
Results are shown for individual subjects in A and averaged across subjects in B. The two subjects
marked by white and green colored bars are Koene and Zhaoping, experimenters for the behavioral
data and the only non-naive subjects. The plots are in the same format as that in Fig. 6B. In B,
Γchance is averaged across subjects, and a subject-averaged contribution by the conjunctive cells is
marked as significant if it is significantly different (p < 0.05) from this Γchance by a t-test. The error
bars mark the standard errors of the means. An ‘*’ above a bar for the double feature tuned cell
(in A or B) indicates that the contribution by this cell (to the saliency of the double feature target)
is significantly above the chance level. In B, an ‘*’ or ‘n.s.’ linking the contribution of a conjunctive
cell and that of a single feature tuned cell marks, respectively, a significant or insignificant difference
between them (by a matched sample t-test). Qualitatively the same results are obtained in B when
data from non-naive subjects, Koene and Zhaoping, are excluded.
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conjunctively to more than one feature dimension. We are particularly interested in the activities of

the conjunctively tund neurons relative to those of the single feature tuned neurons. These relative

activities, when they are sufficiently high, make their impacts on the saliencies of the visual inputs,

such that they can shorten the RT to find a double or redundant feature target beyond that predicted

by a statistical facilitation between the two corresponding single feature targets. In other words,

the relatively higher activities of the conjunctive neurons can be manifested as redundancy gains

in the RTs of the double feature targets(20). The relative activities of the conjunctive neurons can

be quantified from the redundancy gains by applying the V1 saliency hypothesis. The results show

that (1) the chance ΓMO for the MO cell to be the most active neuron in response to a MO double

feature target is no less than that (ΓM or ΓO) for either of the single feature tuned M and O cells;

and (2) the chance ΓCO for the CO cell to be the most active neuron in response to a CO double

feature target is substantial but about half of that (ΓC or ΓO) for either of the single feature tuned

C and O cells. Additionally, our results show that there is no significant chance for the CM cells to

be the most active neuron in response to a CM double feature target, suggesting an absence of such

neurons in V1, consistent with the previous finding(10) and physiological observations(24).

The impact of the conjunctive cells on the double feature targets predicts that these cells tend to

respond to their preferred stimulus more vigorously and experience weaker contextual suppressions

when the contextual inputs differ from their preferred stimulus in both, rather than one, feature

dimensions. This should be caused by both of the following. One is a sufficient feature tuning of

the conjunctive cells in both feature dimensions, and the other is a sufficient feature tuning of the

intra-cortical interactions between these cells (or between these cells and the single feature tuned

cells). The roles of these two types of feature tunings in saliency are further elaborated next.

Two types of V1 feature tuning properties

V1 saliency hypothesis implies that the highest responses to the feature singletons are higher than

those to the uniformly featured non-targets. Mechanistically, this requires the following two com-

ponents. First, neurons responding to the non-targets should suppress each other by iso-feature

suppression, the V1 property that nearby neurons preferring the same or similar feature(s) suppress

each other(41; 42; 43). Second, the neuron preferring and responding to the target should largely

escape the iso-feature suppression from neurons responding to the non-targets. These two compo-

nents require two types of feature tunings to be sufficiently strong. One is the feature tuning in

the input feature preference of the V1 cells. Cells preferring the target feature should prefer the

non-target features much less or not at all. The other is the feature tuning of the intra-cortical

interactions(5). It specifies how quickly the intra-cortical suppression decays with the difference

between the preferred features of the two interacting neurons. By sufficient feature tuning of the in-

teractions, neurons preferring the non-targets should direct their iso-feature suppression much more

to each other than to neurons preferring the target. Sufficient feature tunings in both the input

preference of the neurons and interactions between neurons ensures that the neurons most activated

by the target should largely escape the iso-feature suppression from the neurons responding to the
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non-targets.

Following the analysis above, sufficient feature tuning associated with the conjunctive cells, both

in input preference and in intra-cortical interactions, are required to have redundancy gains for

the double feature targets. This can be understood as follows. For example, the C or O neurons,

being single feature tuned, do not differentiate their responses to the target based on whether the

target is a single feature target or a double feature target. Hence, the redundancy gain for the CO

target requires that the CO cells respond more strongly to a double feature rather than a single

feature target. To realize this, the suppression on the CO cells preferring and responding to the

target from the neurons preferring and responding to the non-targets should be weaker when the

target differs from the non-targets in two rather than one feature dimensions. This decreasing

suppression by an increasing number of feature dimensions to distinguish the target can arise from

three mechanisms, see Fig. 8. First, suppression between two CO cells is weaker when they prefer

different features in both dimensions, rather than just one. Accordingly, suppression from a CO

cell preferring and responding to non-targets on the CO cell preferring and responding to the target

is weaker when the target is a double rather than a single feature target (compare Fig. 8B with

Fig. 8DF). Second, suppression between a CO cell and a C cell is weaker when they prefer different

colors. Accordingly, suppression from a C cell preferring and responding to a non-target to a CO

cell preferring and responding to the target is weaker when the target and non-targets differ in

color (compare Fig. 8BD with Fig. 8F). Third, suppression between a CO cell and an O cell is

weaker when they prefer different orientations. Accordingly, suppression from a O cell preferring

and responding to a non-target to a CO cell preferring and responding to the target is weaker

when the target and non-targets differ in orientation (compare Fig. 8BF with Fig. 8D). The first

mechanism alone should be sufficient, but either the second or third mechanism alone would not

be. Future experiments, especially physiological and anatomical investigations, are needed to find

out which sources are actually involved. Analogous conclusions apply to the MO cells and their

associated feature tunings.

The roles of single feature and conjunctive feature tuned cells in single

feature target

Our behavioral data could not reveal whether the conjunctive cells are more active than the single

feature tuned cells in response to the single feature targets to dictate their saliency at least occa-

sionally. For example, the RTC for the C target does not reveal whether a C cell or a CO cell is

responsible. After all, the value of saliency is feature blind, signaled by the firing rate of the most

activated V1 neuron regardless of its preferred feature(s)(6). Our analysis has for simplicity regarded

the single feature tuned cells alone as the dictating neurons for the saliencies of the single feature

targets, even though the dictating responses could be from double feature tuned cells. Since these

dictating responses to the single feature targets are used as the basis to calculate the contributions

by the single feature tuned cells to the saliency of a double feature target, these contributions (e.g.,

ΓC and ΓO) may be over-estimating the actual contributions by the single feature tuned neurons.
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Figure 8: A schematic for suppression on neurons responding to the target in feature singleton
search. Cases for a CO target (A and B), a C target (C and D), and a O target (E and F) are shown
separately. Red and green bars are visual inputs. Circles on a bar mark neurons activated by the
bar. Each neuron is marked by its preferred feature as red (R), green (G), horizontal (H), vertical
(V), or a conjunction of them. Lines and curves with arrows mark (effective) suppression between
two neurons, thicker for stronger suppression when the two neurons prefer the same feature. For
clarity, suppression on the single feature tuned cells are shown separately (in A, C, and E) from that
(in B, D, and F) on the double feature tuned cells, and interactions between the neurons responding
to non-targets are not shown. Among single feature tuned neurons activated by the target, the C
neuron (‘R’) is more suppressed when the target is an O target, whereas the O neuron (‘V’) is more
suppressed when the target is a C target. Without the conjunctive neurons, the strongest response
evoked by the CO target will be the same as the larger one of the strongest responses evoked by the
C and the O targets. The CO neuron (‘RV’) responding to the target is least suppressed for the CO
target (to have the redundancy gain), if suppression between conjunctive neurons is weaker when
their preferred features are different in both rather than one feature dimensions (i.e., W11 < W10

and W11 < W01, see equation (19)), or if the suppression from a single feature tuned neuron (C
or O neuron) on a conjunctive neuron is weaker when they prefer different features in their shared
feature dimension.
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Consequently, contributions by the double feature cells to the saliencies of the double feature targets

may be under-estimated. In other words, our reported contributions ΓCO and ΓMO (and even ΓCM)

by the double feature tuned cells to the saliencies of double feature targets are in fact additional

contributions by these cells beyond their hidden contributions not revealed by our RT data. These

hidden contributions correspond to the contributions of the double feature tuned cells in the single

feature targets. For example if the CO cells dictated the saliency of a C target in 25% of the trials

and the saliency in an O target in 10% of the trials, the hidden contribution by the CO cells to the

CO target could be about 0.25ΓC + 0.1ΓO (although the actual quantity depends on more specific

details), making the total contribution ΓCO + 0.25ΓC + 0.1ΓO by the CO cells to the CO target.

Analogous arguments apply to the contribution by the MO cells to the MO targets. Accordingly,

considering that ΓMO ∼ ΓO, ΓM, we can conclude that the dictating neuron is no less likely, and

perhaps more likely, to be an MO cell than an M or an O cell.

One may ask whether the hidden contributions by the conjunctive neurons could be so much

that conjunctive neurons alone dictate the saliencies of both the single and double feature targets,

as if the single feature tuned neurons are invisible or absent for saliency. To answer this question,

let us denote the (effective synaptic connection mediating) intra-cortical suppression between two

conjunctive cells by Wij , which depends on the two binary subscripts i and j for the two feature

dimensions in which the neurons are tuned. Each subscript takes value 0 or 1 if the two neurons

prefer the same or different features, respectively, in the corresponding feature dimension. The

strongest suppression between the two conjunctive neurons is W00, when the preferred features are

the same in both feature dimensions. For example, two CO neurons suppress each other most when

they prefer the same color and the same orientation. The second strongest level of suppression

includes W01 and W10, when the preferred features are different in only one feature dimension, e.g.,

when two CO neurons prefer different colors but the same orientation (or the same color but different

orientations). For better intuition, we may refer to W00 as iso-double-feature suppression and W01

and W10 as iso-single-feature suppression (see Fig. 8). The weakest suppression is W11, between two

conjunctive neurons preferring different features in both dimensions, e.g., when the two CO neurons

prefer different colors and different orientations. Feature tuning in intra-cortical suppression means

that

W00 > W11, and, W00 ≥ W01, W10 ≥ W11. (18)

Suppression W10 or W01 is between conjunctive neurons preferring a single feature target and those

preferring the non-targets (Fig. 8DF); suppression W11 is between conjunctive neurons preferring

a double feature target and those preferring the non-targets (Fig. 8B); whereas suppression W00 is

between conjunctive neurons preferring the non-targets (not shown in Fig. 8 to avoid clutter). We

have concluded above that

W10, W01 > W11 sufficiently (19)

helps to realize redundancy gains. Now, if conjunctive neurons alone have to dictate the saliencies
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of the single feature targets, then

W00 > W10, W01 sufficiently (20)

is necessary to make suppression stronger on the responses to the non-targets than the target. To

make all feature singletons salient and to have redundancy gains in double feature targets CO and

MO but not in CM targets, no C, M, O, and CM neurons are necessary in principle, provided that

equations (19) and (20) hold for both the CO and MO cells. Physiologically, there are likely a whole

spectrum of single and double feature selectivities in V1(48).

Relationship with other studies

V1 physiology

The current results confirmed the previous finding by Koene and Zhaoping(10) that a statistical

facilitation between the RTs for the single feature targets is sufficient to account for the shorter

RTs for the CM target, but not for the CO and MO targets. Findings by both studies are consis-

tent with physiological observations that some V1 cells are tuned conjunctively to both color and

orientation(21; 22; 23), others to both orientation and motion direction(38; 39), and that few cells

are tuned to both color and motion direction(24). However, the current study differs from Koene

and Zhaoping(10) in research questions asked, methodology, and outcomes. Koene and Zhaoping(10)

used the behavioral RT data and the known V1 facts (the presence and absence of certain conjunctive

cells) to test whether the V1 saliency hypothesis is correct, whereas the current study applies the

V1 saliency hypothesis (assumed to be correct) to the behavioral data to investigate the less known

V1 neural properties — the response levels and feature selectivities associated with the conjunc-

tively cells. Koene and Zhaoping(10) found out qualitatively whether the RT redundancy gains are

present in certain feature dimensions in order to determine whether the neural substrate for saliency

is most likely V1 rather than the extrastriate cortices. In contrast, the current study formulates an

optimization approach to predict quantitatively the probability that the conjunctive neurons should

dominate the V1 responses. In addition, the current study predicts the feature tuning properties of

the intra-cortical interactions associated with the conjunctive neurons. These predicted properties,

in particular that the MO cells are no less likely than either of the single feature tuned neurons to

dominate the responses to a MO singleton, can be experimentally tested.

Iso-feature suppression is only one of the intra-cortical interaction between V1 neurons, albeit a

dominant one. Another notable interaction is colinear facilitation(49), the excitation between two

V1 neurons whose preferred input bars have similar orientations and are aligned as if belonging

to a single smooth curve. When a central bar (such as our visual search target) is surrounded by

uniformly oriented background bars in a statistically isotropic manner, the net interaction between

the (neurons responding to the) central bar and the surrounding bars is still iso-orientation sup-

pression, stronger when the orientations of the central and surrounding bars are more similar, as

observed physiologically(42). Since the density of our non-targets is quite high, each non-target can
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be approximately viewed as surrounded by other non-targets isotropically and experiencing a net

iso-orientation suppression as well. Hence, for our current study when it is only necessary to evaluate

the net suppression on each neuron, it is not necessary to consider colinear facilitation separately.

The role of the extrastriate cortices for attentional guidance

There are many neurons tuned to CM conjunctions in V2(25; 26), but few in V1(24). Hence,

our finding of no contribution by the CM neurons provides a strong support that V1 rather than

extrastriate mechanisms play the dominant role in saliency for these feature singletons. This however

does not rule out the possibility that the extrastriate cortex plays a role guiding attention for other

visual stimuli. Recently, depth cue was found(33) to speed up the task to locate a texture border

only if this border is not salient enough for observers to report its location within one second.

Since extrastriate cortices rather than V1 are thought as responsible for depth perception(27; 28;

29; 30; 31; 32), this finding suggests that, when the target saliency is too weak, V1 signals may

be insufficient to guide attention in a dominant manner. The brain areas such as the superior

colliculus may coordinate and combine contributions from various cortical areas to guide attention.

Superior colliculus is particularly suitable for such a role since it receives inputs from multiple brain

areas including V1, extrastriate cortex, and parietal cortices, and directly controls the gaze shifts

through the brain stem(50; 51). Since longer latencies are typically required for contributions from

higher brain areas, it is conceivable that the speeded or hurried decisions for attentional shifts are

reached using only contributions from lower cortical areas such as V1. Meanwhile, since human gaze

shifts about three times per second, and since previous works suggest that top-down factors play an

increasingly dominant role to guide attention when longer latencies are allowed(4; 52), it is unclear

whether the attentional guidance 800 ms after the stimulus onset could be viewed as strictly by

(bottom-up) saliency alone.

Implications on conjunction search

The visual search task considered in this study is a feature search task(2), since the target can be

distinguished by a unique feature, even when it is a double feature target. In contrast, when a

target shares one (or more) features with some or all distractors and can only be distinguished by

a particular conjunction of features, the search is much more difficult and is called a conjunction

search(2). For example, to find a red-vertical target bar among red-horizontal bars and green-vertical

bars, the target conjunction is of red color feature and the vertical orientation feature, while both

red and vertical features are present among the non-targets. The difficulty in conjunction searches

can be easily understood if there is no conjunctive neurons. For the example above, the neurons

preferring red respond to both the target and many non-targets and suppress each other by iso-

color suppression; similarly, the neurons preferring vertical respond to both the target and many

non-targets and suppress each other by iso-orientation suppression (see the left half of Fig. 9).

Consequently, the single feature tuned neurons cannot distinguish a target by their response levels

since their responses to the target are no higher statistically than their responses to the non-targets.
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Figure 9: A schematic for neurons and their interactions in a conjunction search for a red-vertical
target. Bars and neurons are similarly visualized as in Fig. 8. For clarity, interactions between single
feature tuned neurons are shown separately (on the left) from those between conjunctive neurons.
To avoid clutter, only interactions associated with neurons responding to the target bar and two
of the non-target bars are shown, the baseline suppression on the single feature tuned cells and
suppression between single feature tuned and conjunctive neurons are not shown. Each single feature
tuned neuron, regardless of its preferred feature and regardless of whether it is responding to the
target, experiences iso-feature suppression from neurons responding to about half of the neighboring
bars. Hence, single feature tuned neurons cannot distinguish the target by their response levels. The
conjunctive neuron (‘RV’) responding to the target experiences iso-single-feature suppression (W01

or W10) from other conjunctive neurons responding to all neighboring bars, whereas each conjunctive
neuron responding to a non-target experiences iso-double-feature suppression (W00) from conjunctive
neurons responding to only half of the neighboring bars. The target cannot be distinguished by a
higher response (from the ‘RV’ neuron) if W01 + W10 & W00 + W11, or if this neuron’s response is
weaker than the responses from the single feature tuned neurons.
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However, one may wonder whether the conjunctive neurons preferring the unique target conjunction

could distinguish the target by a relatively higher response. After all, the conjunctive neurons could

respond as vigorously as the single feature tuned neurons to double feature singletons, and the

conjunctive cell preferring and responding to the target may largely escape the suppression from

neurons preferring and responding to the non-target conjunctions.

This question can be answered by dissecting the intra-cortical interactions associated with the

conjunctive neurons only, see the right half of Fig. 9. We again use the example of the conjunctive

search for red-vertical, and take for simplicity the (most difficult) situation when half of the non-

targets are green-vertical and the other half are red-horizontal. Each conjunctive neuron preferring

and responding to a non-target item (e.g., green-vertical) is subject to strong iso-double-feature

suppression W00 from other conjunctive neurons preferring the same color and the same orientation

and responding to half of the non-targets in its vicinity. It should largely escape iso-feature suppres-

sion, or experience a much weaker suppression W11, from the conjunctive neurons preferring and

responding to the other half of the non-targets (e.g., red-horizontal) in the vicinity, since they prefer

different color and different orientation. Meanwhile, a neuron preferring red-vertical and responding

to the target is subject to two sources of iso-single-feature suppression: iso-color suppression W01

from red-horizontal preferring neurons responding to half of the non-targets in the vicinity, and

iso-orientation suppression W10 from green-vertical preferring neurons responding to the other half

of the non-targets in the vicinity. Hence, the response to the target is subject to suppression W01 or

W10 from neurons responding to all neighboring items, whereas the response to a non-target is sub-

ject to suppression W00 from neurons responding to only (about) half of the neighbors. Therefore,

the response to the target is not distinguished unless W01 + W10 is sufficiently weaker than W00 (or

W00 + W11 when including suppression from the conjunctive neurons preferring different features in

both dimensions). For example, if two conjunctive cells do not substantially suppress each other un-

less they prefer the same feature in both feature dimensions, i.e., W00 ≫ W10 ≈ 0, W00 ≫ W01 ≈ 0,

then the response to the unique target conjunction can be relatively free of suppression to make the

target salient. This situation has been demonstrated in a V1 model, see Fig. 5 of Li(6).

It should be noted that the arguments above have for simplicity omitted the interactions be-

tween the single feature tuned cells and the double feature tuned cells. It is also possible that the

conjunctive cell responding to the target is suppressed by the single feature tuned cells responding

to the neighboring non-targets, since each non-target shares one feature in common with the target.

The same conclusion in the last paragraph could still be reached if the iso-single-feature suppression

(W10 and W01) between two conjunctive cells is replaced by the iso-feature suppression between a

conjunctive neuron and a single feature tuned neuron preferring the same feature in their shared

feature dimension. As far as a conjunctive neuron is concerned, the pre-synaptic source for the iso-

single-feature suppression may be either the double or single feature tuned neurons, or may include

both. Similarly, iso-feature suppression on single feature tuned cells could arise from both the single

feature tuned and conjunctively tuned cells.

Since color-orientation conjunction search is known to be difficult(2), it suggests that iso-feature
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contextual suppression on a CO cell (responding to its preferred input) is substantial even when

the contextual inputs is different from the preferred input in one, but not both, of the two feature

dimensions. This conclusion, also reached previously(10; 11), can be physiologically tested. Mean-

while, McLeod, Driver, and Crisp(53) showed that the conjunction search for a moving “X” among

static “X”s and moving “O”s are relatively easy. If one treats the difference between an “X” and

an “O” as a difference in orientation, this suggests that the a MO conjunction search is not too

difficult, and if so, one could infer that MO neurons are not sufficiently suppressed by contextual

inputs unless the contextual inputs and the preferred inputs share the same feature in both the O

and M dimensions. However, a more authentic MO conjunction search is required for more confident

inferences.

It is now clear that a conjunctive search should definitely be difficult if there is no V1 neurons

preferring this particular conjunction. For example, there is no V1 neuron which simultaneously

prefers two different orientations (or two colors) without also preferring the average orientation (or

color) of the two preferred ones. Indeed, it has long been known that a unique conjunction of two

different features within a single feature dimension, e.g., a conjunction of two orientations, is very

difficult to find(54). Similarly, redundancy gains involving two features in the same dimension should

be absent, consistent with behavioral data(11).

Redundancy gains for saliency versus feature integration for object recognition

It takes longer to identify both features, color and orientation, of an object than it is to identify

just one feature(55). This is in contrast to the shorter reaction times to find a feature singleton

unique in two, rather than one, feature dimensions in visual search. These two situations involve

two different tasks, one is object recognition or identification and the other is feature detection or

localization. These two tasks are often called the “what” and “where” tasks, respectively, and are

believed to involve separate brain regions(56). By the psychological Feature Integration Theory(2),

additional processing is needed to bind two features of a single object to identify the object after the

location of the object is selected by spatial attention. Meanwhile, the feature singleton detection in

our task mainly involves bottom-up saliency to select the most salient location without identifying

the features or objects. Indeed, observers for the task typically did not pay attention to which

features distinguish the target when they pressed the button to report its location(10). A separation

between the “where” and “what” task is one of the foundations of the theoretical framework that V1

mechanisms serve the functional role of visual segmentation without classification(40), which means

to segment an image region (by highlighting its boundaries with higher V1 responses) without

recognizing the region. This theoretical framework has in turn inspired the V1 saliency hypothesis,

which uses V1 activities to represent saliencies before decoding the visual input feature values from

the very same activities(6). Accordingly, the V1 neural activities are universal currencies for saliency

regardless of their feature preferences(57).
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Concluding remarks

The V1 saliency hypothesis enables us to probe the properties of V1 neurons and intra-cortical

interactions from behavioral data on visual search tasks, rather than by physiological experiments.

Inferring coarse scale brain substrates from behavior is quite common in psychological studies. For

example, damage to hippocampus could be inferred if somebody has difficulty forming new memories,

applying the knowledge that hippocampus is a substrate for memory consolidation(58). However,

inferring neuronal level details from behavior is much less common. Many of the previous works

linking physiology and behavior are to explain behavior from physiology. For example, sensory

discrimination thresholds can be derived from feature tuning of the neurons and the densities of

neurons involved(59; 60; 61; 62). Works to infer physiology from behavior are mainly those to

infer the underlying neural channels of signal representation via sensory adaptation(63). Behind

these works are theories of optimal sensory decoding or assumptions linking neural sensitivities to

behavioral sensitivities. The current work adds the V1 saliency hypothesis to the theoretical bases

that can be used to link physiology to behavior, thereby extending the realms of neural mechanisms

that can be probed from behavior.
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[37] Angelucci A, Levitt JB, Walton EJS, Hupé JM, Bullier J, et al. (2002) Circuits for local and

global signal integration in primary visual cortex. The Journal of Neuroscience 22: 8633-8646.

30



[38] Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. The

Journal of Physiology 148: 574-591.

[39] Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate

cortex. The Journal of Physiology 195: 215-243.

[40] Li Z (1999) Visual segmentation by contextual influences via intra-cortical interactions in the

primary visual cortex. Network: Comput Neural Syst 10: 187-212.

[41] Allman J, Miezin F, McGuinness E (1985) Direction- and velocity-specific responses from be-

yond the classical receptive field in the middle temporal visual area (mt). Perception 14:

105-126.

[42] Knierim JJ, van Essen DC (1992) Neuronal responses to static texture patterns in area V1 of

the alert macaque monkey. Journal of Neurophysiology 67: 961-980.

[43] Li CY, Li W (1994) Extensive integration field beyond the classical receptive field of cat’s striate

cortical neurons–classification and tuning properties. Vision research 34: 2337-2355.

[44] Wachtler T, Sejnowski TJ, Albright TD (2003) Representation of color stimuli in awake macaque

primary visual cortex. Neuron 37: 681-691.

[45] Jones HE, Grieve KL, Wang W, Sillito AM (2001) Surround suppression in primate V1. J

Neurophysiol 86: 2011-2028.

[46] Li Z (2001) Computational design and nonlinear dynamics of a recurrent network model of the

primary visual cortex. Neural Computation 13(8): 1749-1780.

[47] Zhaoping L (2003) V1 mechanisms and some figure-ground and border effects. Journal of

Physiology, Paris 97(4-6): 503-515.

[48] Lennie P (1998) Single units and visual cortical organization. Perception 27: 889-935.

[49] Kapadia M, Ito M, Gilbert C, Westheimer G (1995) Improvement in visual sensitivity by changes

in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15:

843-56.

[50] Schiller P (1998) The neural control of visually guided eye movements. In: Richards JE, editor,

Cognitive Neuroscience of Attention, a developmental perspective, Mahwah, New Jersey USA.:

Lawrence Erlbaum Associates, Inc. pp. 3-50.

[51] Shipp S (2004) The brain circuitry of attention. Trends in Cognitive Sciences 8: 223-230.

[52] van Zoest W, Donk M, Theeuwes J (2004) The role of stimulus-driven and goal-driven con-

trol in saccadic visual selection. Journal of Experimental Psychology: Human perception and

performance 30: 746-759.

31



[53] McLeod P, Driver J, Crisp J (1988) Visual search for a conjunction of movement and form is

parallel. Nature 332: 154-155.

[54] Wolfe J, Yu K, Stewart M, Shorter A, Friedman-Hill S, et al. (1990) Limitations on the parallel

guidance of visual search: Color× color and orientation× orientation conjunctions. Journal of

Experimental Psychology: Human Perception and Performance 16: 879-892.

[55] Bodelon C, Fallah M, Reynolds J (2007) Temporal resolution for the perception of features and

conjunctions. The Journal of Neuroscience 27: 725-730.

[56] Mishkin M, Ungerleider L, Macko K (1983) Object vision and spatial vision: Two cortical

pathways. Trends in neurosciences 6: 414–417.

[57] Zhaoping L (2006) Theoretical understanding of the early visual processes by data compression

and data selection. Network: computation in neural systems 17(4): 301-334.

[58] Squire L (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys,

and humans. Psychological review 99: 195-231.

[59] Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences

in the owl. The Journal of Neuroscience 1: 40-48.

[60] Paradiso MA (1988) A theory for the use of visual orientation information which exploits the

columnar structure of striate cortex. Biological Cybernetics 58: 35-49.

[61] Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion:

A comparison of neuronal and psychophysical performance. The Journal of Neuroscience 12:

4745-4765.

[62] Zhaoping L, Geisler WS, May KA (2011) Human wavelength discrimination of monochromatic

light explained by optimal wavelength decoding of light of unknown intensity. PloS One 6(5):

e19248.

[63] Blakemore C, Campbell FW (1969) On the existence of neurones in the human visual system

selectively sensitive to the orientation and size of retinal images. The Journal of Physiology

203: 237-260.

32


