
5 The V1 hypothesis—creating a bottomup

saliency map for preattentive selection

and segmentation

In this chapter, we focus on bottomup visual selection, the second stage in the threestage

process of vision: encoding, selection, and decoding. We describe the hypothesis that V1

creates a bottomup saliency map to guide visual selection, and we show that this hypothesis

can solve certain V1 puzzles which elude the efficient coding principle underpinning the

encoding stage. This hypothesis is motivated, formulated in detail, and applied to account

for existing behavioral data on visual selection. Nontrivial and surprising predictions that

result from the hypothesis are presented, along with their experimental confirmation. A circuit

model describing how V1 mechanisms might implement this hypothesis is outlined. Finally,

V1’s role in selection is discussed in relation to selection by brain areas beyond V1.

5.1 Visual selection and visual saliency

5.1.1 Visual selection—topdown and bottomup selections

Recall from Section 1.2 that selection and decoding are two visual stages after the visual

encoding stage in the three stages of vision. The resources for processing visual input are

limited, leading to the attentional bottleneck. Selection enables vision to focus the processing

resource, i.e., focus the decoding, on just a fraction of this input. Therefore, selection often

makes vision unable to properly decode or perceive the visual input outside our attentional

spotlight. Accordingly, the effect of visual selection is measured by the cueing effect, which

is the improvement in performance and/or speed of visual tasks on the selected input (Posner

1980), and the presence of an cueing effect is often used to demonstrate the availability of

visual selection.

Selection is most obviously manifest in the fact that we shift our gaze, or saccade, to the

visual locations we select. This overt form of selection is referred to as orienting. Meanwhile,

selection can also be done covertly. Responses of neurons in the extrastriate cortex to an

attended stimulus are often enhanced relative to their responses to unattended stimuli. This

enhancement can result in the responses of neurons being the same as if the unattended

stimulus was absent (see Section 2.6).

Reflecting upon our own subjective visual experience, we are more aware of our own

goaldirected or voluntary selections, such as when we attend to a book when reading and

ignore visual space outside the book page. Goaldirected selection can also be based on

prior knowledge or expectation, such as in directing gaze to one’s bookshelf when looking

for a book, by the knowledge about the location of the bookshelf and an expectation that

the book is likely on the shelf. Hence, it is not surprising that most theories or research

frameworks have emphasized this goaldirected selection (Treisman and Gelade 1980, Duncan

and Humphreys 1989, Tsotsos 1990, Desimone and Duncan 1995), which is also called top

down selection.
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Fig. 5.1: A schematic of an example experimental design used to study topdown, or en

dogenous, guidance and bottomup, or exogenous, guidance to attention. This schematic is

representative of many other similar studies. Each of the six large square boxes contains a

sketch of a stimulus on a fixedlocation display. In a test trial, the fixation stimulus, a cueing

stimulus, and a testing stimulus are shown consecutively. Observers have to discriminate an

aspect of the brief test stimulus, e.g., the orientation of the letter “T” (whether its stem points

downwards, upwards, to the left, or to the right). The location of this letter can be at any one

of several (e.g., four in this figure) possible positions, unknown to the observer beforehand.

This location is cued by a brief exogenous or endogenous cue in the cueing stimulus, which

onsets at a time interval called stimulus onset asynchrony (SOA) before the test stimulus

onsets. An exogenous cue indicates this location typically by a flash at or near this location;

an endogenous cue does this by a symbol (e.g., an arrow pointing to the location) whose po

sition (typically at the fixation point) is independent of the cued position. The actual location

of the letter “T” in the test stimulus is at the cued location in a valid trial, or otherwise in

an invalid trial. In typical experiments, observers have to keep their gaze fixed at the central

fixation point in each stimulus throughout a trial. The exogenous cue has been found to be

faster acting, more effective, and harder to ignore, and it can overwrite the endogenous cue

(Müller and Rabbitt 1989). Adapted with permission from Müller, H. J. and Rabbitt, P. M.,

Reflexive and voluntary orienting of visual attention: time course of activation and resistance

to interruption, Journal of Experimental Psychology: Human Perception and Performance,

15 (2): 315–330, Fig. 1, copyright c© 1989, American Psychological Association.

We would be blind to unexpected things if selection was purely top down. There is

thus a vital role for an alternative form of visual selection driven directly by visual inputs,

or involuntary selection without the influence of task goals. These are called bottomup

selection. In some situations, such as during an emergency, bottomup selection should be

able to overwrite topdown selection, such that, e.g., we should direct our attention to a predator

pouncing at us even while reading. In this sense, bottomup selection serves an ultimate top

down goal of survival. However, this book follows the convention of referring to involuntary

selections as being bottomup. Topdown selection is also referred to as endogenous or

reflective, since it is linked with internal goals or knowledge of the viewer. Bottomup selection
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is also referred to as exogenous, since it is driven by the external visual inputs, and is said to

be reflexive.

+

A: A red bar attracts attention automatically

The task: to find a non-horizontal bar

B: A cue (red box) onset attracts attention
additionally, even when its location
is known a priori

The task: to identify the bar in the red box

Fig. 5.2: Demonstration of the superior potency (A) and speed (B) of bottomup over top

down selection. A: even if an observer’s task is to find a nonhorizontal bar in the image,

the red nontarget bar automatically distracts attention. B: The task for (human) observers

is to keep gaze focused on the center cross, and to report whether the target bar in the red

cue box (which is at the same, known, location in the image on each trial) is white vertical,

black horizontal, or is like the non target bars (which are white horizontal and black vertical).

Target and nontarget bars are displayed simultaneously for a short time duration in each

trial. Nakayama and Mackeben (1989) measured the shortest display duration necessary for

the observers’ report to be suitably accurate. This duration was longer when the red cue box

remained on display throughout the experimental session to mark target location, compared

to the case when the cue appeared about 50–150 ms ahead of the bars in each trial.

Bottomup selection is often faster acting and more potent than topdown selection (Jonides

1981, Müller and Rabbitt 1989, Nakayama and Mackeben 1989), as one might expect from its

role in emergencies. Figure 5.1 shows the kind of experimental setups used to investigate their

respective characters. An exogenous cue, typically a brief flash, draws attention reflexively to

the flashed location, such that discrimination of a test stimulus presented very soon after the

cue is typically faster and more accurate at the flashed location than at another location. An

endogenous cue, typically presented as symbols (e.g., an arrow to the northeast) to indicate

a likely location of the upcoming test letter, is physically not at the same location as the test

letter. It can also make discrimination better and faster at the cued rather than the uncued

location. However, when instructed, observers can effectively ignore the endogenous cue,

such that their performance is independent of whether the location is cued or uncued; but

they are unable to ignore the exogenous cue (Jonides 1981). Furthermore, if the onsets of

the cue and test stimuli differ by only a very brief stimulus onset asynchrony (SOA) such

as 100–150 ms, the benefit of a valid cue, when the cued and tested locations agree, and

the cost of an invalid cue, when the cued and tested locations disagree, are both larger

with the exogenous than the endogenous cue. At longer SOAs, the difference between the

performances at the cued and uncued locations decreases with SOA for exogenous cues but

increases with SOA for endogenous cues, before this difference asymptotes at around SOA

= 300–400 ms. Additionally, the performance benefit of a valid, endogenous, cue can be

completely eliminated if, after the endogenous cue and about 100 ms before the test stimulus

onset, an exogenous flash occurs at another location. This occurs even if this exogenous flash

is completely uninformative about the location of the target letter (Müller and Rabbitt 1989).
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Figure 5.2 A demonstrates that the red horizontal bar automatically attracts the attention

of observers, even if they are intending to look for a nonhorizontal bar. Such a distraction by

a taskirrelevant salient color singleton is also hard to turn off voluntarily (Theeuwes 1992).

Figure 5.2 B shows the stimulus patterns used by Nakayama and Mackeben (1989) to contrast

topdown and bottomup selection. Subjects were asked to discriminate a target bar in a briefly

displayed, inhomogenous array of bars. They were unable to recognize the target bar reliably

when the array was shown for only 33 ms, even though they knew the target location in the array

long before the array appeared. This suggests that vision was too slow, or topdown selection

was inadequate for this task, when the stimulus was displayed too briefly. However, task

performance dramatically improved if a red box, the exogenous cue, surrounding the target

location appeared about 50–150 ms before the array appeared. This bottomup attraction

by the red box, in addition to the topdown attraction due to the prior knowledge of the

target location, caused a marked improvement in task performance. Without this bottomup

attraction, the array had to be shown for a much longer time in order to improve the task

performance. This again suggests that, in this task, when bottomup attention is available,

vision is not too slow and the bottomup attraction is faster acting.

Topdown and bottomup attentional selection are often spacebased, such that only visual

input at or near a spatial location is selected. Selected locations are metaphorically referred to

as being in the attentional spotlight. This also implies that the spotlight is spatially compact

and has a finite size. Recall from Section 2.5 that spatial selection is closely linked with eye

movements, such that the selected location typically coincides with the current gaze position

or the destination of an impending saccade. Since our gaze can only be at one location at

a time, it is not surprising that it is either impossible or very difficult to select two disjoint

locations simultaneously (Cave and Bichot 1999), even for covert attention.

Selection can also be based on features of the input. Consider looking for a red cup.

Selection can be based on a particular value of the feature of color, so that sensitivity to

redcolored objects in the whole visual field is relatively enhanced. Obviously, featurebased

selection is goal directed and is thus top down. Selection can also be objectbased. For

example, consider two visual locations in an image that are equally distant from the current

gaze position, which is inside the image area of an object. If only one of the two locations is

inside the image area of the same object, then sensitivity to inputs at this location is relatively

higher. Since objectbased selection relies on the perception of the object, knowledge about the

object’s shape or identity can influence the selection. Therefore, it is likely that objectbased

selection is not strictly bottom up.

To understand selection as a whole, we must clearly understand bottomup selection, both

because of its own potency and because of its competition and cooperation with topdown

selection. This book focuses mostly on bottomup (spatial) selection, mainly because more

is known about its neural mechanisms. The book comparatively ignores featurebased or

objectbased attention.

5.1.1.1 Terminology: selection, attention, saliency, and priority

Voluntary or topdown visual selection is often colloquially referred to as “paying attention.”

When bottomup selection overrides topdown selection, it is often said that attention has

been distracted to a taskirrelevant input. In this colloquial sense, the word “attention” is

understood as some sort of resource, which is applied to or spent on the selected input,

enabling this input to be recognized or decoded. Hence, the term “preattentive” is understood

as to refer to the processing stage before the resource of “attention” is applied, although

exogenous selection process can be operative at the preattentive stage. Meanwhile, directing

attention to somewhere or to something is also colloquially referred to as attending somewhere

or something. In this sense, “attending” and “paying attention” refer to the act of selection,
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regardless of whether this is by topdown or bottomup means. In this book, we will use the

term “selection,” “selecting,” or “to select” to mean the act rather than the resource, to avoid

the confusion.

In this book, we define the saliency of a visual location as the degree to which this location

attracts selection by bottomup mechanisms only. A location with a large saliency value is

said to be salient. Following Egeth and Yantis (1997), the term priority is used to describe

the degree to which this location attracts selection as a result of combining topdown and

bottomup mechanisms. A saliency map is a map of saliency values of the visual field, while

a priority map is a map of priority values. Behaviorally, selection follows the priority map,

such that attention or gaze is more likely to be directed first to locations of higher priorities.

The temporal order in which spatial locations are selected should follow the order of their

priorities, deterministically or stochastically, such that, when a scene is viewed, a location

having a higher priority is more likely selected before a location having a lower priority. Often,

a location is often more likely selected, i.e., having a higher priority, because it is closer to the

currently attended location. This is likely caused by topdown rather than bottomup factors.

5.1.1.2 Probing bottomup saliency behaviorally even though selection is
controlled by priority

According to the definitions above, a location’s priority can often be assessed behaviorally

by the reaction time (RT) associated with finding or identifying a target at its location.

Alternatively, it can be assessed by measuring how well observers discriminate or identify a

visual target at the location, given a fixed viewing duration. This latter measurement is called

the accuracy, expressed as the probability that the task is performed correctly. Accuracy should

increase with the amount of time the target spends in the attentional spotlight. Therefore, given

a fixed viewing duration, greater accuracies should be coupled to shorter RTs for selecting the

target location. Although saliency is only one of the contributing factors to priority, it can be

studied in terms of the difference between RTs or accuracies for different tasks. For example,

studies of visual search often assume that a shorter RT indicates a larger saliency at the location

of the search target. Below we explain why and when this assumption is approximately valid.

Let RTtask be the behaviorally measured RT in a task, e.g., to find a certain target.

Imagine an ideal world in which we could measure RTselection, which is the RT to select the

task relevant location, e.g., the location of the target. Let us define

RTother ≡ RTtask −RTselection; RTother is understood as the RT required

for all the nonselection processes to complete the task.
(5.1)

For example, let visual task A be to look for a target bar tilted 20o anticlockwise from

horizontal, among many nontarget bars uniformly tilted 20o clockwise from horizontal.

Experimentally, we measure RTtask as the time from the onset of the visual stimulus to the

time when observers report the location of the target. This RTtask contains RTselection to put

the target bar in the attentional spotlight, and RTother to confirm that the bar in the spotlight

is indeed the soughtafter target and to execute the motor action to report the target’s location.

Note that when the absolute value of RTselection is difficult to measure, then so is RTother
since it is defined by RTtask −RTselection. However, this should not affect our argument.

We can extract saliency fromRTsaliency, defined asRTsaliency ≡ RTselection when the top

down contribution to selection is set to zero. However, eliminating all topdown contributions

is impossible in typical behavioral experiments. In general, define

RTtopdown selection ≡ RTselection −RTsaliency. (5.2)

The term RTtopdown selection could be negative or positive, depending on whether the top

down and bottomup selection cooperate or compete. Putting the above together, we have
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RTtask = RTsaliency +RTtopdown selection +RTother;
therefore, RTtask can be a proxy for RTsaliency when

RTtopdown selection +RTother = constant for different tasks.
(5.3)

One can design experiments to ensure that RTtopdown selection + RTother is a constant.

For example, suppose that along with task A above, subjects execute task B, which requires

finding the same target bar (tilted 20o anticlockwise from horizontal) but among nontarget

bars that are horizontal rather than being tilted 20o clockwise from horizontal. Provided that

tasks A and B do not differ in other aspects (nontarget numerosity, item sizes, etc.), it is

reasonable to assume that the two tasks have approximately the sameRTother, since the target

in the attentional spotlight is equally distinguishable from nontargets, and since the time it

takes to report the target (after the target is recognized in the attentional spotlight) is unlikely

to depend on the task. Since the target is the same, featurebased attention should also be set

the same way, suggesting thatRTtopdown selection should also be the same. In total, ifRTtask
is shorter for tasks A than task B, then the target location can be considered to be more salient

in task A, and vice versa.

Next, consider a slightly modified experiment in which the target feature is unknown ahead

of time, e.g., when the task is simply to find a uniquely oriented bar in the image without

specifying the orientation of this unique target bar. In this case, the topdown contribution

will be more limited but will still be the same for the two tasks. In other experimental

designs, the bottomup saliency can be so strong that attention can be attracted to the target

location automatically whether or not the target identity is known ahead of time, so that the

topdown contribution to selection is negligible. Altogether, RTtopdown selection + RTother
can be approximately independent of the task in many different situations. This can even be

approximately true when the two tasks differ in both target and nontarget identities.

Under the assumption that, among multiple tasks in a study, tasks with shorter RTtasks

have more salient target locations, we can study how saliency is determined by input stimuli.

This assumption is the basis for many behavioral and modeling studies into saliency, including

those described in this book. One should nevertheless be wary of violations of the assumption,

as sometimes (Zhaoping and Guyader 2007) a difference in RTtasks between tasks results

from topdown rather than bottomup effects.

Similar considerations and arguments apply when bottomup saliency of a location is

assessed by the accuracy of input discrimination at that location for sufficiently brief viewing

durations.

Various features of experimental designs can minimize the impact of factors other than

saliency in the measured RTs and accuracies. One is to minimize any a priori knowledge as to

the possible positions and features of the visual inputs. Another is to make the visual input at a

location taskirrelevant, to remove or minimize the topdown factors in selecting this location.

One can also make the input presentation very brief, such that there is insufficient time for

more than one shift of attention, or one glimpse. Compared with this first shift, any second

shift of visual attention is more influenced by the visual information gained during the initial

glimpse, and such information can drive topdown influences. For example, take the case of

asking an observer to find an apple in an image quickly but without revealing ahead of time

what kind of image will be presented. When a picture of a kitchen scene is suddenly shown,

the first gaze shift is likely to be governed by reflexes before the observer realizes what kind

of scene is on show. However, the duration from the appearance of the image to the second

gaze shift is often sufficient for the observer to realize the overall content or gist of the scene,

and thence to exploit the topdown expectation that an apple is more likely to be on a kitchen

counter than a kitchen floor. In turn, this can influence the second gaze shift. Conversely, a

picture of a forest would direct the second gaze shift according to a different topdown factor.
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Analogously, the effect of saliency is better manifested in shorter reaction times. A longer

latency to respond after a brief display allows more topdown influences.

One should also design the task to minimize the contamination of the measured behavioral

outcome by high level strategic factors. For example, in many conventional visual search tasks

(Wolfe 1998), observers are asked to report the presence or absence of a target in an image.

When observers do not find the target after an initial scan of the search display, they may

decide to search further for the target, or report that the target is absent. Hence, the RT of the

report is affected by the strategic decision of when to terminate the search, a strategic decision

that may be task dependent. To avoid this, it helps to make the target present in all search

trials and ask the observers to simply report an aspect of the target location, e.g., whether the

target is in the left or right half of the visual display.

5.1.2 A brief overview of visual search and segmentation—behavioral

studies of saliency

Studies of visual search are often used to examine how the saliency of a target location

depends on the characteristics of the visual inputs, assuming that a shorter RT indicates a

larger saliency at the location of the search target. In these experiments, human observers are

asked to search for a target as quickly as possible, and their reaction time (RT) to report the

target is recorded.

Visual search has been the target of extensive behavioral studies (Treisman and Gelade

1980, Duncan and Humphreys 1989, Julesz 1981, Wolfe, Cave and Franzel 1989, Wolfe 1998),

and is introduced briefly in Fig. 5.3. It has been found, for instance, that if the target is

characterized by a visual feature such as color or orientation that is sufficiently unique within

a visual image or scene, the RT for finding it is often insensitive to the number of non

target items (distractors) in the scene. Visual search for which the target differs from all the

nontargets in one unique feature is called feature search. Figure 5.3 E shows an example

in which the target differs from the distractor not by a single feature but by a conjunction

of two features: red and vertical. Each of these is present in the nontarget items (which are

bluevertical or redhorizontal). Such a search is called a conjunction search, and it is usually

more difficult than a feature search. RTs in conjunction searches usually grow quickly with

the number of distractors. The total number of search items, target plus the distractors, is

called the set size of the search. One can imagine that if a target were defined by a conjunction

of more than two features, the search would be even more difficult.

Visual search in which the RT is almost independent of the set size is called efficient.

By contrast, if RT increases with set size sufficiently quickly, the search is called inefficient.

Efficient and inefficient searches have often been interpreted to depend on underlying neural

processes that are, respectively, parallel and serial. Visual inputs in the scene are processed

all at once for an efficient search and chunk by chunk for an inefficient search.

Efficiency in visual search has been used as an empirical definition of the notion of a

basic feature dimension in visual input (Wolfe 1998). Accordingly, color, orientation, motion

direction, stereoscopic depth, and sizes have been found to be among the basic feature

dimensions, since a target that is sufficiently different from homogenous distractors in any

one of these dimensions (e.g., Fig. 5.3 AD) can be found efficiently. Indeed, this has been

used to define feature search in cases in which the target differs from the distractors by its

feature value in a basic feature dimension. Feature searches are efficient if the nontargets

have the same feature value in the basic feature dimension that distinguishes the target; they

can be inefficient if their feature values in this dimension are sufficiently varied.

Often, a salient target in an efficient visual search is said to pop out of the scene preat

tentively or to require only preattentive mechanisms to be noticed by human observers. Here
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A: Feature search:
unique vertical pops out

B: Feature search:
vertical among tilted

C: Feature search:
distractors dissimilar

D: Feature search:
unique red pops out

E: Conjunction search:
unique red-vertical target

H: RT versus set size

Number of non-targets

F: Target lacking a feature:
vertical bar among crosses

G: Feature search:
cross among vertical bars

Fig. 5.3: A brief overview of visual search. A–G: Illustrative examples of visual search. The

search target is a vertical bar in A–C and F, a redvertical bar in D and E, and a cross in G.

A–D and G are examples of feature search, when the target has a feature that is absent in

the nontargets. E is an example of conjunction search when the target is defined by a unique

conjunction of features, each of which is individually present in the nontargets. In F, the

target is defined by the absence of a feature that is present in the nontargets. F and G together

illustrate the asymmetry of visual search, when the ease of search changes by swapping

identities of the targets and nontargets. H: Characteristics of efficient and inefficient searches

in terms of how RTs depend on the number of nontarget (distractor) items.

the term preattentive can be understood as without topdown attentional guidance. Hence,

preattentive attentional guidance is by bottomup attractions only. By contrast, an inefficient

search requires something more than preattentive mechanisms. However, the meanings or def

initions of these terms (e.g., popout, preattentive, etc.) may differ in the literature according

to different research communities.

Efficiency in visual search can be affected by many factors, and there is a continuum

rather than two discrete categories (efficient/parallel and inefficient/serial). Figure 5.3 AB

demonstrate that searching for the vertical target is easier when the feature contrast (orientation

contrast) between the target and distractors is larger; Fig. 5.3 BC demonstrate that search

becomes more difficult when the distractors are not identical to each other (Duncan and
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Humphreys 1989), even though the target’s feature is unique in both examples. Figure 5.3 FG

show a simple example of visual search asymmetry, in which the ease of search can change

when the target and distractor swap identity. Figure 5.3 F is an example for which the target

is more difficult to find when it is defined by the absence of a basic feature that is present in

the distractors.

Further, efficiency, defined as the insensitivity of the search RT to the set size of the search,

is insufficient to describe the ease of a search by itself. Some searches can require longish

RTs even though these RTs are insensitive to the search set size.

between textures of bars    unique vertical pops out  
B: Texture segmentationA: Feature search:

Fig. 5.4: Demonstration that visual search and segmentation are typically related. A: A

vertical bar pops out among horizontal bars. B: A texture of vertical bars is readily segmented

from a texture of horizontal bars.

Visual saliency is also manifest in texture segmentation behavior (Julesz 1981). Texture

segmentation becomes easier when the border between two texture regions is more salient

(Nothdurft 1991, Li 1999b, Li 2000b).

When a unique target pops out of nontargets in a visual search display, one texture region

made of many of these target items is also typically easy to segment from another texture

region made of the nontarget items, as demonstrated in Fig. 5.4. This link between visual

search and segmentation will be elaborated further in the chapter.

5.1.3 Saliency regardless of visual input features

One can compare the saliency induced by different input features such as color and orientation.

For example, in Fig. 5.2 A, both the location of the red bar and the location of the non

horizontal bar are salient. If observers freely view this image in a task in which they do

not have a preference for either feature, one can see which location attracts attention more

strongly. Phenomenologically, it is as if there is a saliency map of the visual space, such that

locations with higher saliency values in this map are more likely to attract attention, regardless

of the visual input features that make those locations salient. In other words, once feature

distinctions are converted into saliency values, or a raw visual image is turned into a saliency

map, the original image feature values that caused these different saliencies are irrelevant as

far as bottomup attraction to attention is concerned. This is true even if the rules by which

different features (or feature combinations) are converted into saliency values differ. In fact,

this feature irrelevance is (implicitly) part of the definition of saliency, since the concept

makes no reference to the feature dimensions or values that determine its values.

That saliency values are independent of input features may be a reason why traditional

models (Koch and Ullman 1985, Wolfe et al. 1989, Itti and Koch 2000) compute saliency from

visual inputs according to a framework which can be paraphrased as follows (Fig. 5.5 A).
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A: The traditional framework for a bottom-up visual saliency map

B: Application to feature-search (left) and conjunction-search input (right)

Fig. 5.5: A: Schematic of the framework for traditional models of visual saliency. This

framework implies that a saliency map should be in a brain area (such as the lateral intraparietal

area (LIP) (Gottlieb et al. 1998)) where cells are untuned to visual features. B: Application

of this framework on featuresearch (left) and conjunctionsearch (right) stimuli. Only the

relevant feature maps are shown, and the activations in each feature map are higher when there

are fewer items in that map. The master map has a hot spot at the location of the red bar in

the image for the feature search to attract selection, but it has no hot spot for the conjunction

search image. Adapted with permission from Zhaoping, L., Theoretical understanding of

the early visual processes by data compression and data selection, Network: Computation in

Neural Systems, 17(4): 301–334, Fig. 12, copyright c© 2006, Informa Healthcare.

Visual inputs are analyzed by separate feature maps, e.g., red feature map, green feature map,

vertical, horizontal, left tilt, and right tilt feature maps, etc., in several basic feature dimensions

such as color, orientation, and motion direction. The activation of the unit representing an

input at a particular location in its corresponding feature map decreases roughly with the

number of the neighboring input items sharing the same feature value. Hence, in an image of

a red bar among blue bars, as in the left example of Fig. 5.5 B, the red bar evokes a higher

activation in the red map than that of each of the many blue bars in the blue feature map. Then,

the saliency value for a location in the master map is the summation of the activations in all the

separate feature maps associated with that location. The summation implies that the saliency

values in the master map generalize across the actual input features. In the master saliency

map for the left example of Fig. 5.5 B, the red bar evokes the highest activation at its location

and attracts visual selection. By contrast, a unique redvertical bar, among redhorizontal and

bluevertical bars, does not evoke a higher activation in any single feature map, red, blue,

vertical, or horizontal, and thus not in the master map either.
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The traditional framework provides a good phenomenological model of the saliency

implied by behavior in feature and conjunctive searches. It has subsequently been made more

explicit and implemented in computer algorithms (Itti and Koch 2000). It does not explicitly

specify the neural mechanisms or the cortical area(s) underlying the feature and master

maps. However, it implies that the master saliency map should be in a cortical area where

neurons are not tuned to visual feature values, since combining the feature maps eliminates

the feature selectivity in the master map. The LIP (lateral intraparietal area) or FEF (frontal

eye field) could be candidates for this master map, since their neural activities are untuned

to input features. This implication of feature irrelevance has had an obvious impact on the

directions of experimental investigations—for many years, few experiments looked for the

neural substrates of the saliency map in early visual areas, where neurons are feature selective.

Contrary to intuition, the fact that saliency is independent of particular input features does

not mean that the cells reporting saliency must be untuned to input features. If saliencies

are signaled by the activities or firing rates of neurons, then “signaling independent of input

features” can simply mean that the neural firing rates associated with saliency are universal,

independent of the neurons’ feature preferences. For example, if one neuron prefers red color

and another prefers vertical orientation, then the two neurons signal the same saliency value

if they have the same firing rate, and the more active neuron signals a higher saliency than the

less active neuron, regardless of their (different) feature preferences. This is just like the value

of a pound sterling of English currency is independent of the race or gender of the currency

holder.

In principle, according to this idea, V1 could contain the saliency map, since V1 neurons

can use their activities to signal saliencies at the locations of their receptive fields, despite their

respective feature preferences. This does not mean that the selectivities of the V1 neurons to

features are useless for visual computation beyond saliency. For instance, these selectivities

can be used for decoding visual inputs in a visual area downstream along the visual pathway.

However, whether or not they are used as part of other computations should not be relevant for

saliency signaling (Li 2002). Meanwhile, the saliency values represented in the firing rates of

the saliency signaling neurons can be read out to execute visual selection, such as to execute

a gaze shift to the most salient location. The neurons for saliency readout and execution,

perhaps in the superior colliculus, can be untuned to features, but they are separate from the

neurons computing and representing saliencies in the saliency map (we discuss this in more

detail in Section 5.2.3).

The traditional framework, which uses separate feature maps to sum into a master saliency,

also imposes an unnecessary and unjustified rule on the interaction between features for

saliency. This is illustrated by the following example. Let there be two visual inputs containing

bars, all of them are colored blue. One input contains a unique vertical (blue) bar among

horizontal (blue) bars. The other input contains a unique rightward moving (blue) bar among

leftward moving (blue) bars. Hence, there is an orientation singleton in the first input and

a motion singleton in the other input. Let these two inputs be such that their respective

master saliency maps by the traditional framework are identical to each other. In this saliency

map, the singleton’s location is the most salient location. Now let us change the color of the

singleton in each input to red, with exactly the same red feature value for the two inputs.

Hence, the original orientation and motion singletons are now, respectively, colororientation

and colormotion doublefeature singletons. The traditional saliency framework predicts: (1)

the saliency of each doublefeature singleton is larger than that of the corresponding single

feature singleton; and, (2) the saliency increase from the singlefeature to the corresponding

doublefeature singleton is the same in the two inputs, independent of the feature dimension

which defines the original singlefeature singleton. Prediction (1) arises from the feature

summation rule; and prediction (2) arises from the separation of feature maps in making the
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master saliency map. Although the summation rule and the separation of feature maps seem

natural, and sufficient, for achieving the property of saliency regardless of features, they are

both unnecessary for this property. It will be shown in Section 5.5.3 that both predictions

(1) and (2), which are consequences of the summation rule and the separation of the feature

maps, are inconsistent with experimental data.

In contrast, when saliencies are signaled by the activities or firing rates of featuretuned

neurons, and when some neurons are tuned to more than one feature dimension (such as those

in V1), there is no separation of feature maps in making the saliency map. This allows rich

interactions between various features for saliency, when these neural activities are read out for

their universal saliency values and for the visual locations (but not features) they represent.

In this sense, V1 could hold the saliency map, rather than many coexisting feature maps in

separate subpopulations of neurons; and the SC could be a saliency readout area, rather than

a master saliency map to combine various feature maps. This will be detailed in Section 5.2.

5.1.4 A quick review of what we should expect about saliencies and a

saliency map

Before we proceed further, it is worth reviewing and drawing some conclusions from the

definition and expected manifestations of saliency. To recap, the saliency of a visual location

is defined as the degree in which this location attracts visual selection in a purely bottom

up manner, such that a location having a higher saliency should be more likely to attract

bottomup selection before rather than after another location having a lower saliency. Below

we elaborate this definition somewhat, list a few immediate consequences, and discuss some

implications.

1. The saliency of a location increases with the probability with which this location is

selected bottomup before the other locations in the scene. It is inversely related, either

deterministically or stochastically, to the order in which this location is selected by

bottomup manner mechanisms in the scene.

2. Saliency should be context dependent, since saliency at a visual location is associated

with, and is defined in the context of, the whole visual scene. Hence, the location of a

red apple may be the most salient in one scene full of green leaves, but the same location

and the same apple in another scene made of many other red apples is not salient. In

particular, the RT for gaze to reach this red apple should be much shorter in the first

scene, unless there is a strong topdown influence.

3. In typical behavioral settings, visual selection depends on both the saliencies of visual

locations and topdown factors. Thus, empirical selection approaches selection by

saliency only in the asymptotic limit at which topdown factors are eliminated. This

asymptotic limit is an ideal, which is difficult to reach experimentally. This is because

observers who are behaving consciously inevitably have internal topdown goals that

influence selection, and because viewing a visual input typically triggers awareness and

internal knowledge of the scene, which also affect selection in a topdown, knowledge

driven, manner. Nevertheless, we can still compare saliencies between visual locations

(or visual inputs) when the topdown factors that influence selection are made equal.

Furthermore, we can minimize topdown contributions to selection by minimizing

expectation, knowledge, or awareness of the visual inputs, and we can also shorten

input viewing duration to avoid visual knowledge being triggered or having time to

exert its topdown effects on selection. In particular (as we will see later), saliency can

be well manifested when it works against the topdown factors.



| 201The V1 saliency hypothesis

4. Even if the transformation rule from visual inputs to saliency values depends on the

visual input features concerned, the rule to transform the responses of the saliency

signaling neurons to saliency values, by definition, cannot depend on visual input

features.

5. Any visual location within the visual field should have a saliency value. Therefore, a

saliency map should cover the whole visual field. Consequently, one expects that brain

area(s) computing and reporting the saliency map must be able to respond to the whole

visual field.

6. Since attention shifts typically change the selected location from the center of the visual

field to an eccentric location and since the center of the visual field is often associated

with the current topdown goal of the observer, visual saliency should be mainly, or at

least more strongly, operative at more eccentric locations away from the center of the

visual field.

The above points will be further elaborated in this chapter.

5.2 The V1 saliency hypothesis

The V1 saliency hypothesis was originally proposed in the 1990s, and was elaborated over

several following years (Li 1997, Li 1999a, Li 1999b, Li 2002, Zhaoping 2005b). It states that

V1 creates a bottomup saliency map of visual space such that, first, the saliency of a location

is represented by the highest of the responses of the V1 neurons whose receptive fields cover

that location; and second, the receptive field location of the most active V1 cell in response to

a visual scene is the most salient location in the scene.

Usually, a small image feature evokes responses from many V1 cells which have over

lapping classical receptive fields (CRFs) and may have different feature preferences. For

example, a short, red vertical bar can excite a neuron preferring the color red, another neuron

preferring vertical orientation, a third neuron preferring both the color red and vertical orien

tation, and a fourth neuron whose most preferred orientation is 5 degrees from vertical, and so

on. The receptive fields of all these neurons include the location of the bar. According to the

V1 saliency hypothesis, the saliency at this bar’s location is represented by the response of the

fastest firing neuron (i.e., the neuron with the highest response) with a receptive field covering

this location in response to the image containing the bar, regardless of the feature preference

of the neuron having this response. Locating the cell that is most responsive to a scene overall

locates the most salient location. Saliency does not depend on extraneous processing, such as

whether input features are decoded beforehand, simultaneously, or never, from the responses

of the same cell population (potentially in a complex and featurespecific manner from the

population responses (Dayan and Abbott 2001); decoding will be discussed in Chapter 6).

It is not economical to use cortical areas beyond V1 along the visual pathway to realize a

saliency map, whether or not the cells in those areas are feature independent. That V1 cells

have small CRFs implies that the spatial resolution of a V1based saliency map can be better

than a map based anywhere downstream. Furthermore, since V1 is at an early stage on the

visual pathway, saliency can be signaled quickly. High spatial resolution and alacrity are both

desirable for bottomup visual selection.

It may come as a surprise to many experienced vision researchers, who are familiar with

the traditional framework of saliency (Fig. 5.5) and its implications, that V1’s activities could

signal saliency. It has been known since the 1960s that V1 neurons are tuned to local visual

features like orientation, color, motion direction, binocular disparity (Hubel and Wiesel 1968),

and input scales (see Chapter 2). It was not obvious that V1 neurons could signal salience,



The V1 saliency hypothesis202 |

which depends on global context—after all, a vertical bar is salient in the context of horizontal

bars, but the same vertical bar is not salient among other vertical bars. Until recently, V1 had

never been looked at as playing an essential role in computing saliency.

Figure 5.6 uses the metaphor of an auction to help explain this extended role of V1.

An auction shop has the slogan “Attention auctioned here; no discrimination between your

feature preferences; only spikes count;” three V1 neuron bidders are depicted, with one tuned

to motion direction with one spike’s worth of bidding “money,” another tuned to red color

with 3 spikes’ worth, and the third one tuned to a tilted orientation with 2 spikes’ worth.

The auctioneer, although feature blind, can do his job perfectly provided that he can count

the spike “money.” Of course, a featureblind auctioneer does not mean that the “attention”

awarded to the highest bidder is feature blind—postselectional decoding should recognize

the features at the selected visual location. The superior colliculus (introduced in Section

2.5) could possibly play the role of the auctioneer—it receives monosynaptic inputs from

V1; its neurons are poorly or not featuretuned, but their receptive fields are retinotopically

organized; and it directs eye movements, which can be seen as the ultimate manifestation of

the attention that is awarded to the receptive field location of the highest bidder.

This metaphor also conveys an important aspect of the V1 saliency hypothesis: attention

does not have a fixed price—it is just that the highest bidder wins. A given level of neural

activity may signal the most salient location in one scene, when it is the highest among the

responses of the population of V1 neurons, but the same activity level may signal only a

mediocre saliency in another input scene, when it is only typical among the responses of the

population. Hence, it is not sufficient to record the activity of a single V1 neuron to determine

saliency; measurements across the neural population are required to determine whether one

neuron signals the most salient location.

5.2.1 Detailed formulation of the V1 saliency hypothesis

A location with a larger scalar saliency value in the saliency map is more likely to be selected by

bottomup attentional mechanisms for further visual processing. Here, by selection, we always

mean selection by bottomup mechanisms only. According to the V1 saliency hypothesis,

saliency values are represented by the firing rates of V1 neurons. Let (x1, x2, ..., xn) denote

the centers of the RF locations of the V1 cells with responses (O1, O2, ..., On). Given a

location x, let xi ≈ x mean that the receptive field of the neuron with response Oi covers

location x. Let

SMAP(x) ≡ maxxi≈xOi, the highest response to x;

then SMAP(x) as a function of x is the saliency protomap.
(5.4)

The SMAP(x) value in this saliency protomap is the value that location x bids for selection in

the sense of the attentional auction described in Fig. 5.6. Therefore, this protomap completely

determines, and can be translated into, the saliency map through the readout of the auction.

This makes the following hold.

1. If two scenes generate identical saliency protomaps, then their saliency maps are

identical.

2. Within a scene, if SMAP(x) >SMAP(x′), then the saliency at location x is higher than

that at location x′.
3. If the saliency protomap values for two scenes are identical to each other at all locations

except location x, then this location is more salient in the scene with the larger proto

saliency value SMAP(x).

4. The third point above is a special case of the following. Saliency at location x increases

with the degree in which SMAP(x) is relatively higher than SMAP(x′) at other locations
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A: The theory of a bottom-up saliency map from V1

V1

Bottom-up selection:
prefers the receptive field location
of the most active V1 cell regardless
of its feature preference

Each location drives many
V1 cells: color cells,

orientation cells, motion
cells, color-orientation

cells, motion-orientation
cells, ...

Visual input

B: Its cartoon interpretation

2 $pikes

Auctioneer

Oh, no!
He only 

money

Hmm... I am 
feature blind

anyway

feature preferences, only spikes count!

Attention auctioned here
no discrimination between your

cares about

1 $pike 3 $pikes

A
motion-
tuned
V1 cell

A
color-
tuned
V1 cell

An
orientation-

tuned
V1 cell

Fig. 5.6: A schematic summary and a cartoon interpretation of the V1 saliency hypothesis.

In contrast with previous accounts, no separate feature maps, nor any summation of them, is

needed in the V1 theory. V1 cells signal saliency despite their feature tuning. Adapted with

permission from Zhaoping, L., Theoretical understanding of the early visual processes by data

compression and data selection, Network: Computation in Neural Systems, 17(4): 301–334,

Fig. 12, copyright c© 2006, Informa Healthcare.

x′. Hence, for example, if S̄ and σs are the mean and standard deviation of the proto

saliency SMAP(x) across space, a locationx tends to be more salient when SMAP(x)/S̄
and (SMAP(x)− S̄)/σs are larger.

Since the saliency protomap completely defines the saliency map through the attentional

auction, from here on, we will refer to the saliency protomap SMAP(.) as the saliency

map and SMAP(x) as the saliency value for location x, where it is not necessary to draw a
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distinction between the saliency map and the saliency protomap. We will see that this notion

of a saliency map leads to nontrivial, and experimentally testable, qualitative and quantitative

predictions.

The most salient location in the scene is the location with the highest saliency value in the

saliency map:

the most salient location x̂ = argmaxx [SMAP(x)] . (5.5)

The most salient location can also be identified as the RF location of the most active V1 cell,

i.e.,

the most salient location x̂ = xî, where î = argmaxiOi. (5.6)

One might worry that the most salient locations defined by the two equations above are not

precisely the same. For example, let the responseO1 > Oi6=1 of the first neuron be the highest

among all V1 neural responses, and let the receptive field of this neuron cover a circle of one

degree in diameter centered at location x1. From equation (5.6), x̂ = x1. Meanwhile, from

equation (5.4), the saliency value SMAP(x) will be the same for all locations xwithin that one

degree diameter circle centered atx1. Then by equation (5.5), the most salient location includes

all locations x within this circle, rather than just its center location x1. This inconsistency

however merely defines the spatial resolution of the saliency map. For the main functional role

of saliency, which is to specify how attention should shift using saccades (Hoffman 1998),

this resolution, as defined by the sizes of the V1 receptive fields, is adequate. In particular,

it is no larger than the typical size of a saccadic error, which is the discrepancy between the

target of a saccade and the actual gaze location brought by this saccade (Becker 1991). Note

that the sizes of the V1 receptive fields scale with the eccentricity, and the saccadic error is

about 10% of the eccentricity of the saccadic target (Becker 1991).

What we currently know does not determine whether “the V1 cells” that the V1 saliency

hypothesis suggests to participate in the attentional auction include all cells in this area or just

a subpopulation. Certainly, it is unlikely that these cells include the inhibitory interneurons in

V1. However, “the V1 cells” should cover the whole visual field. For simplicity, in this book,

we will not distinguish between a putative subpopulation and the other V1 cells.

5.2.2 Intracortical interactions in V1 as mechanisms to compute

saliency

It has been suggested that intracortical interactions between V1 neurons are the neural mech

anism by which saliency is computed. As seen in Section 2.3.9, the response of a V1 neuron

to visual inputs in its classical receptive field (CRF) can be influenced by contextual inputs

from outside this CRF. The intracortical neural connections, which link nearby neurons whose

CRFs may or may not overlap, mediate these intracortical interactions between the neurons.

These interactions have been suggested to underlie the contextual influences which underlie

the context dependence of a neuron’s response. This dependence is essential for computing

saliency since, e.g., a vertical bar is salient in the context of horizontal bars but not other

vertical bars.

The dominant contextual influence is isofeature suppression, which is the suppression of

the response to the input within a CRF when the context contains inputs with the same or

similar features (Knierim and Van Essen 1992, Wachtler, Sejnowski and Albright 2003, Jones,

Grieve, Wang and Sillito 2001). Isofeature suppression is believed to be caused by the mutual

antagonism between nearby V1 neurons tuned to similar features such as orientation and

color. For the case of orientation, this suppression is known as isoorientation suppression;

see Section 2.3.9. Hence, e.g., a cell’s response to its preferred orientation within its CRF is

suppressed when the CRF is surrounded by stimuli sharing the same orientation.
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 A B

V1 neurons preferring and responding to bars in red circles experience no or less iso-orientation
suppression than neurons preferring and responding to bars in the black circles

(dashed circles mark classical receptive fields, not part of visual inputs)

Fig. 5.7: The responses to an orientation singleton or a bar at a texture border will be higher

because isoorientation is absent or weaker, respectively. The dashed circles mark the CRFs

of the neurons responding to the bars enclosed. In A, the vertical bar is unique in having

no isooriented neighbors. Hence, a neuron tuned to a vertical orientation and responding to

this bar is free from the isoorientation suppression which affects neurons that are tuned to

a horizontal orientation and respond to the horizontal bars. In B, a bar at the texture border,

e.g., the one within the red circle, has fewer isooriented neighbors than a bar that is far from

the border (e.g., the two bars in the black circles). Hence, neurons responding to the border

bars are less affected by isoorientation suppression.

Figure 5.7 illustrates how isoorientation suppression makes V1 responses to a salient

orientation singleton or an orientation texture border higher than responses to the background

bars. For the case of the visual input in Fig. 5.7 A, a cell preferring vertical orientations and

responding to the vertical bar escapes any isoorientation suppression, because there is no

neighboring vertical bar to evoke activity in neighboring cells that are also tuned to vertical. By

contrast, a neuron preferring horizontal orientations and responding to one of the background

horizontal bars experiences suppression from other horizontally tuned neurons responding

to the neighboring horizontal bars. Consequently, when the contrast of all input bars is the

same, the V1 cell that is activated most strongly by this image is the one responding to the

vertical bar. According to the V1 saliency hypothesis, its location is then the most salient in

this image.

Similarly, the bars at the border of an orientation texture have fewer isooriented neighbors

than those away from the texture border. Thus, neurons responding to a texture border bar in

Fig. 5.7 B experience a weaker isoorientation suppression than that experienced by neurons

responding to the other texture bars.

Figure 5.7 A can be seen as a special case of Fig. 5.7 B in that an orientation singleton

is a texture region with just one texture element. Hence, this singleton itself can be viewed

as its own texture border, and, by the reasoning above for Fig. 5.7 B, is more salient. This is

why, as demonstrated in Fig. 5.4, the facilities of visual search and visual segmentation are

typically related, when the visual features involved correspond.

In just the same way, isocolor suppression between neighboring V1 neurons that prefer

similar colors, and isomotiondirection suppression between neighboring V1 neurons that

prefer similar motion directions, should both make for relatively higher V1 responses to

a singleton in color or motion direction. More generally, isofeature suppression should

make V1 responses relatively higher at locations of higher input feature contrast. Thus,

even though the CRFs are small and the intracortical connections that mediate contextual

influences have a finite range, this mechanism allows V1 to perform a global computation
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such that its neural responses reflect context beyond the range of the intracortical connections

(Li 1997, Li 1999b, Li 2000b). By contrast, retinal neurons respond in a largely context

independent manner, and so they could only adequately signal more specific and context

independent forms of saliency, such as that caused by a bright image spot.

The neural mechanisms in V1 that mediate saliency have other properties. For instance,

whether the saliency at the location of a red vertical bar is more likely signaled by a redtuned

cell or a verticallytuned cell depends on the context. (For simplicity, we ignore neurons tuned

both to the color red and to vertical orientation.) Both these cells respond to the red vertical

bar; whichever one responds more vigorously should signal the saliency of this location

(assuming this location has no other visual inputs). In the context of red horizontal bars in

Fig. 5.8 A, it is the response of a verticaltuned cell that determines its saliency; in the context

of black vertical bars in Fig. 5.8 B, this is determined by a redtuned cell. In either case,

the most responsive neuron is determined by isofeature suppression, and the saliency value

depends only on the firing rate of the most responsive cell, regardless of whether it is color

or orientationtuned.

B A

Fig. 5.8: Contextual dependence of the neurons signaling the saliency of the red vertical bar.

This bar evokes responses in cells preferring red and in cells preferring vertical orientations

(ignoring the cells tuned to the color red and vertical orientations simultaneously for sim

plicity of argument). In A, isoorientation suppression makes the verticaltuned cell the most

responsive to the red vertical bar; in B, isocolor suppression makes the redtuned cell the

most responsive.

5.2.3 Reading out the saliency map

The saliency map SMAP(x) is read out in order to execute an attentional shift. In principle, the

saliency map in V1 could be ignored, i.e., readout is unnecessary unless there is a need to shift

attention. It is important to distinguish a brain area that contains the saliency map SMAP(x)
from the brain areas that read out the saliency map for the purpose of shifting attention. V1’s

saliency output may be read by (at least) the superior colliculus (SC) (Tehovnik, Slocum and

Schiller 2003), which receives inputs from V1 and directs gaze (and thus attention). In this

case, the SC is not considered to compute saliency, but is merely a readout area which selects

the most salient location to execute an attentional shift.

Operationally, selecting the most salient location x̂ does not require SMAP(x) to be

calculated by means of the maximum operation in equation (5.4) to find the highest response

to each location x. Rather, it only needs a single maximum operation î = argmaxiOi over all

neurons i, regardless of their RF locations or preferred input features. This is algorithmically

perhaps the simplest possible operation to read a saliency map, and it can thus be performed

very quickly. Being quick is essential for bottomup selection.

If the readout of saliency is deterministic, the most salient location x̂ should be the first
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one that bottomup mechanisms select in the scene. If readout is stochastic, this most salient

location x̂ is just most likely to be the first one selected.

Merely for the purpose of computing saliency, the maximum operation could be performed

either in V1 or in the readout area, or even both. The single maximum operation

maxiOi = maxx(SMAP(x)) = maxx(maxxi≈xOi) (5.7)

over all responsesOi is equivalent to cascading two maximum operations, the first one locally

maxxi≈x(Oi) to get SMAP(x) and then the second one globally maxx(SMAP(x)). This is

like selecting the national winner maxiOi by having a tworound tournament: first, the local

players near location x compete to get the local winner’s score SMAP(x) = maxxi≈xOi; then,

the local winners from different locations x compete globally to determine the overall winner

maxxSMAP(x). If the local competition is performed in V1, and if the global competition

is done in a readout area such as the SC, then the explicit saliency map SMAP(x) should

be found in the activities of the neurons projecting to the SC. This would license just a

numerically small number of projecting neural fibers from V1 to the SC, consistent with

anatomical findings (Finlay, Schiller and Volman 1976). If the competition is done in a single

round tournament in the SC or if both rounds of a tworound tournament are performed in the

SC, then the SC needs to extract the saliency map from the whole population of V1 responses.

The V1 saliency hypothesis is agnostic as to where and how the maximum operations are

performed; these questions can be investigated separately.

Since V1’s responses O = (O1, O2, ..., On) most likely play additional roles beyond

saliency, it is necessary that the maximum operation or competition that selects the most

salient location does not prevent the original responses O from being sent to other brain

areas such as V2. Therefore, multiple copies of the signals O should be sent out of V1 via

separate routes: one to the saliency readout area and the others to other brain areas for other

visual computations. For saliency, the maximum operation is only needed en route (perhaps

in the layer 5 of V1) to, or in, the saliency readout area. This need not distort the O values

projecting to other brain areas.

5.2.4 Statistical and operational definitions of saliency

A salient location, such as that of the orientation singleton or the texture border in Fig. 5.7,

is typically a place where visual input deviates from its context to a statistically significant

degree. Consider covering the unique vertical bar in Fig. 5.7 A. One would naturally expect

the bar at the covered image location also to be horizontal. In other words, conditional on

the contextual input, the probability that this location contains a vertical bar is very small.

Similarly, given the horizontal bars in the left half of the image in Fig. 5.7 B, without the

knowledge of the presence of vertical bars in the right half of the image, the probability that

the orientations of the bars are vertical in the middle of the image is quite low. Within textures

of uniformly oriented bars as in Fig. 5.7, input statistics are translationally invariant, i.e., are

identical at all locations. Hence, saliency could be linked to the degree to which the translation

symmetry of one of a class of input statistics is broken (Li 1997, Li 1998b, Li 1999b, Li 2000b).

This notion is related to the one that saliency is associated with surprise or novelty (Itti and

Baldi 2006, Lewis and Zhaoping 2005). Other related notions of saliency include: a salient

location is where an “interest point” detector (for a particular geometric image feature like

a corner) signals a hit or where local (pixel or feature) entropy (i.e., information content) is

high (Kadir and Brady 2001).

Meanwhile, we saw in Section 5.2.2 that isofeature suppression in V1 allows the neurons

in this area to detect and highlight the salient locations where local statistics (such as the

average of the values of basic features such as color, orientation, and motion direction over
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a neighborhood) change significantly. Ignoring any dependence on eccentricity for simplicity

(or considering only a sufficiently small range of eccentricities), we assume that the properties

of V1 CRFs and intracortical interactions are translation invariant. This implies that the input

tunings and stimulusbound responses to inputs within a neuron’s CRF do not depend on

the location of that CRF and that the interaction between two neurons depends only on

the relative, but not the absolute, locations of their CRFs. In that case, the V1 responses

should be translation invariant when the input is translation invariant (provided that there

is no spontaneous symmetry breaking; discussed in Section 5.4.3). This input translation

symmetry arises, for example, in an image comprising a regular texture of horizontal bars.

It can also be generalized to cases such as the image of a slanted surface of a homogenous

texture. However, when some statistics associated with these input features are not translation

invariant, the responses of V1 neurons are expected to exhibit corresponding variabilities.

Therefore, V1 mechanisms can often detect and highlight the locations where input symmetry

breaks, and this will typically arise at the boundaries of objects. The V1dependent process

of highlighting salient object boundaries has also been termed as preattentive segmentation

without classification (Li 1998b, Li 1999b), since the operation presumably occurs before

object recognition or classification.

However, not all changes in visual input statistics make the corresponding input locations

salient. Extensive studies have identified some of the kinds of input statistics whose change

can make a location salient (Julesz 1981). For example, although there are exceptions (see

Fig. 5.36 C), it has been observed that human observers can easily segment two textures which

differ from each other according to their first and second order statistics, but not when the

two textures differ in only higher order statistics. Hence, if one were to define saliency by the

degree of change in some kind of input statistics, then this definition would need to include

the individual sensitivity of saliency to changes in each kind of input statistics.

The basis of verifying whether a computational definition of saliency captures the reality

should be our operational definition of saliency as the degree in which a visual location attracts

attention by bottomup mechanisms. This operational definition of saliency should also offer

a basis to test any theory about saliency. In particular, the V1 saliency hypothesis should be

tested against the behavioral data on saliency. For example, if a particular change in visual

input statistics does not make the corresponding visual location behaviorally salient, then,

if the hypothesis is correct, that location’s saliency, as computed from V1 responses, should

remain low, despite the change in the statistics of visual inputs.

As discussed in Section 5.1.1.2, saliency can be assessed by the reaction times and

accuracies achieved in visual search and segmentation tasks. These tasks must be designed

in such a way that the saliency of the visual location of interest is inversely related to the RT

in the task (see Fig. 5.3), or monotonically related to the task performance accuracy using a

brief visual display. To test the V1 saliency hypothesis, the predicted saliency from the V1

responses should be compared with that evident from the RTs and accuracies found in the

behavioral experiments.

5.2.5 Overcomplete representation in V1 for the role of saliency

Chapter 4 discussed how the efficient coding principle could not readily explain the fact that

V1 representation of visual input is highly overcomplete. This apparent overrepresentation

greatly facilitates fast bottomup selection by V1 outputs (Zhaoping 2006a). To see this more

clearly, let us focus on orientation as a feature (ignoring other features such as color, motion,

and scale). There is a large number of different cells in V1 tuned to many different orientations

near the same location. This representation O helps to ensure that there is always a cell Oi at
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each location that explicitly signals the saliency value of this location (at least in the case that

the saliency arises from the orientation feature).

For example, let there be 18 neurons whose receptive fields cover a location x; each neuron

prefers a different orientation, θi = i · 10o for i = 1, 2, ..., 18, spanning the whole 180o range

of orientation. The orientation tuning width of the neurons is sufficiently wide that presenting

a bar of any orientation at x should excite some of the 18 neurons, with at least one being

excited nearly optimally. This neuron will duly signal the saliency of the input. An input bar

oriented at θ = 31o would, for example, have its saliency signaled by the neuron tuned to 30o.

Imagine instead an alternative representation which has only three neurons covering this

location, preferring orientations 0o, 60o, and 120o from vertical. To a 31o tilted bar, the most

responsive neuron prefers 60o, the second most responsive one prefers 0o, but the actual

response of neither comes close to that of their preferred 60o or 0o bars, respectively. The

maximum neural response to a 60o bar would be higher than that to the 31o bar, and if saliency

is defined by the maximum neural response, the 31o bar would appear less salient than the

60o bar. To rescue the calculation, the saliency of the 31o bar would have to be calculated

as a function of responses from multiple underlying neurons (e.g., from the 0o and 60o

preferring neurons, or from all three neurons), and this function would have to depend on the

number of input bars at the same location x. The computational complexity of this calculation

would increase dramatically when other feature dimensions and contextual inputs were also

considered. It is completely unclear how such a saliency function could be computed and

whether the computation would compromise the goal of fast saliency signaling along with

adequate representation of the visual input.

It is likely that V1’s overcomplete representation is also useful for other computational

goals which could also be served by V1. Indeed, V1 also sends its outputs to higher visual areas

for operations, such as recognition and learning, that go beyond selection. Within the scope

of this chapter, I will not elaborate further upon our poor understanding of what constitutes

the best V1 single representation for computing saliency as well as serving these other goals

(although, as discussed, there can be different output channels for different goals).

5.3 A hallmark of the saliency map in V1—attention

capture by an ocular singleton which is barely

distinctive to perception

Everyday experience tells us that an item will only be salient if it is perceptually very distinct

from its surroundings. This is the case, for example, for a red item among green ones or for

a vertical bar among horizontal bars. It is thus surprising that the V1 saliency hypothesis

predicts the following: an ocular singleton, which differs from surrounding items only by

being shown to a different eye and is barely perceptually distinct, can be roughly as salient

as a color or orientation singleton. For example, a horizontal bar shown to the left eye among

surrounding horizontal bars shown to the right eye 14 is predicted to be highly salient.

This prediction arises because isofeature suppression in V1, which is responsible for

feature singleton popout, also applies for the feature that is the eye of origin of a visual input.

This is underpinned by the many monocular neurons in this area, and indeed it is evident in

14Ocular singletons can be presented using stereo goggles. Some basic constraints need to be satisfied in such

dichoptic presentations: vergence eye positions (which focus on specific locations in a threedimensional scene) are

anchored to elements of the display such as an image frame common to the two eyes; and the spacing of the elements

should be such that neither binocular rivalry nor stereo matching occur for items in the two eyes (at least within a

brief duration).
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the observation that, when a V1 neuron responds to a monocular input, its response is more

suppressed when the surrounding inputs are presented to the same, rather than to the other,

eye (DeAngelis, Freeman and Ohzawa 1994).

However, an ocular singleton is not perceptually distinctive because few neurons down

stream from V1 along the visual pathway are monocular. Various sources of evidence suggest

that perception depends on the activity of extrastriate neurons; perception is thus blind to the

eye of origin for monocular inputs. The lack of monocular cells in the extrastriate cortex is

reflected in optical imaging of the ocular dominance columns. Figure 2.23 shows that these

columns seen from the cortical surface stop abruptly at the border between V1 and V2, be

cause V2 does not have enough monocular neurons. Therefore, the response of a binocular V2

neuron to a monocular input does not contain information regarding whether the input comes

from the left or the right eye. This blindness at the neuron level is manifested behaviorally. For

instance, in an experiment, observers were asked to report (and to guess, if necessary) whether

there was a single item presented to the right eye among many background items presented

to the left eye in a perceived image of these items (whose luminances are independently and

randomly chosen). Their reports did not statistically differ from random guesses (Wolfe and

Franzel 1988). Apparently, observers cannot distinguish an ocular singleton from the back

ground items by its unique eye of origin. However, this does not mean that the singleton did

not attract their attention. Indeed, this is an example for which the saliency of a visual input

cannot be measured by the RT or accuracy of observers to find or identify this input.

In sum, the eyeoforigin signal is mainly, or exclusively, available in V1 among all the

visual cortical areas. Furthermore, we know from Section 2.5 that upstream neurons are likely

not involved in saliency. That is, in monkeys, the projection from the retina to the superior

colliculus is normally not involved in visually guided eye movements; further, there is no

projection from LGN to the superior colliculus. Therefore, the predicted high saliency of an

ocular singleton (to guide attention or gaze shift) would be a clear fingerprint of the role of

V1.

Despite the lack of reliable perception, one can probe the saliency of an ocular singleton

by making it task irrelevant and testing if it interferes with visual search by distracting

attention away from a true target. Figure 5.9 shows a visual input for observers who are

asked to search for an orientation singleton among background bars. All bars are monocular,

and one of the nontarget bars is an ocular singleton. Observers perceive an image which

is like the superposition of the image to the left eye and the image to the right eye. If gaze

or attention is attracted in a bottomup manner to the ocular singleton, it will interfere with

the search, lengthening RTs. This was indeed observed. Take the case that the singletons

are on opposite sides of the image, and 12o from the center of the display, which is where

gaze initially pointed before the search begins. The first gaze shift during the search was

directed to the taskirrelevant ocular singleton on 75% of the trials. This was the case even

though the orientation singleton target was very salient, since it was tilted 50o away from

659 uniformly oriented nontarget bars, and observers were told to search for it as quickly as

possible (Zhaoping 2012). This is analogous to Fig. 5.2 A, in which the red nontarget bar

among black bars attracts attention automatically away from the target. However, unlike the

ocular singleton, the red bar is highly perceptually distinctive.

We describe in more detail here the experiments showing that the ocular singleton could

attract attention, even though observers could not perceive any visual difference between

it and its neighboring bars. Three different dichoptic presentation conditions, monocular

(M), dichoptic congruent (DC), and dichoptic incongruent (DI) are shown in Fig. 5.10. The

superposition of the two monocular images is the same in these three conditions, and it

resembles the perceived image, which has an orientation singleton bar in a background of

uniformly oriented bars. The orientation singleton is the target of visual search. In the M
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visual search

Perceived image

Target of a

Ocular
singleton

Left eye image Right eye image

Fig. 5.9: An ocular singleton, though taskirrelevant and not perceptually distinct from

background items, often attracts the first shift of gaze, before a subsequent shift to the target

(the orientation singleton) of the visual search (Zhaoping 2012). The colored arrows are not

part of the visual stimulus; they indicate the gaze shifts and point to the feature singletons.

condition, all bars are presented to the same single eye. In the DC condition, the target bar

is an ocular singleton, since it is presented to a different eye than the other bars. In the DI

condition, a nontarget bar is an ocular singleton; it is presented to the opposite lateral side of

the target from the center of the perceived image. In the search for the orientation singleton,

the ocular feature is task irrelevant but could help or hinder the task in DC or DI conditions,

respectively.

Figures 5.11 and 5.12 present experiments using such stimuli, together with their results

(Zhaoping 2008). In Fig. 5.11, subjects had to report whether the orientation singleton, whose

location the observers did not know ahead of each trial, was tilted clockwise or anticlockwise

from horizontal. However, the images were presented so briefly that the task would be difficult

unless attention was quickly guided to the location of the target. The degree of difficulty was

measured by the error rate, which is the fraction of trials in which the observers performed

the task erroneously. Figure 5.11 B shows that the error rate for this task was smaller in the

DC trials than in the M and DI trials. This suggests that attention was guided to the target

more effectively in the DC trials. One may see the DC or DI trials as ones in which an ocular

singleton provides valid or invalid, respectively, guidance of attention to the target. In the M

trials, there is no ocular singleton to guide attention.

Meanwhile, the second experiment in Fig. 5.11 revealed that the same observers were
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Right eye image

on the opposite lateral
side from the target,
in a different eye

Perceived image

Actual images in the left and right eyes

all bars in one eye
Monocular (M)

 target bar in a
different eye

involving task irrelevant
eyes of origin

Dichoptic incongruent (DI)

Analogous stimulus types
involving irrelevant colors

Dichoptic congruent (DC)

   Dichoptic stimulus types

orientation singleton 
to detect an Task:

−−− the target

Left eye image

a background bar,

Fig. 5.10: Schematic of the stimulus used to test the automatic capture of attention by an

eyeoforigin or ocular singleton, even though one can barely perceive any difference between

inputs from different eyes. The ocular feature is irrelevant for the search for an orientation

singleton, and the observers are not required to report it. They perceive an image with an

orientation singleton target among background bars, but this perceived image could be made

from three different dichoptic presentation conditions: monocular (M), dichoptic congruent

(DC), and dichoptic incongruent (DI). The analogous case when color is the irrelevant feature

disrupting the same task is shown on the right. If the ocular singleton is salient and attracts

attention more strongly than the orientation singleton, it should help and hinder the task in

the DC and DI conditions, respectively, by guiding attention to and away from the target.

not necessarily aware of these attentionguiding ocular singletons. When different bars in the

display had randomly different luminances, observers could do no better than chance (error

rate is 0.5) in reporting the presence or absence of the ocular singletons. They did better than

chance when all the bars had the same luminance, because an ocular singleton can sometimes

be identified by an illusory contrast different from the other bars. (Apparently, heterogenous

luminances across the bars made this illusory contrast ineffective for identifying the ocular

singleton by the observers.) Nevertheless, the ability of the taskirrelevant ocular singleton

to guide attention in the first experiment did not depend on whether the luminance condition

was such that, from the second experiment, we would expect subjects to have been able to

identify the ocular singleton.

These findings suggest that RTs to locate the orientation singleton should be shorter in the

DC trials and longer in the DI trials. This was indeed observed when observers were asked to

report as quickly as possible whether the target was in the left or right half of the perceived

image (which remained displayed until they made their choice); see Fig. 5.12. Let RTM ,

RTDC , and RTDI denote the RTs for the monocular (M), dichoptic congruent (DC), and

dichoptic incongruent (DI) stimulus conditions, respectively. The data show RTM > RTDC
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Fig. 5.11: Two experiments showing that an ocular singleton guides attention even when

observers are unaware of its presence (Zhaoping 2008). A: Schematics of test trials in each of

the two experiments. The dichoptic test stimulus, in which all bars are monocular, is binocu

larly masked after being displayed for only 200 ms. In one experiment (top), observers report

whether an orientation singleton, tilted 20o from 659 horizontal bars, was tilted clockwise

or anticlockwise from horizontal. As in Fig. 5.10, all test stimulus bars are monocular, and

a given trial can be randomly monocular (M), dichoptic congruent (DC), or dichoptic incon

gruent (DI). In the second experiment (bottom), the test stimulus is the same as in the first

experiment except that all bars are horizontal, and the ocular singleton has an equal chance of

being present or absent (if present, it is randomly at one of the locations for the ocular single

ton in the first experiment). Observers report whether the ocular singleton is present. In each

trial in both experiments, either all stimulus bars have the same luminance or different bars

have different random luminances. B: Error rates in the two experiments, averaged across five

observers (who participated in both experiments), are shown separately for the two luminance

conditions. In the right plot in B, an error rate significantly different from the chance level

(0.5) is indicated by a “*”.

and RTDI > RTM , in which RTM ≈ 0.6 seconds for typical observers. These relationships

remained true whether or not the subjects were informed that different dichoptic stimulus

types could be randomly interleaved in the trials. Even when they were informed that a

nontarget bar might distract them in some of the trials and were explicitly told to ignore

it (experiment B of Fig. 5.12), RTDI was still greater than their RTM . This suggests that

the bottomup attraction of the irrelevant ocular singleton could not be easily suppressed by

topdown control. The RT difference RTDI −RTM was around 0.2–0.3 seconds on average,

comparable to typical time intervals between two saccades in a visual search. This suggests

that, in typical DI trials, attention or gaze was first attracted to the taskirrelevant ocular

singleton before being directed to the target. This was later confirmed by tracking the gaze of

subjects who were doing this task; see Fig. 5.9.

As mentioned in Section 5.1.2, orientation is one of the basic feature dimensions. That is,
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Experimental design: an ocular singleton in orientation singleton search

B: Observers informed of possible distractions away from the target.

fixationBinocular

Task: report quickly whether the orientation singleton is in the left or right half of the perceived image.

Three experiments: A, B, and C, each randomly interleaving trials of different dichoptic conditions.

A: Did not include the DI trials.

A & C: Observers uninformed of different dichoptic conditions.
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Experimental results: reaction times and error rates in the search task

0

0.1

0.2

M M MDC DC DCDI DI

E
rr

o
r 

R
a
te

0.5

1

1.5 Uninformed Informed Uninformed

M M MDC DC DCDI DI

n=3 n=3 n=4

N
o
rm

a
liz

e
d
 R

T

A B C

A B C
Experiments (A, B, C) and dichoptic conditions (M, DC, DI)

Fig. 5.12: An ocular singleton can speed up or slow down visual search for an orientation

singleton. Each dichoptic search stimulus had 659 isooriented background bars and one

orientation singleton bar, tilted 25o from horizontal in opposite directions. Subjects reported

as soon as possible whether the target was in the left or right half of the perceived image. There

were three experiments, A, B, and C, each of which randomly interleaved trials of various

dichoptic conditions: monocular (M), dichoptic congruent (DC), and dichoptic incongruent

(DI), as in Fig. 5.10. As indicated in the bar charts, experiment A contained M and DC trials,

and experiments B and C each contained M, DC, and DI trials. Observers were not informed

of the different dichoptic conditions except in experiment B, in which they were informed

that some trials might contain a distracting nontarget. RTs (normalized by RTM , which is

around 600 ms, of individual observers, so thatRTM = 1) and error rates are averaged across

n = 3, 3, and 4 observers, respectively, for experiments A, B, and C.

an orientation singleton is sufficiently salient such that visual search for it is efficient, with

RT being independent of the search set size. However, the experiment depicted in Fig. 5.12

showed that an ocular singleton can attract gaze more strongly than an orientation singleton

tilted 50o from the background bars. Hence, the ocular singleton is more salient than the
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Fig. 5.13: Making the target “T” an ocular singleton renders efficient what is otherwise found

to be an inefficient search for a “T” among “L”s (Zhaoping 2008).

orientation singleton, and so the eyeoforigin feature dimension must also be basic. Indeed,

an inefficient search for a letter “T” among background letters “L” can be made efficient when

“T” is an ocular singleton (Zhaoping 2008); see Fig. 5.13. This basic feature dimension of

ocular origin was not recognized until the experimental findings described here, since this

feature was not perceptually distinctive.

5.3.1 Food for thought: looking (acting) before or without seeing

At first, the prediction, that a visual item that is barely distinguishable from its neighbors

can attract attention, like a red flower among green leaves, might seem surprising or even

impossible. This reaction arises from our impression or belief, driven from experience, that

seeing precedes looking, i.e., that we look at something after, or because, we have seen what

it is. The confirmation of this counterintuitive prediction from the V1 saliency hypothesis

invites us to ponder and revise our belief. Logically, one looks in order to see, and looking

should be expected to precede seeing, at least for part of our visual behavior. This is analogous

to the example in Fig. 1.4, when observers do the act of looking or shifting gaze before they

know the identity of the visual input at the destination of their gaze shift. Looking should also

be dissociable from seeing. Indeed, brain lesion patients who cannot recognize objects can

still manipulate objects adequately (Goodale and Milner 1992). According to this analysis,

it is likely that gaze is attracted to the location of the ocular singleton in the perceived

image before the two monocular images have been combined to achieve the perception of the

perceived image. Meanwhile, the perceived image, i.e., the image in observers’ perception

after combining the inputs from the two eyes, contains little or no information about the eye

of origin that could influence gaze.

5.4 Testing and understanding the V1 saliency map in a V1

model

This section presents a model of V1. This model is intended to serve two main purposes: first,

as a substitute for the real V1 to test the relationship between V1 activities and behavioral

saliencies. The experiments on ocular singletons offer convincing support for the V1 saliency

hypothesis. However, we should also examine whether the link between V1 responses and

saliency also applies in general cases, including those for which the saliency effects are subtle.

The literature (Wolfe 1998) contains a wide range of behavioral data on saliency in terms of

reaction times or task difficulties in visual search and segmentation. However, physiological

data based on stimuli used in the behavioral experiments are few and far between. Furthermore,

according to the V1 saliency hypothesis, predicting the saliency of a location requires us to

compare the V1 responses of neurons with that location as their classical RFs to the responses
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of neurons favoring other locations. This would require simultaneous recordings of many V1

units responding to many locations, a very daunting task with current technology. Examining

the responses of all neurons in a simulation of the model provides a simpler, though obviously

inferior, alternative to recording in the actual V1. Figure 5.14 shows an outline of the V1

model and its function.

Second, examining the model neural circuit can help us understand how intracortical

interactions in V1 lead to the computation of contextdependent saliency from local contrast

inputs. Qualitative arguments such as those in Section 5.2.2 suffice for us to envisage how

isofeature suppression could explain the relative enhancement of V1 responses to very salient

feature singletons and texture borders. However, they are insufficient for knowing whether

or how V1 interactions could also account for subtle saliency effects and indeed whether

the neural circuit dynamics are wellbehaved. Obviously, the actual V1 neural dynamics

are well behaved. However, testing whether a model of V1 mechanisms identified by us as

responsible for saliency computation has well behaved dynamics enables us to test whether our

understanding is correct. Simulating the intracortical interactions, showing how they produce

isofeature suppression as well as the less dominant interactions, can allow us to verify our

intuitions and help to identify how various intracortical mechanisms shape visual saliency.

The material in this section is mostly adapted and extended from papers in the literature

(Li 1998a, Li 1999a, Li 1999b, Li 2000b, Li 2001, Li 2002, Zhaoping 2003). These were all

published before the confirmation of the ocular singleton effect and of other predictions of the

V1 saliency hypothesis (described later this chapter). Therefore, this model actually served

the purpose of assessing whether V1 mechanisms could feasibly subserve the computation

of saliency. That is, it tested the V1 saliency hypothesis using behavioral data already known

before the model was constructed, or using selfevident behavioral phenomena. In this section,

we will show simulated V1 responses to representative visual inputs whose behavioral saliency

profiles are well known. Furthermore, we will show examples in which model responses

highlight locations where input statistics break translation symmetry.

5.4.1 The V1 model: its neural elements, connections, and desired

behavior

V1 neurons can be tuned to orientation, color, scale, motion direction, eye of origin, disparity,

and combinations of these. This is in addition to the selectivity to input spatial locations

(and spatial phase/form) by their receptive fields. As an initial attempt to study whether it is

feasible for V1 mechanisms to compute saliency, the model here focuses on only two features,

spatial location and orientation. Thus, each model neuron is characterized by its preferred

orientation and spatial location; all model receptive fields have the same size; and the centers

of the receptive fields sit on a regular spatial grid. Hence, the model ignores other visual cues

such as color, motion, and depth. Emulating and understanding the dependence of saliencies

on the spatial configurations of oriented bars is arguably more difficult than emulating and

understanding the dependence on luminance and color features. Once the feasibility of V1

mechanisms for saliency can be established in this simplified V1 model, the model can then be

extended to include the other feature dimensions and neural selectivities (see Section 5.8.3).

Since the model focuses on the role of intracortical interactions in computing saliency, the

model mainly includes orientation selective neurons in layers 2–3 of V1. These are coupled by

intracortical connections, which are sometimes also called horizontal or lateral connections.

The model ignores the mechanism by which the neural receptive fields are generated. Inputs to

the model are images seen through the model classical receptive fields (CRFs) of V1 complex

cells, which are modeled as edge or bar detectors (we use “edge” and “bar” interchangeably).

(To avoid confusion, here the term “edge” refers only to local luminance contrast. Meanwhile,
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Fig. 5.14: The V1 model and its operation. The model (E) focuses on the part of V1 responsible for

contextual influences: excitatory pyramidal (principal) cells in layers 2–3 of V1, interneurons, and intra

cortical (horizontal) connections. A pyramidal cell can excite another pyramidal cell monosynaptically,

and/or inhibit it disynaptically via the inhibitory interneurons. The model also includes general and local

normalization of activities. F and G are two example input images. Their evoked model responses, C and

D, are those of the pyramidal cells preferring the corresponding positions and orientations. As in many

figures in the rest of this chapter, the input contrast (strength) or output responses are visualized by (in

proportion to) the thicknesses of the bars in the input or output images. A principal cell receives direct

visual input only from the input bar within its CRF. Its response depends both on the contrast of the

bar and the stimuli in the context, the latter via the intracortical connections. Each input/output/saliency

image that is shown is only a small part of a larger, extended input/output/saliency image. At the top (A,

B) are saliency maps, in which each location i is for a hypercolumn. The size of the disk at location i

visualizes the highest response SMAPi among the pyramidal cells responding to this location. A location

is highly salient if this disk is much larger (assessed by a z score) than the other disks in the map. The

notations Îiθ and gx(xiθ) will be defined shortly. Adapted with permission from Zhaoping, L., Theo

retical understanding of the early visual processes by data compression and data selection, Network:

Computation in Neural Systems, 17(4): 301–334, Fig. 8, copyright c© 2006, Informa Healthcare.
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a boundary of a region is termed “boundary” or “border”, which, especially in textures, may

or may not correspond to any actual luminance edges in the image.) Intracortical connections

(Rockland and Lund 1983, Gilbert and Wiesel 1983) mediate interactions between neurons

such that patterns of direct inputs to the neurons via their CRFs are transformed into patterns

of contextually modulated responses (firing rates) from these neurons.

One of the
edge/bar
detectors at
this sampling
location

Hypercolumns
and edge/bar
detectors

A sampling
location for
a hypercolumn

A visual
input image
containing
bars

i  j   θ θ’
i  j   θ θ’

pyramidal cell

The presynaptic  Zoom

A: V1 model: input to model responses B: V1 model’s visual space and neural connections

Responses
after 
intracortical
interactions

connections mainly

excitatory through J

Solid bars: 

inhibitory through W

Dashed bars: 

connections mainly

Through V1’s classical receptive fields

Via intracortical interactions, see 

Fig. 5.15: Schematic of the V1 model. A: An example visual input contains five bars of

equal contrast (marked by red color, to distinguish them from black bars visualizing neurons

and the neural connection pattern); the (black) rectangle (not part of input image) frames

the input image. In the middle is the V1 model, which contains many classical edge or bar

detectors; each detector is visualized by a black bar and is modeled by a pair of mutually

connected neurons: an excitatory pyramidal cell and an inhibitory interneuron (see Fig. 5.16).

A single hypercolumn occupies a spatial sampling location and comprises many detectors

preferring various orientations that span 180o. Without intracortical interactions, five edge/bar

detectors (shown in red in the middle frame) are equally excited by the five equal contrast input

bars through their respective CRFs; no other detector is as substantially activated directly.

Through intracortical interactions, the eventual responses from the five detectors are unequal,

visualized by different thicknesses of the (red) bars in the top frame. B: A schematic of the

lateral connections in the model. The rectangle frames the visual space. Three groups of neural

connections (translated and rotated versions of each other) radiating from three presynaptic

cells are shown. In the zoomed view of one group, the central horizontal bar marks the

presynaptic pyramidal cell preferring horizontal orientations. The thin bars mark the locations

and preferred orientations of the postsynaptic pyramidal cells: the solid ones are for cells

mainly excited by the presynaptic cell through monosynaptic Jiθ,jθ′ connections; dashed

ones are for cells mainly disynaptically inhibited by the presynaptic cell, via connections

Wiθ,jθ′ ; see text.

Figures 5.15 and 5.16 show the elements of the model and the way they interact. Following

original literature, we denote a spatial sampling location by i rather than x, which will
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instead denote membrane potentials of pyramidal cells. At each spatial sampling location i,
there is a model V1 hypercolumn composed of cells whose CRFs are centered at i. Each

of these cells is tuned to one of K = 12 different orientations θ spanning 180o. Based

on experimental data (White 1989, Douglas and Martin 1990), each edge or bar detector

at location i and preferring orientation θ is modeled by one pair of interconnected model

neurons: one excitatory pyramidal cell and one inhibitory interneuron; detailed in Fig. 5.16.

Hence, altogether, each hypercolumn consists of 24 model neurons. Each model pyramidal

cell or interneuron is a simple ratebased neuron (see Section 2.1.2). It could model abstractly,

say, 1000 spiking pyramidal cells or 200 spiking interneurons with similar CRF tuning (i.e.,

similar i and θ) in the real cortex. Therefore, a 1:1 ratio between the numbers of pyramidal

cells and interneurons in the model does not imply such a ratio in the cortex. We often refer

to the cells tuned to θ at location i as simply the edge or bar element iθ. The image that is

shown is represented as inputs Iiθ across various iθ. Each Iiθ models the visual input image

seen through the CRF of a complex (pyramidal) cell preferring location i and orientation θ.

Although readers can follow the rest of this section without any equations, the following

equations summarize the neural interactions in the model (see Section 2.1.2 on neuron models):

ẋiθ = −αxxiθ − gy (yi,θ)−
∑

∆θ 6=0

ψ (∆θ) gy (yi,θ+∆θ)

+Jogx (xiθ) +
∑

j 6=i,θ′

Jiθ,jθ′gx (xjθ′) + Iiθ + Io + Inoise, (5.8)

ẏiθ = −αyyiθ + gx (xiθ) +
∑

j 6=i,θ′

Wiθ,jθ′gx (xjθ′) + Ic + Inoise. (5.9)

In the above equations, xiθ and yiθ model the membrane potentials of the pyramidal cell and

the interneuron, respectively, for edge or bar element iθ; gx(x) and gy(y) are sigmoidlike

functions modeling cells’ firing rates or responses given membrane potentials x and y for the

pyramidals and interneurons; −αxxiθ and −αyyiθ model the decay to resting potentials with

time constants 1/αx and 1/αy; ψ(∆θ) models the spread of inhibition within a hypercolumn;

Jogx(xiθ) models selfexcitation; Jiθ,jθ′ and Wiθ,jθ′ are neural projections from pyramidal

cell jθ′ to excitatory and inhibitory postsynaptic cell iθ; Ic and Io are background inputs

modeling the general and local normalization of activities; and Inoise is input noise which

is independent between different neurons. The pyramidal cell outputs gx(xiθ) (or temporal

averages over these) represent the V1 responses. Equations (5.8) and (5.9) specify how the

pyramidal activities gx(xiθ), which are initialized by external inputs Iiθ, are modified by the

contextual influences via the neural connections. This model can be reproduced using the

complete details in the appendix of this chapter (see Section 5.9).

Note that notations in this chapter often have different semantics from those in other

chapters. For example, K means the number of preferred orientations in a hypercolumn, and

should not be confused with the kernels or filters in the previous chapters. This book tries to

balance between selfconsistency within its own notation, and consistency with the notation

used in the original literature.

The pyramidal responses or output activities gx(xiθ), which are sent to higher visual

areas as well as subcortical areas such as the superior colliculus, will be used to quantify

the saliencies of their associated locations and edge elements. The inhibitory cells are treated

as interneurons. The input Iiθ to pyramidal cell iθ is obtained by filtering the input image

through the CRF associated with iθ. Hence, when the input image contains a bar of contrast

Îiγ at location i and oriented at angle γ, this bar contributes to Iiθ by the amount
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Îiγφ(θ − γ), where φ(θ − γ) is the orientation tuning curve of the neurons.

(See Section 5.9 for the actual φ(x) used.)
(5.10)

To visualize the strength of the input (contrast) and the model responses, the widths of the

bars plotted in each figure are made to be larger for stronger input strength Iiθ, or greater

pyramidal responses gx(xiθ) (or their temporal averages).

In the absence of intracortical interactions between different edge elements iθ, the recip

rocal connections between each pyramidal cell and its partner inhibitory interneuron would

mainly provide a form of gain control for the direct input Iiθ (and make the response tran

siently oscillatory). The response gx(xiθ) from the pyramidal cell iθ would only be a function

of this direct input, in a context independent manner. With intracortical interactions, the influ

ence of one pyramidal cell on the response of its neighboring pyramidal cell is excitatory via

monosynaptic connections and inhibitory via disynaptic connections through the interneu

rons. Consequently, a pyramidal cell’s response depends on inputs outside its CRF, and the

pattern of pyramidal responses {gx(xiθ)} is typically not just a scaled version of the input

pattern {Iiθ} (see Fig. 5.15 A).

Figure 5.15 B shows the structure of the lateral connections in the model (Li 1999b).

Connection Jiθ,jθ′ from pyramidal cell jθ′ to pyramidal cell iθ mediates monosynaptic

excitation. It is present if these two segments are tuned to similar orientations θ ≈ θ′ and

the centers i and j of their CRFs are displaced from each other roughly along their preferred

orientations θ and θ′. Connection Wiθ,jθ′ from pyramidal cell jθ′ to the inhibitory interneuron

iθ mediates disynaptic inhibition from pyramidal cell jθ′ to pyramidal cell iθ. It tends to be

present when the preferred orientations of the two cells are similar θ ≈ θ′, but the centers

i and j of their CRFs are displaced from each other along a direction roughly orthogonal

to their preferred orientations. This V1 model has a translation invariant structure, such that

all neurons of the same type have the same properties, and the neural connections Jiθ,jθ′ (or

Wiθ,jθ′) have the same structure from all the presynaptic neurons jθ′ except for translation

and rotation to suit the position and orientation of the presynaptic receptive field jθ′ (Bressloff,

Cowan, Golubitsky, Thomas and Wiener 2002). The structure of the connections from a single

pyramidal cell resembles a bowtie.

Figure 5.16 illustrates the intracortical connections and their functions in further detail.

The input image in Fig. 5.16 contains just horizontal bars. Hence, neurons preferring non

horizontal orientations are not strongly excited directly and are omitted from the figure. Here,

the monosynaptic connections J link neighboring horizontal bars displaced from each other

roughly horizontally, and the disynaptic connections W link those bars displaced from each

other more or less vertically in the visual input image plane. The full lateral connection

structure from a cell preferring a horizontal bar to cells preferring other bars (including bars

that are not horizontal) is shown in Fig. 5.15 B.

In the input image, the five horizontal bars have the same input contrast, giving equal

strength input Iiθ to the five corresponding pyramidal cells. Nevertheless, the output re

sponses from these five pyramidals are different from each other, illustrated in the top plate

of Fig. 5.16 by the different widths of the bars. The three horizontally aligned bars evoke

higher output responses because the corresponding neurons facilitate each other’s activities

via the monosynaptic connections Jiθ,jθ′ . The other two horizontal bars evoke lower output

responses because the corresponding neurons receive no monosynaptic lateral excitation but

receive disynaptic lateral inhibition from (neurons responding to) the neighboring horizontal

bars displaced vertically from, and not coaligned with, them. (To avoid excessive words, we

sometimes use the term “bars” to refer to “neurons receiving direct inputs from the bars”

when the meaning is clear from context). The three horizontally aligned bars, especially the

middle one, also receive disynaptic inhibitions from the two vertically displaced bars.
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Fig. 5.16: Model elements. To avoid excessive clutter, only cells tuned to horizontal orien

tations are shown; and only connections to and from the central pyramidal cell are drawn. A

horizontal bar, marking the preferred orientation, is drawn on the central pyramidal cell and

the postsynaptic cells to which it is linked via lateral connections. In the input image plane, the

central pyramidal neuron sends axons to other pyramidal cells displaced from it locally in a

roughly horizontal direction, and to the interneurons which are also displaced locally, but in a

roughly vertical direction. These axons are, respectively, for the monosynaptic excitation and

disynaptic inhibition between the pyramidal cells (illustrated in the plots on the right). Five

horizontal bars of equal contrast are shown in the input image in the bottom plane; each excites

a pyramidal cell with the corresponding CRF (the correspondences are indicated by the dashed

lines). The three aligned bars evoke higher responses, while two bars displaced vertically from

them evoke lower responses (shown in the top plate). These differential responses are caused

by facilitation between the three aligned bars via the monosynaptic connections J and the

suppression between the vertically displaced bars by the disynaptic inhibition mediated by

W. Adapted with permission from Li, Z., Preattentive segmentation in the primary visual

cortex, Spatial Vision, 13(1): 25–50, Fig. 2C, copyright c© 2000, Koninklijke Brill NV.

When the input image is a homogenous texture of horizontal bars, each bar receives

monosynaptic lateral excitation from its (roughly) left and right neighbors but disynaptic

lateral inhibition from its (roughly) top and bottom neighbors. The intracortical connections

in the model are designed so that the sum of the disynaptic inhibition overwhelms the sum of the

monosynaptic excitation in an isoorientation texture. Hence, the net contextual influence on

any bar in an isooriented and homogenous texture will be suppressive—this is isoorientation

suppression. Therefore, it is possible for the same neural circuit to exhibit isoorientation

suppression when the input image is a uniform texture, and to exhibit colinear facilitation,

or contour enhancement, when the input image is an isolated contour made of multiple co

aligned bar segments. This is what has been observed in physiological experiments (Knierim
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and Van Essen 1992, Kapadia et al. 1995); see Section 2.3.9. Note that an isoorientation

texture can be seen as an array of parallel contours or lines.

Figure 5.17 illustrates how a smooth contour in a noisy background or along a texture

border should evoke higher V1 responses than the same contour lying within a texture.

The contextual influence depends on both the orientation and the spatial configuration of

the context due to the following reasons: first, lateral connections tend to link bars having

similar orientations; and second, the interaction between these similarly oriented bars tend

to be monosynaptic and excitatory when they are coaligned but disynaptic and inhibitory

when they are not coaligned. Each of the three vertical bars in dashed circles in Fig. 5.17 is

part of a vertical contour. However, the contours are either along a texture border, within an

isooriented texture, or embedded in a random background. Each enjoys the monosynaptic

excitation from its coaligned neighbors. However, isoorientation suppression in V1 implies

that this monosynaptic excitation is overwhelmed by the disynaptic inhibition when the

contour is in the center of an isooriented texture. Meanwhile, when the contour is along a

texture border such that it has fewer parallel contours as neighbors, this disynaptic inhibition

should be reduced. The disynaptic inhibition should be minimal when there is no parallel

contour neighbor, such as when the contour is isolated or embedded in a random background,

as in Fig. 5.17 B. These intuitions will be confirmed by model simulations later in this chapter.

In most, or all figures of this chapter, we only show a small segment of the actual visual

inputs and model responses, and the actual spatial extent of the input and response patterns

should be understood to extend spatially well beyond the boundaries of the plotted regions.

The model has a periodic or wraparound boundary condition to simulate an infinitely large

visual space; this is a conventional idealization of reality.

5.4.2 Calibration of the V1 model to biological reality

We intend to use the V1 model as a substitute for the real V1 to test whether saliency

computations can feasibly be carried out by V1 mechanisms. Thus, we need to ensure that the

relevant behaviors of the model resemble those of real V1 as much as possible. This is just like

calibrating an experimental instrument in order to be able to trust subsequent measurements

taken with this instrument. This does not mean that the model should include parts to model

neural spikes and ionic channels on the neural membrane. (Later on in this chapter, in Section

5.8, it will be argued that equations (5.8) and (5.9) give a minimal model for V1’s saliency

computation.) However, when we use the visual inputs for which the firing rate responses

from the real V1 are known, the model neuron’s firing rate response, which will be used to

predict saliency, should qualitatively resemble the real V1 responses.

More specifically, we examine representative visual input cases (see Fig. 2.24), in which

contextual influences in real V1 have been studied. We simulate V1 model responses to these

inputs, and compare the average firing rates of model and real V1 units to assess the qualitative

resemblance (see Fig. 5.18 and Fig. 5.19). Figure 5.18 A–D model the contextual suppression

that was seen physiologically by Knierim and Van Essen (1992). Figure 5.18 E–H model

the contextual facilitation that Kapadia et al. (1995) recorded. To make model responses and

the real V1 responses agree with each other, a neural circuit containing separate excitatory

and inhibitory neurons is employed for the model V1, and a bowtie pattern of the neural

connections has been designed (see Fig. 5.15 B).

The model neurons’ responses, in particular their dependence on the input context, varies

with the strength or contrast of the input bar on which the contextual influence is being

examined. As in physiological data, stronger and weaker input contrast are associated with

stronger suppression and facilitation, respectively (see Section 5.4.6).
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B: A bar in a smooth contour

A: A vertical bar inside a texture or on a vertical texture border

Fig. 5.17: Colinear facilitation and isoorientation suppression arising from excitation and

inhibition between V1 neurons. All three vertical bars, in blue, black, and red dashed cir

cles, respectively (the circles are for illustration; they are not present in the visual input),

receive strong monosynaptic excitation, because each is coaligned with its top and bottom

neighboring vertical bars. Meanwhile, these three vertical bars receive different degrees of

disynaptic inhibition. Inhibition increases with the number of neighboring bars parallel to, but

not coaligned with, each of them. The bar in the red circle is minimally affected by disynaptic

inhibition; the bar in the black circle is maximally affected, and inhibition can overwhelm the

monosynaptic excitation.

5.4.2.1 Some conventions in displaying the model behavior

Figure 5.18 also illustrates some conventions used to display the model behavior in many

figures of this chapter. To display model input and responses, only a limited spatial range

of the locations i of model units iθ’s is shown for illustration. This limited region should be

understood as being only a part of an infinitely large image, and the plotted image content

should extrapolate beyond the plotted region. (Otherwise, translation invariance of inputs

breaks at the outer boundary of the plotted images, and this break should also manifest in

substantial nonhomogeneities in the response levels.)

In addition, unless otherwise stated explicitly, the model is always simulated in a two

dimensional visual space in a wraparound or periodic boundary condition. In particular, let

location i = (ix, iy) of the model neural units iθ have the horizontal and vertical components

ix and iy , respectively, in a Manhattan grid, such that ix = 1, 2, ..., Nx and iy = 1, 2, ..., Ny;

then location i = (ix = 1, iy) is the horizontal neighbor of location i′ = (ix = Nx, iy), and

location i = (ix, iy = 1) is the vertical neighbor of location i′ = (ix, iy = Ny). Analogous

conditions apply if the visual inputs are sampled in a hexagonal grid. Furthermore, Nx and

Ny are much larger than the maximum length |i − j| of the lateral connections Jiθ,jθ′ and

Wiθ,jθ′ .

Furthermore, to avoid clutter in plots to visualize model responses, we only show bars

whose output responses gx(xiθ) exceed a threshold. For example, due to the finite width of

orientation tuning curves (see equation (5.10)), a bar Îiβ at location i in the input image

actually provides direct inputs Iiθ to multiple model neurons with similar, but not identical,

preferred orientations θ. When input Îiβ and contextual facilitations are sufficiently strong,
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Fig. 5.18: The V1 model qualitatively reproduces representative observations of contextual

influences in V1. Each model input pattern has a central vertical (target) bar with or without

contextual stimuli. All visible bars are presented at the same high contrast (Îiθ = 3.5) except

for the target bar in E, F, G, H where Îiθ = 1.05 is near threshold. Input and output strengths

are visualized by the widths of the bars, using the same scale in all plots. Isolated high and

low contrast bars are presented in A and E. B, C, and D simulate various forms of contextual

suppression of the response to the high contrast target. F, G, and H simulate various forms of

contextual facilitation of the response to the low contrast target. Note that the response to the

near threshold target bar in H is stronger than that to the high contrast target bar in B. Output

responses weaker than a threshold are not plotted to avoid clutter. Adapted with permission

from Li, Z., Preattentive segmentation in the primary visual cortex, Spatial Vision 13(1):

25–50, Fig. 3A–3H, copyright c© 2000, Koninklijke Brill NV.

more than one model neuron at location i can be activated (making gx(xiθ) > 0). However,

the responses of the less activated bars at this location are often below the threshold we use

for visualization, and so these bars do not appear in the plots. Similarly, model input plots are

typically plotted according to the values of Îiθ (i.e., the actual input image) rather than Iiθ
(the direct inputs to individual model neurons).
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Fig. 5.19: Comparison between the output of the model in Fig. 5.18 and physiological

observations. The labels A, B, C, D, E, F, G, and H on the horizontal axes mark the various

contextual configurations in the subplots of Fig. 5.18. Responses are normalized relative to the

response to the isolated bar. In the left plot, data points “o” and “✸” are taken from Knierim,

J.J. and Van Essen, D.C. Neuronal responses to static texture patterns in area V1 of the alert

macaque monkey, Journal of Neurophysiology, 67(4):961–980, figures 4b and 11, 1992. In

the right plot, data points “o” and “✸” are taken from the two cell examples in figures 12B

and 12C of Kapadia, M.K., Ito, M., Gilbert, C.D., and Westheimer, G. Improvement in visual

sensitivity by changes in local context: parallel studies in human observers and in V1 of alert

monkeys, Neuron, 15(4):843–56, 1995. Adapted with permission from Li, Z., Preattentive

segmentation in the primary visual cortex, Spatial Vision, 13(1): 25–50, Fig. 3I–3J, copyright

c© 2000, Koninklijke Brill NV.

5.4.3 Computational requirements on the dynamic behavior of the

model

The V1 model should be applied to visual inputs which have not been used in physiological

experiments. Hence, in addition to calibrating the model to the existing physiological obser

vations, the model should also be designed such that it is well behaved in a manner expected

for a visual system that computes saliency appropriately. This imposes the following require

ments on the model; some of them also help to ensure that the model is properly calibrated to

existing physiological data.

The first requirement is that when the input is not translation invariant, and if the location

where the input changes is conspicuous, the model should give relatively higher responses to

this location. Figure 5.17 A presents an example for which the orientations of the bars change

at the texture border. Elevated responses to the texture border bars highlight the conspicuous

input locations, consistent with their higher saliency. As we have argued, this can be achieved

by mutual suppression between neurons responding to neighboring isooriented bars. Border

bars have fewer isooriented neighbors and so experience less suppression and have relatively

higher responses. Hence, isoorientation suppression should be sufficiently strong to make

the degree of highlights sufficient; indeed as strong as that observed physiologically.

The second requirement is that, when the model is exposed to an homogenous texture, the

population response should also be homogenous. In particular, this means that if inputs Iiθ
to the model are independent of the spatial location i, then the outputs gx(xiθ) should also

be (neglecting the response noise, which should be such that they do not cause qualitative

differences). If this requirement was not satisfied by real V1, then we would hallucinate inho

mogenous patterns even when the input image did not contain them, or we would hallucinate
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Symmetry

breaking

Fig. 5.20: Spontaneous symmetry breaking. Given sufficient mutual suppression between

vertical arrays of bars, the output in response to the homogenous texture input (on the left)

can evolve to one of the two inhomogenous response patterns on the right. Which pattern

will emerge depends on how the initial activities deviate from the homogeneity—an initial

deviation (caused by noise) toward one of the final patterns will be amplified to increase the

chance of the emergence of the corresponding final pattern. The real V1 avoids such symmetry

breaking (in normal conditions); it should therefore also be avoided in the model.

salient locations when there are none. This requirement has to be satisfied in order to obtain

the model behavior demonstrated in Fig. 5.18 B.

It may seem that this requirement should be satisfied automatically, since translation invari

ant (i.e., homogenous) inputs might seem obviously to give rise to translation invariant outputs

when the intracortical connections Jiθ,jθ′ and Wiθ,jθ′ are all translation invariant. However,

translation invariant dynamical systems are subject to spontaneous symmetry breaking, and so

they could generate nonhomogenous responses even when fed with homogenous inputs. For

instance, a thin stick standing vertically has a strong tendency to fall sideways to one side or

another. The symmetric equilibrium position of upright standing is dynamically unstable—a

small perturbation of the stick to one side will be amplified further by the dynamics under

gravity.

In the V1 model, just as for the case of the stick, a homogenous response to a homogenous

texture input pattern (such as the regular texture of vertical bars in Fig. 5.20) is also an

equilibrium point in a dynamic system. Again, as for the stick, this equilibrium point can

be unstable if the neural dynamics are incorrectly modeled. In particular, isoorientation

suppression between neighboring vertical bars in Fig. 5.20 makes neighboring vertical arrays

of bars suppress each other. Consider the case that one array has slightly higher response

than the other because of noise included in the dynamics. Then this array will suppress

neighboring arrays more; those arrays could then suppress the first array less, making the

first array’s responses higher still. Thus, the perturbation could be amplified by a form of

positive feedback in the dynamics. If this positive feedback is too strong, spontaneous pattern

formation occurs, as schematized in Fig. 5.20. The mutual suppression between the arrays is

caused by isoorientation suppression. Intuitively, reducing the strength of this suppression

should help reduce the instability.

However, reducing the strength of the isoorientation suppression will compromise the first

requirement to highlight conspicuous input locations where input changes. Hence, there is a

conflict between the need to have strong isoorientation suppression to highlight conspicuous

input locations, e.g., at a texture border or a feature singleton, and the need to have a weak iso

orientation suppression in order to prevent spontaneous symmetry breaking to homogenous

inputs. Mathematical analysis of the dynamic system of neural circuits, explained in detail
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in Section 5.8, shows that resolving this conflict imposes the following requirement on the

model’s neural circuit: mutual suppression between principal neurons should be mediated

disynaptically by inhibitory interneurons, as in the real V1. This circuit requirement precludes

implementing isoorientation suppression by direct inhibition between the principal units, as

is often the case in artificial neural networks or computer vision algorithms (such as the

Markov random field model).

Thirdly, the strength of mutual excitation between neurons should be limited, in order

to prevent ubiquitous nonzero responses of pyramidal neurons to zero direct input given

contextual inputs. In particular, the colinear facilitation implied by Fig. 5.18 FGH should not

be so strong as to activate a neuron whose most preferred stimulus bar is absent in the input

but is an extrapolation of a straight line present in the input image. Otherwise, the visual

system would hallucinate the eternal growth of short, unchanging input lines.

If V1 does not create a saliency map in the form proposed by the V1 saliency hypothesis,

then the above requirements for a wellbehaved model for saliency computation is not expected

to be consistent with the requirement that the model being calibrated to sufficiently resemble

the real V1 (as in Fig. 5.18 and Fig. 5.19). Nevertheless, a single set of model parameters

(presented in the appendix to this chapter; see Section 5.9) has been found that satisfies both

sets of requirements, reinforcing the plausibility of the hypothesis that V1 creates a bottom

up saliency map. The design and analysis of the recurrent neural circuit are mathematically

somewhat challenging. Hence, I separate the mathematical details into a separate section

(Section 5.8) for readers interested in the nonlinear neural dynamics (Li 1999b, Li 2001, Li and

Dayan 1999). However, the challenging mathematics is far less formidable than simultaneous

in vivo recordings from hundreds of primate V1 neurons using visual search stimuli and the

current technology in physiological experiments.

5.4.4 Applying the V1 model to visual search and visual segmentation

The model parameters include the neural connections Jiθ,jθ′ and Wiθ,jθ′ , the activation

functions gx(.) and gy(, ), the neurons’ decay constants, the way the model activities are

normalized, the local interactions within a hypercolumn, and characteristics of the input

noise. Following the design and calibration, all these parameters were fixed (to the values

presented in the appendix to this chapter; see Section 5.9), and the model’s response to a

variety of input stimuli (including stimuli not used for calibration) can be tested.

In particular, we examine representative visual inputs for which the saliency properties,

e.g., which locations are salient and how saliency depends on input characteristics, are known

from visual experience or behavioral experiments. We compare these saliency properties

with those predicted from the responses of the V1 model.15 These representative inputs and

saliency properties are:

1. Images containing orientation singletons, or borders between isoorientation textures;

2. images contrasting saliencies of visual search targets in feature and conjunction searches;

3. images demonstrating visual search asymmetry;

4. images demonstrating how saliencies depend on input feature contrasts, spatial densities

of input items, or regularities of texture elements;

5. images demonstrating the conspicuousness of a hole in the visual input pattern, or of a

missing input;

15In principle, one could design the model such that the model’s predicted saliency behavior agrees with those

observed in visual behavior or experience. If so, this agreement should be included as one of the computational

requirements for the model in Section 5.4.3. In practice, the model was designed, and its parameters were fixed,

without first ensuring this agreement.
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6. images containing more complex textures whose boundaries are conspicuous to varying

degrees.

Because the model parameters are fixed, the differences in model responses arise solely

from the differences in the input stimuli Îiθ (and, sometimes, the difference between Manhattan

and hexagonal input grids, which we use to sample the input more proficiently).

To illustrate the function of the intracortical interactions, many model simulations use

input patterns in which all visible bars iθ have the same underlying input contrast Îiθ, such

that differential responses to different visible bars can only arise systematically from the

intracortical interactions. For each bar element iθ, the initial model response gx(xiθ) is

dictated only by the external inputs Iiθ to this bar. However, due to intracortical interactions,

the response gx(xiθ) is significantly affected by inputs Ijθ′ to other bar elements jθ′ within

about one membrane time constant 1/αx after the initial neural response. (The current model

implementation has the parameter αy = αx.) This agrees with physiological observations

(Knierim and Van Essen 1992, Kapadia et al. 1995, Gallant, Van Essen and Nothdurft 1995),

if this time constant is assumed to be of the order of 10 milliseconds (ms).

5.4.4.1 Model behavior, and additional conventions in its presentation, in an
example: two neighboring textures

Figure 5.21 shows an example of the temporal evolution of the model responses. The activities

of units in each texture column initially rise quickly to an initial response peak and then

decrease. The initial responses at time t = 0.7 (in units of the membrane time constant, and

excluding latency from retinal input to LGN output) after stimulus onset are roughly the same

across the columns, since they are mainly determined by the direct, rather than the contextual,

input to the receptive fields. By time t = 0.9, responses to the horizontal bars near the vertical

texture border are relatively weaker than responses elsewhere, because these bars enjoy less

monosynaptic colinear facilitation. Neural responses reach their initial peak at around t = 1.2.

Then, isoorientation suppression starts to manifest itself. This suppression lags the colinear

facilitation since it is mediated disynaptically. The suppression is most obvious away from

the texture border, where each bar has more isoorientation neighbors. The black curve plots

the mean responses after input onset as a function of the column, averaging over many cycles

of the oscillating neural responses. This curve is another version of the plot in Fig. 5.22 C.

In the rest of this chapter, we generally omit the temporal details of the responses, and

so we report just the temporal averages of the neural activities gx(xiθ) after the model has

evolved for several time constants after the onset of the visual input Iiθ. (For simplicity, we

often use “outputs,” “responses,” or “gx(xiθ)” to mean the temporal averages of the model

pyramidal responses gx(xiθ).) Further, inputs Iiθ are typically presented to the model at time

0 and persist, unless stated otherwise.

This focus on static inputs and temporally averaged model responses is motivated by the

following considerations: (1) most of the behavioral data on saliency are from experiments

using static visual images presented for a much longer time duration than the time constant

of neurons; (2) even though the initial presentation of the image will lead to a strong impulse

of saliency at locations of all image items, the behavioral effects that are typically measured

depend on the differences between saliencies at locations of different input items, and these

should be most pronounced after this impulse has subsided. (Of course, the model can also be

applied to temporally varying inputs or asynchronously presented inputs. For example, if all

except one item in an homogenous array are presented simultaneously, the temporally unique

item, if presented with a sufficiently long delay, should make its location very salient by the

saliency impulse associated with its onset.)

For each model simulation, the input contrasts, which are represented by Îiθ, are adjusted
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A: Input image (Îiθ) to model (texture column numbers at bottom)
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B: Responses gx(xiθ) versus texture columns above at various time
since visual input onset, or temporal average responses (black).
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Fig. 5.21: The temporal evolution of the model responses to an input pattern. A: The input

pattern contains two regions (excluding the texture column numbers indicated at the bottom);

each visible bar has the same input strength Îiθ = 2.0. The input pattern is presented at

time t = 0 and remains presented thereafter. Only 11 rows by 27 columns of the input bars

are plotted out of a larger image (of 22 rows by 60 columns, using wraparound boundary

conditions). B: The response traces are the average of gx(xiθ) across positions i within the

same texture column, where θ is the orientation of the input bars in the column. Red and blue

curves plot responses at various time points t (indicated to the right of each curve) during

the rising and decaying phases, respectively, of the initial phase of the responses. Time t is

in the units of membrane time constant, and it excludes the latency from retina input to LGN

output. The black curve plots the responses averaged over a duration from t = 0 to t = 12.

The initial responses (at t = 0.7) are not context dependent; but contextual influences are

apparent within half a time constant after the initial response.

to mimic the corresponding conditions in physiological and psychophysical experiments. In

the model, the input dynamic range is Îiθ = (1.0, 4.0), which will allow an isolated bar to drive

an excitatory neuron from threshold activation to saturation. Hence, low contrast input bars,

which are typically used to demonstrate colinear facilitation in physiological experiments,

are represented by Îiθ = 1.05 to 1.2. Intermediate or high contrast inputs (e.g., Îiθ = 2− 4)
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A: Input image (Îiθ) to model

B: Model output (gx(xiθ))

C: Bar plot of the neural response levels
versus texture columns above

D: Thresholded version of the model output in B

Fig. 5.22: Texture segmentation. A is the same as the input pattern in Fig. 5.21 A. B: Model

output responses to A, i.e., temporal averages of gx(xiθ) for the bars. C: The average model

response in each column in B (considering only the most responsive neuron at each texture

element location) is represented by the height of the bar for each column location. This plot

shows the same information as the black curve in Fig. 5.21 B. D: The result of applying

a threshold of half of the maximum response among all bars to the responses gx(xiθ) in

B. Adapted with permission from Li, Z., Visual segmentation by contextual influences via

intracortical interactions in primary visual cortex, Network: Computation in Neural Systems,

10(2): 187–212, Fig. 3, copyright c© 1999, Informa Healthcare.

are used for all the visible bars in other input images, including those illustrating texture

segmentation and feature popout. Meanwhile, the neural output gx(xiθ) ranges from 0 to 1.

Figure 5.22 B further illustrates the model response to the same input as in Fig. 5.21 by

showing the average responses gx(xiθ) for a substantial patch of the input texture. Figure

5.22 C plots the (temporal averaged) responses gx(xiθ) to the bars averaged in each column

in Fig. 5.22 B. It shows that the most salient bars are indeed near the region boundary. Figure



| 231Testing and understanding the V1 saliency map in a V1 model

5.22 D confirms that the boundary can be identified by thresholding the output responses

using a threshold parameter, thresh = 0.5, set to be a proportion of the maximum response

to the image, to eliminate weak outputs that would otherwise clutter the figure. Thresholding

is not performed by V1 but is only used for visualization.

According to the V1 saliency hypothesis, the visual locations surviving the thresholding

are more likely to be selected first by bottomup mechanisms. If the diameter of the attentional

spotlight is smaller than the length of the texture border, then only a part of the border can be

selected first. We might reasonably assume that the reaction time for an observer to complete

the overall task of segmenting two neighboring textures decreases with the time it takes until

any part of the border is first selected. Thus, we can use this reaction time to probe the saliency

of a texture border, without addressing how the full task of segmentation is completed after

the selection of only a small part of the texture border.

Here we also briefly point out something beyond the scope of investigating saliency. In

Fig. 5.22 B, the response highlights are not distributed symmetrically around the texture

border. This could make the viewers perceive the location of the texture border as being

biased slightly to the right of the border. This has indeed been observed psychophysically

(Popple 2003), although there may be additional causes for such biases beyond V1, such as

the perception of figure and ground. This is a demonstration that the V1 saliency mechanisms

make V1 responses distort the visual input image. The ultimate percept is likely the outcome

of additional processing based on the V1 responses.

5.4.4.2 Assessing saliency from model V1 responses: illustrated by the
effect of the orientation contrast at a texture border

According to equation (5.4), the saliency value at each location is the highest (pyramidal)

response to inputs at that location. A location in the V1 model is denoted by i, and various

neurons iθ give responses gx(xiθ). Therefore, saliency value at location i is

SMAPi ≡ maxθ [gx(xiθ)] . (5.11)

As discussed in Section 5.2.1, these pseudosaliency values at various locations need to be

compared with each other in order to determine the most salient location in an image. The

actual saliency value of a location should reflect this comparison. For this purpose, let

S̄ ≡ the average of SMAPi over i and

σs ≡ the standard deviation of SMAPi over i
(5.12)

be the mean and standard deviation of the SMAPi values at all locations i, or alternatively,

at all locations i with nonzero neural responses. The salience of a location i can then be

assessed by

ri ≡
SMAPi

S̄
and zi ≡

SMAPi − S̄

σs
. (5.13)

In our plots of the model responses, quantities r can be visualized by the thickness of the

plotted output bars. Meanwhile, z models the psychological z score.

The quantities S̄ and σs in equation (5.12) could alternatively be defined as

S̄ ≡ average of gx(xiθ) over (i, θ) and

σs ≡ standard deviation of gx(xiθ) over (i, θ).
(5.14)

This alternative is conceptually and algorithmically simpler, since it omits the intermediate

step of obtaining SMAPi = maxθ [gx(xiθ)], in which neurons are grouped according to their

receptive field location i. Using the alternative should only make quantitative rather than
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Fig. 5.23: A, B, C: Additional examples of model behavior at orientation texture borders.

Each example contains two neighboring textures, in which texture bars have orientation θ1
and θ2, respectively, meeting in the middle at a vertical border. In A, B, and C, the saliency

measures for the borders are (r, z) = (1.4, 3.4), (r, z) = (1.7, 3.7), and (r, z) = (1.03, 0.78).
D: Texture border saliency measures r, z (indicated by “+” and “o”, respectively) from the

model as a function of the orientation contrast at the border. Each data point is the averaged

measure from borders of all possible pairs of θ1 and θ2 for a given |θ1 − θ2|. The most salient

column in B is in fact the second left column in the texture region on the right. In C, the

texture border is barely detectable without close scrutiny. Although the texture border bars

are among the most salient ones, their evoked responses are only slightly (∼10%) higher than

those of the other bars (this is imperceptible in the line widths shown in the output). Adapted

with permission from Li, Z., Visual segmentation by contextual influences via intracortical

interactions in primary visual cortex, Network: Computation in Neural Systems, 10(2): 187–

212, Fig. 4, copyright c© 1999, Informa Healthcare.

qualitative difference to r and z. In this book, the r and z values are obtained by using S̄ and

σs in equation (5.12), with the locations i used to obtain the mean S̄ and σs only including

the locations which have nonzero responses gx(xiθ) for at least one θ.

To assess the saliency of a texture border, we replace the SMAPi in equation (5.13)

by the average SMAPi in the most salient grid column parallel to, and near, the texture

boundary. A salient texture border should give large values for (r, z). For instance, in Fig. 5.22,

(r, z) = (3.7, 4.0) at the texture border.

V1 does not (and does not need to) calculate r and z. These two values just help us char

acterize the saliencies of visual locations in order to compare them with our visual experience

or behavior, e.g., to see whether locations with high r and z values indeed correspond to the

locations that are more conspicuous. In particular, locations with smaller z scores are expected

to take longer to select, due to the competition between multiple locations for selection. A z
score larger than three makes a location quite salient and indeed, likely to be the most salient
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in the scene. An example is the texture border in Fig. 5.22. Meanwhile a location with z ∼ 1
is not so salient, even if it has the largest z score in the scene.

Consider applying these tools to the examples of orientation textures shown in Fig. 5.23.

One can see for oneself how conspicuous is each texture border. Texture borders with orien

tation contrasts of 90o (Fig. 5.23 A) or 30o (Fig. 5.23 B) are quite conspicuous, i.e., salient.

However, a border with an orientation contrast of only 15o (Fig. 5.23 C) is rather difficult

to notice without scrutiny. These observations agree with the model’s z scores. The z score

for this 15o contrast border is indeed only z = 0.78. Other 15o contrast borders will lead to

higher z scores—for instance, if one texture comprises vertical bars, and the other texture

comprises bars that are 15o clockwise from vertical.

Psychologically, the justnoticeable orientation contrast for a texture border to be detected

quickly is indeed about 15o. In this model, a border with a 15o orientation contrast has an

average z ≈ 1.8 (averaged over all possible orientations θ1 and θ2 for the bars in the two

textures, given |θ1 − θ2| = 15o); see Fig. 5.23 D. This is expected for a border with only a

moderate saliency psychophysically.

The dependence of the border saliency on the orientation contrast is mainly caused by

the decrease in the suppression between two neighboring bars as the orientation difference

between them increases. This suppression is strongest between parallel, but not coaligned,

bars, it remains substantial when the two bars are similarly but not identically oriented, and

it is much reduced when the two bars are orthogonal to each other. This is reflected in the

bowtie connection pattern between the V1 neurons shown in Fig. 5.15 B, and it is manifest

in the contextual influences that are observed physiologically; see Fig. 5.18 ABD.

Henceforth, the model saliency of a visual location i is assessed by the z score only. In

particular, the z score for the location of a target of a visual search will be assessed this way, to

link with psychophysical data on visual search tasks (Li 1997, Li 1999b, Li 1999a, Li 2002).

5.4.4.3 Feature search and conjunction search by the V1 model

Figure 5.24 demonstrates the model’s behavior for a feature search and a conjunction search.

The same target “ ” is presented in two different contexts in Fig. 5.24 A and Fig. 5.24 B.

Against a texture of “ ”, it is highly salient because its horizontal bar is unique. Against a

texture of “ ” and “ ”, it is much less salient because only the conjunction of “ ” and “ ”

distinguishes it. This is consistent with psychophysical findings (Wolfe et al. 1989, Treisman

and Gelade 1980). In the V1 model, the unique horizontal target bar in Fig. 5.24 A leads to

the response of a V1 neuron that is not subject to isoorientation suppression. All the other

input bars are suppressed in this way. Thus, the horizontal bar evokes the highest response

among all V1 neurons and makes the target location salient. Meanwhile, in Fig. 5.24 B, the

V1 responses to both bars in the target suffer from isoorientation suppression, just like all

the other bars in the image. Hence, neither of the bars in the target evokes a response that is

significantly greater than typical responses to the other bars, and so the location of the target

is not salient.

Therefore, V1 mechanisms can be the neural substrate underlying the psychological “rule”

that feature searches are typically easy and conjunction searches are difficult (Treisman and

Gelade 1980).

Two kinds of feature tunings

Our observations suggest the following: consider a visual characteristic such as orientation or

color that psychophysical rules deem to be a “feature” dimension, supporting such phenomena

as easy or efficient search. Then, we can expect two neural properties to be tuned to feature

values in this feature dimension. The first is that (the responses of) some V1 neurons should be
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B: Conjunction search

Target among ’s & ’s

Target’s z score: z = −0.9

A: Feature search

Target among ’s

Target’s z score: z = 3.3

Fig. 5.24: The behavior of the model in feature (A) and conjunction (B) searches. Stimulus

(top), model responses (bottom), and the z scores for the targets (displayed in the center of each

pattern for convenience) are shown for the two examples. The target in both A and B is made

of a horizontal bar and a 45o (tilted clockwise from vertical) oblique bar intersecting each

other. A: The target is unique in having a horizontal bar, making it a case of orientation feature

search, and leading to a high z score, z = 3.3. B: Each target feature, i.e., the horizontal or the

oblique bar, is present in the distractors; these differ from the target only in the conjunctions

of the two orientations. This leads to a low z score for the target, z = −0.9.

tuned to this dimension—this is of course a classical concept. Orientation tuning is an example;

it enables some V1 neurons to signal the saliencies caused by their preferred features.

The other neural property that should be tuned is the intracortical connection pattern

between V1 neurons, such that the strength of the intracortical connection between neurons

roughly decays with the difference between the preferred features of the two neurons. In

other words, the intracortical connections are tuned to the preferred features of the linked

V1 cells. The most critical aspect of this tuning should be isofeature suppression. Tuned

intracortical suppression makes a feature singleton salient. There can also be a feature tuning

width analogous to that in the neural response tuning to features; this tuning width should

be compatible to the minimum feature difference necessary between a feature singleton and

the background feature values to make the singleton sufficiently salient. For example, an

orientation singleton can be viewed as having a sufficiently unique orientation for salient

popout if the intracortical connections between neurons most activated by the singleton and

background features are absent or insignificant.
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The V1 model explains the results of the feature and conjunction search tasks in Fig. 5.24

without any explicit representation of the conjunctions between features. According to the

argument above, a lack of explicit representation of the conjunction, i.e., a lack of tuning to

the conjunction feature, prevents the conjunction feature from behaving like a basic feature in

terms of saliency. Therefore, a target whose uniqueness is only defined by a feature conjunction

cannot be salient. On the other hand, the target in Fig. 5.24 A is salient not because the whole

object item “ ” is recognized or signaled by a single neuron; instead, it is salient because

one of its component features, namely the horizontal bar, is a unique basic feature and is

sufficiently salient to attract attention strongly by itself. As far as saliency is concerned, the

oblique bar in the target is not visible to the saliency system, which only looks at the highest

response at each location.

In Fig. 5.24, the background items are not spatially uniform or regular, and so responses

to the background bars are not uniformly low. The response to each bar is determined by its

particular contextual surround. An accidental alignment of a given bar with its local context

facilitates (or at least reduces the suppression of) the final response. On the other hand, if

the bar has more isoorientation neighbors with which it is not aligned, then the response

will be more greatly suppressed. Despite the heterogeneity in the population responses, the

response to the target horizontal bar in Fig. 5.24 A is still substantially higher than most of

the background responses, making the ultimate z score high.

5.4.4.4 A trivial example of visual search asymmetry through the presence or
the absence of a feature in the target

Given the observation that a feature search is easier than other searches, it is straightforward

to understand the simple example of visual search asymmetry in Fig. 5.25. Search asymmetry

is the phenomenon that the ease of a visual search can change when the target and distractors

are swapped—for instance, searching for a cross among vertical bars is easier than vice versa.

The target cross is easier to find in Fig. 5.25 A because it can be found by feature search.

The horizontal bar in the cross is the unique feature, and it evokes the highest V1 response

since it is the only one which lacks isoorientation neighbors. Meanwhile, in Fig. 5.25 B, the

target fails to possess any unique feature lacking in the nontargets; hence, it cannot be found

by feature search. The target vertical bar and the vertical bars in the background crosses are

almost equally suppressed; thus the target’s z score is too low for it to pop out.

As in Fig. 5.24 A, the target cross in Fig. 5.25 A is easier to find not because the whole cross

is recognized; instead, it is because one of its components, namely the horizontal bar, evokes

the highest overall V1 response. Its other component, the vertical bar, does not contribute to

the z score for the target.

Note that the search asymmetry between the cross and the vertical bar cannot be predicted

from the idea that the ease of finding a target depends on how different it is from the

distractors, since this difference does not change when target and distractors swap identity.

A longstanding psychological rule (Treisman and Gelade 1980) is that a target having an

unique (basic) feature which is lacking in the nontargets (as in Fig. 5.25 A) is easier to find

than a target defined by lacking a (basic) feature which is present in the nontargets (as in

Fig. 5.25 B). We suggest V1 saliency mechanisms provide the neural substrate of this rule.

5.4.4.5 The ease of a visual search decreases with increasing background
variability

The formula for a search target’s z score, z = (SMAPi − S̄)/σs, suggests that increasing σs,

by increasing the heterogeneity of the responses to nontargets, should decrease the target’s

z score when the target is at least minimally salient, i.e., when its highest evoked response

SMAPi is above the average response S̄ to the scene. This is demonstrated in Fig. 5.26. A
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B: Target lacking a feature

Bar among crosses

Target’s z score: z = 0.8

A: A unique feature in target

Cross among bars

Target’s z score: z = 7

Fig. 5.25: A simple example (Li 1999b, Li 1999a) of search asymmetry in the V1 model.

Searching for a cross among vertical bars (A) is easier than searching for a vertical bar among

crosses (B). This figure is shown using the same format as that in Fig. 5.24. These examples

also demonstrate that a target is easier (or more difficult) to find when it is defined by having

(or lacking) a feature (e.g., the horizontal bar) that is absent (or present) in the distractors.

The horizontal bar in the target in A is the only one in the image to evoke a V1 response that

is not suppressed by isoorientation suppression; the target vertical bar in B, however, suffers

the same isoorientation suppression experienced by other vertical bars.

target’s saliency according to the model decreases when the nontargets are more variable,

either because the nontargets are irregularly positioned in space, as in Fig. 5.26 A, or because

the nontarget feature values are heterogeneous, as in Fig. 5.26 B. Psychological observations

have previously led to the rule that a target is more difficult to find when the background

variabilities increase in these ways (Duncan and Humphreys 1989); and it has been suggested

that random background variability acts as noise and limits the performance of visual search

(Rubenstein and Sagi 1990).

Contextual influences can arrange for two identical visual items to evoke different V1

responses when in different contexts. This effect underlies the heterogeneous responses to

nontargets in Fig. 5.26 A. Meanwhile, heterogeneous nontargets placed in a regular grid, as

in Fig. 5.26 B, also evoke heterogeneous responses, since the contextual influences depend

on the feature similarity between neighboring input items.

The model responses in Fig. 5.26 AB are more heterogeneous than those in Fig. 5.26 C.

Therefore σs is larger in Fig. 5.26 AB. For example, if the maximum response SMAPi to the

target at location i is 10% above the average response S̄, it will still stand out, making the

target very salient if no other item in the scene evokes a response more than 5% above S̄.

However, if the background responses vary between 50% to 150% of the average S̄, the target
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A: Irregular
distractor locations

Target’s z score: z = 0.22

B: Dissimilar
distractors

Target’s z score: z = 0.25

C: Homogeneous
background

Target’s z score: z = 3.4

Fig. 5.26: The effect in the model of background variability on the saliency of a target

(Li 2002). A, B, and C show visual search images and model responses. The target bar,

tilted 45o clockwise from vertical (and shown in the center of each image for convenience),

is among distractors, which are irregularly placed identical bars tilted 15o clockwise from

vertical (A), or regularly placed bars randomly drawn from a selection of those tilted 0o, 15o,

or 30o clockwise from vertical (B), or regularly placed identical bars tilted 15o clockwise

from vertical (C). The z scores for the targets are listed immediately below each example.

would not be salient, since a response of only 10% above the average would be comparatively

mediocre.

Of course, if the SMAPi < S̄, the target is not at all salient anyway, regardless of the

variability in the background responses.

5.4.4.6 Saliency by feature contrast decreases with a decreasing density of
input items

Contextual influences are mediated by intracortical connections, which are known to extend

over only a finite range. These influences are thus reduced when the visual input density

decreases, since this reduces the number of contextual neighbors within the reach of each

visual input item via the intracortical connections. In turn, this reduces many saliency effects.

For instance, it is apparent in the images in Fig. 5.27 that it is more difficult to segment two

neighboring textures when the texture density is lower. This has also been observed in more

rigorous behavioral experiments (Nothdurft 1985). The V1 model shows the same behavior

(the right column of Fig. 5.27). The ease of the segmentation is reflected in the highest z score

among the texture columns near the texture border. This z score is z = 4.0 in the densest

example in Fig. 5.27 A, and it is z = 0.57 in the sparsest example in Fig. 5.27 D, which is

quite difficult to segment without scrutiny.

To be concrete, isoorientation suppression is weaker in sparser textures. Therefore, the

dependence of V1evoked responses on contextual inputs is weaker in sparser textures, and



The V1 saliency hypothesis238 |
A: High density input, texture border z score z = 4.0

Input image Îiθ V1 model responses gx(xiθ)

B: Medium high density input, texture border z score z = 3.3
Input image Îiθ V1 model responses gx(xiθ)

C: Medium low density input, texture border z score z = 2.1
Input image Îiθ V1 model responses gx(xiθ)

D: Low density input, texture border z score z = 0.57
Input image Îiθ V1 model responses gx(xiθ)

Fig. 5.27: Texture segmentation is more difficult in sparser textures. This is evident from

examining the input images, and from the z scores of the texture columns at the borders that

are obtained from the V1 model’s responses (shown in the right column). All texture bars

have input value Îiθ = 2.0. The average responses gx(xiθ) to all texture bars are 0.15 (A),

0.38(B), 0.56(C), and 0.54(D).

so the response to a texture bar will be less sensitive to the proximity of this bar to a texture

border. More specifically, the highlight at a texture border is caused by the difference between

the contextual suppression of the border bars and that of the nonborder bars (as explained

in Fig. 5.17 A). When the distance between any two texture bars is longer than the longest

intracortical connection, there should be zero isoorientation suppression and so no saliency

highlight at the texture border. For each background texture bar, the strength of isoorientation

suppression is largely determined by the number of isoorientation neighbors that are within

reach of the intracortical connections responsible for the suppression. Denser textures provide

more isoorientation neighbors to make this suppression stronger, making the texture border
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more salient. Indeed, in Fig. 5.27, the average response to all the texture bars is lowest in the

densest texture and higher in sparser textures. This argument also applies to the saliency of a

feature singleton in a homogenous background texture. Indeed, such a singleton is easier to

find in denser textures (Nothdurft 2000).

5.4.4.7 How does a hole in a texture attract attention?
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Fig. 5.28: Comparison between the conspicuousness of a hole (A) and a singleton (B).

This figure uses the same format as in previous figures, except that the model responses are

visualized by grayscale images, in which the gray level at each pixel i represents the maximum

response magnitude SMAPi according to the scale bar on the right of the plot. (Gray scales

rather than widths of the bars are used to visualize model responses, since otherwise the small

but significant differences in the responses in A would be difficult to manifest as differences

in the widths of the bars.) The two grayscale plots have different scale bars, although the

average SMAPi values across i are similar around SMAPi ∼ 0.136. Much of the fluctuations

in the responses further away from the hole or the singleton are caused by the input noise. In

A, attention can be guided to the hole by first being attracted to its most salient neighbor.

It is apparent from Fig. 5.28 A that a hole in a texture is also conspicuous when the background

is homogenous. Since a hole, or a missing bar in a texture, does not evoke any V1 response,

how can its location attract attention? This can be understood from the observation that the hole

still destroys the homogeneity of the texture. In particular, the bars near the hole are subject

to weaker isoorientation suppression because they have one fewer isoorientation neighbor
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A: Bar in crosses—
heterogeneous background

z = −0.63 and z = 0.68 for
the target bar and its most
salient neighbor, respectively

B: Bar in crosses—
homogeneous background

z = −0.83 and z = 3.7 for
the target bar and its most
salient neighbor, respectively

Fig. 5.29: Two additional examples of a target bar in distractor crosses (Li 2002), which are

analogous to a hole in a texture as in Fig. 5.28 A. The distractor crosses are more regularly

placed in B than A. Although the z score of the target vertical bar is higher in A than B, the

most salient neighbor of the target bar has a higher z score in B than A. This underpins the

observation that the target is more conspicuous in B than A, guided by the salient neighbor.

due to the hole. Although the suppression is reduced by only a small fraction, this fraction can

generate a sizable z score when the background responses are sufficiently homogenous. In the

example of Fig. 5.28 A, the mean and standard deviation of the responses over all the texture

bars are 0.136 and 0.005 respectively. Meanwhile the response to the most salient neighbor

of the hole is 0.155, giving this neighbor a z score of z = (0.155− 0.136)/0.005 = 3.9. This

salient neighbor attracts attention; although this attraction is weaker than that of an orientation

singleton in the same background texture (Fig. 5.28 B). If the size of the attentional window

is sufficiently large (as is suggested by experimental data (Motter and Belky 1998)), the hole

can be contained within this window centered on the salient neighbor. Consequently, it may

appear to awareness that our attention is attracted by the hole.

From the above interpretation, one prediction is that, in a visual search for a hole, gaze

might land on a neighbor of the hole before making a corrective saccade to land on the target.

Another prediction is that the conspicuousness of the hole can be manipulated by manipulating

the input strength of its neighbors. In particular, the hole would be less conspicuous if its

neighbors have slightly weaker input strength than those of the background texture elements.
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This prediction has been supported by some preliminary observations (Zhaoping 2004, Zhou

and Zhaoping 2010).

If the background texture is not so homogenous, as in the case of Fig. 5.64 B in which

the nonhomogeneity is caused by multiple holes randomly distributed in the texture, then the

z score would be lower and the hole would be less conspicuous. In such cases, the missing

input at the hole may be viewed as having been filledin because it escapes attention. Note

that this form of fillingin is not caused by a response to the hole, as would happen if there

was a texture element at the location of the hole. This will be discussed more when analyzing

Fig. 5.64.

Looking for a hole in a texture can be viewed as a special case of searching for a target

lacking a feature that is present in the nontargets. Therefore it is natural that searching for a

hole is more difficult than searching for a singleton target defined by the presence of a feature.

This is seen in Fig. 5.28: the singleton target in the same texture generates a much higher z
score. In the example of a target bar among crosses in Fig. 5.25 B, the target bar’s z score

z = 0.8 is in fact lower than the z score z = 1.4 of its left neighbor, although this more salient

neighbor is not as salient as the horizontal bar in the target cross in Fig. 5.25 A. In general,

the neighbors of a target lacking a feature present in the nontargets are not necessarily more

salient than the target, because the actual responses depend on the contextual configurations

of the visual input.

Figure 5.29 shows two additional examples of a bar among background crosses. In both

examples, the z scores of the target location are negative, indicating that the responses to the

target location are below the average responses (maximized at each location) at the locations

of other visual items. Comparing Fig. 5.29 A and Fig. 5.29 B, the target has a higher z score

in the former but appears to attract attention more strongly in the latter. This is because the

most salient neighbor of the target has a higher z score z = 3.7 in the latter. The responses to

the horizontal bars above and below the target vertical bar in Fig. 5.29 B are slightly higher

than most of the other responses, because the missing horizontal bar in the target reduces the

isoorientation suppression on these neighboring horizontal bars by a small but significant

fraction.

So far, all the examples of behavior of the model can be more or less intuitively and

qualitatively understood from isofeature suppression, which is the dominant intracortical in

teraction in V1. This intuition has been used to understand feature versus conjunction searches,

search asymmetry between cross and bar, and the saliency effects by texture density, input

heterogeneity, a hole, and the orientation contrast between textures. The model simulations

merely confirm our intuitive understanding. However, it is desirable to test whether V1 mech

anisms can also explain more complex and subtler saliency effects that cannot be intuitively

or qualitatively understood from only the effects of isoorientation suppression. Therefore,

we next apply the V1 model to some complex examples, and we will see that these subtler

saliency effects are often the net outcome from multiple balancing factors.

5.4.4.8 Segmenting two identical abutting textures from each other

Figure 5.30 A shows that the V1 model responses can even highlight a texture border between

two identical textures. Perceptually, the texture border in Fig. 5.30 B seems more salient than

that in Fig. 5.30 A, as if there were an illusory vertical border cutting between the two textures.

However, the V1 model provides a z score that is somewhat larger for the texture border in

Fig. 5.30 A. The reason for this may be that the perception of the illusory contour, rather

than saliency, is more likely to arise in V2 rather than V1, as suggested by experimental data

(von der Heydt et al. 1984, Ramsden, Hung and Roe 2001). The perception of the illusory

contour could be mistaken as the saliency effect.

In each of these examples, all texture bars have about the same number of isoorientation
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A: Two textures of oblique bars B: Two textures of horizontal bars

Model input Îiθ Model input Îiθ

Most salient bars by the model Most salient bars by the model

Saliency map SMAPi from the V1 model Saliency map SMAPi from the V1 model
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z = 3.6 at the border column z = 2.6 next to the border column

Fig. 5.30: Segmenting two identical textures by detecting the salient border where input

statistics change. In both A and B, the two neighboring textures are identical but are displaced

from each other vertically. The top two rows of the figure use the format in Fig. 5.28, with

the grayscale at each pixel i in the middle row representing the SMAPi value. The bottom

row visualizes the most salient bars. All visible bars have Îiθ = 2 and Îiθ = 3.5 in A and B,

respectively. In A, the most responsive locations are at the texture border; the bars there have

SMAPi = 0.23 against a background S̄ = 0.203. In B, the most responsive locations are one

column away from the border, with SMAPi = 0.4, against a background S̄ = 0.377.

neighbors regardless of their positions relative to the texture border. It is no longer obvious

whether the border bars should be less subject to isoorientation suppression. Nevertheless,

the spatial configuration of the context of each texture bar depends on whether this bar is close

to the texture border. This configuration is an aspect of the input statistics and determines

the contextual influence. Although the net influence from all the isoorientation neighbors

is typically suppressive, some isoorientation neighbors can give rise to colinear facilitation

when they are coaligned with the central bar. Apparently, the configurations of the contextual

surrounds are such that the net suppression is weaker for a texture bar at or near the texture

border.

In both of the examples in Fig. 5.30, the subtle changes in the spatial configuration of the

surround are such that the model V1 responses to the locations near the borders are relatively

higher. This is consistent with the experience of conspicuous borders.
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5.4.4.9 More subtle examples of visual search asymmetry

Some example visual search asymmetries, shown in Fig. 5.31, are much more subtle than that

in Fig. 5.25. In each example, the ease of the visual search changes slightly upon swapping

the target and the distractor. For example, in Fig. 5.31 E, it is slightly easier to find an

ellipse among circles than a circle among ellipses. Readers can examine them to see which

targetdistractor condition seems easier for finding the target.

The asymmetry between bars and crosses in Fig. 5.25 involves a clear case of the absence

versus presence of a basic feature, namely orientation, in the target. Both the neurons and

intracortical connections in V1 are tuned to this feature dimension. Hence, via V1 mechanisms,

this orientation feature drives a strong asymmetry in an obvious manner. By contrast, there

is not a clear V1 feature that distinguishes a circle and an ellipse. If the sizes of the circle

and ellipse are comparable to those of the CRFs of the V1 neurons which are not tuned

to orientation (see Fig. 3.32), then the circle and the ellipse should evoke similar response

levels, if anything perhaps slightly favoring the circle (i.e., opposite to the direction of the

asymmetry). Most individual V1 neurons only respond to the line or curve segments in the

circles and ellipses, according to their own oriented receptive fields. The V1 model treats

the circle as eight line segments, oriented in four different orientations, in a particular spatial

arrangement; and the ellipse as ten line segments in five different orientations. None of the

ten line segments in the ellipse is oriented sufficiently differently from all the line segments

in the circle, and vice versa. So the asymmetry between circle and ellipse cannot be realized

in the model in terms of an obvious differential presence of a feature in one versus the other

target.

The V1 model indeed generates the asymmetry. The largest z score for the bars in the

target ellipse among circles is larger than that for the bars in the target circle among ellipses.

The asymmetry arises as the net result of many sources of contextual influences, including

isoorientation suppression, colinear facilitation, and general surround suppression, which is

independent of the orientations concerned. None of these contextual influences obviously

weighs for or against the direction of the asymmetry. This is similar to the two examples

in Fig. 5.30, where the relatively higher saliencies at the texture borders arise not from an

obvious change in isoorientation suppression but from a net result of subtle changes in both

contextual suppression and contextual facilitation.

The V1 model was applied to all the search images in Fig. 5.31 and their random variations

(such as the random changes in the spatial arrangements of the visual items). As in all the

examples of the model application, the model parameters had already been fixed beforehand

by the requirements from model calibration and dynamic behavior (described in Sections 5.4.2

and 5.4.3). The z score of the target is calculated as the maximum z score among the line

segments which make up the target. In all the five examples of visual search asymmetry, the

directions of the asymmetry predicted by the V1 model agree with those observed behaviorally

(Treisman and Gormican 1988, Li 1999a).

Note that if V1 responses are not responsible for these subtle examples of asymmetry,

then a prediction from the V1 saliency hypothesis on the direction of the asymmetry would

only match the behavioral direction by chance. Whether the predicted directions match the

behavioral ones in all the five examples provides a stringent test of the V1 saliency hypothesis.

Conventional psychological theories (Treisman and Gormican 1988, Wolfe 2001) presume

that each targetdistractor pair that exhibits search asymmetry implies the presence and absence

of a preattentive basic feature in the easier and the more difficult, respectively, search of the

pair. For example, since the ellipse is easier to find among circles than viceversa, one should

conclude that the ellipse has an “ovoid” feature that is absent in a circle (i.e., the ellipse is

seen as a departure from the circle). This, of course, leads to feature proliferation. That the
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Easier searches More difficult searches

D: Curved versus
straight

z = 1.12 z = 0.3

C: Long versus
short lines

z = 1.07 z = −0.06

B: Convergent versus
parallel pairs

z = 1.8 z = −1.4

A: Open versus
closed circles

z = 9.7 z = 0.41

E: Ellipse versus
circle

z = 2.8 z = 0.7

Fig. 5.31: Five pairs of images for the subtle examples of visual search asymmetry. They

resemble those studied by Treisman and Gormican (1988). The V1 model can account for

the directions of all these asymmetries. Stimulus patterns (Îiθ) are shown with the targets’ z
scores (as the largest z score for the bar segments which comprise the target) from the model

marked underneath. Adapted with permission from Zhaoping, L., Theoretical understanding

of the early visual processes by data compression and data selection, Network: Computation

in Neural Systems, 17(4): 301–334, Fig. 10, copyright c© 2006, Informa Healthcare.
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Box 5.1: Some examples of visual search asymmetries are due to higher level mechanisms

Another example of search asymmetry is shown in Fig. 5.32: a target letter “N” is more

difficult to find among mirror images of “N”s than the reverse (Frith 1974). The letter “N”

and its mirror image differ only in the direction of the oblique bar in their shape, and there

are no known mechanisms in V1 to break this mirrorreflection symmetry. To explain this

asymmetry, conventional psychological theories suggest that a more familiar letter “N” lacks

a novelty feature which is present in its mirror image. It seems difficult to envision that V1

mechanisms might account for any such feature based on object familiarity or novelty.

 of ‘‘N’’ among ‘‘N’’s

Find a target ‘‘N’’ amomg

its mirror images
Find a mirror image

Fig. 5.32: Object shape confusion, not saliency, makes the search

on the left more difficult (Zhaoping and Frith 2011).

However, later ob

servations (Zhaoping

and Frith 2011) in

dicate that there is

little asymmetry be

tween the reaction

times for gaze to

reach the respective

targets, the letter “N”

and its mirror im

age, during the visual

searches. This sug

gests that the search

asymmetry does not result from the initial visual selection by bottomup saliency of the

targets. (Note that either target is very salient, having an uniquely oriented oblique bar in the

image.) Instead, the asymmetry would originate from confusing the target as a nontarget,

since all items in the search image have the same viewpointinvariant shape. This confusion

is of the kind we saw in Fig. 1.4, occurring at the shape recognition stage after a visual input

location is selected. Apparently, this confusion is more effective when the target is “N” in

its more familiar, rather than the unfamiliar, view; the familiarity makes the shape recogni

tion faster, allowing an earlier onset of confusion during the task execution (Zhaoping and

Frith 2011).

The asymmetry between the “N” and its mirror image as the targetdistractor pair is an

example in which the reaction timeRTtask = RTsaliency+RTtopdown selection+RTother (see

equation (5.3)) to report the search target is not indicative of the relative degree of bottomup

saliency of the targets in the two searches. This is because this RT’s nonsaliency component,

RTtopdown selection+RTother, is not a constant between the two different searches. Among all

the known examples of visual search asymmetry, it has yet to be worked out which examples

are mainly caused by bottomup saliency processes to test the V1 saliency hypothesis more

extensively.

V1 model can successfully predict all these asymmetries suggests that it is unnecessary to

introduce a feature for each such targetdistractor, since an asymmetry can also be caused by

the complexity of V1 circuit dynamics in response to the spatial configurations of primitive

bar/edge segments in visual inputs.

The V1 model also suggests that it is not necessary to have custom neural detectors for

a circle, ellipse, cross (see Fig. 5.25), curvedness, parallelness, closure, or perhaps even a

face, in order to exhibit saliency effects associated with these input shapes. V1 detectors for

primitive bars and edges, and the associated intracortical interactions, enable V1 responses

to exhibit response properties which can be specific to spatial configurations of bar/edge
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Input images Îiθ to the V1 model

Highest model responses gx(xiθ) to the input images above

Input images Îiθ to the V1 model

Highest model responses gx(xiθ) to the input images above

Fig. 5.33: Four examples of V1 model’s response to highlight the input locations where input

statistics deviate from the statistics of the context.

segments. In principle, these configurations could include many meaningful object shapes

such as those of crosses and ellipses.

However, since the V1 model is a poor imitation of the real V1, the z scores of the

search targets predicted by the V1 model in the stimuli in Fig. 5.31 can be quantitatively

quite different from what is suggested by the behavioral data. A better test of whether V1

mechanisms can account for the asymmetries is to examine the response of the real V1 to the

stimuli concerned while preventing topdown interference.

5.4.4.10 Complex examples where V1 responses highlight input locations
where input statistics deviate from that of the context

We have argued that places where visual input statistics deviate significantly from those of

the context are often predominant examples of salient locations. These locations are often

at boundaries of objects, such as the border between two textures. Figures 5.23 and 5.27

show that the V1 model works well to highlight these input deviations at the borders between

simple textures, each made of isooriented bars. Figure 5.30 shows that this also works in
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two examples when the borders are between identical textures. Figure 5.33 shows that it also

works in more complex examples.

The V1 model can highlight borders between two textures that are stochastic (Fig. 5.33 A),

that involve checkerboard patterns of elements (Fig. 5.33 BC), or that have identical individual

elements, but different second order correlations between texture elements (Fig. 5.33 C). Like

the real V1 (Li, Piëch and Gilbert 2006), the V1 model can also highlight a contour in a noisy

background (Fig. 5.33 D). The V1 saliency hypothesis and the behavior of the V1 model

in Fig. 5.33 ABC suggest that the real V1 should also detect such complex input deviations

from surrounding statistics. This suggestion is consistent with subsequent observations by

functional magnetic resonance imaging of the cortex (Joo, Boynton and Murray 2012) in

response to complex arrays of Gabor patterns.

5.4.5 Other effects of the saliency mechanisms—figureground

segmentation and the medial axis effect

The foreground (figure) of a visual scene typically attracts attention more strongly than

the background (often called just the “ground”). When both are textures made from iso

oriented bars, the figure has been observed to evoke higher V1 responses than the ground

(Lamme 1995, Lee, Mumford, Romero and Lamme 1998), a phenomenon known as the

figureground effect. Equally, V1 responses to a figure grating can sometimes be higher when

it is presented against a background grating having a different (e.g., orthogonal) orientation,

versus when a blank background is used (Sillito et al. 1995); this is termed crossorientation

enhancement. Finally, V1 responses to the central or medial axis of a figure texture can

sometimes be higher than its responses to other regions of the figure that are not borders (Lee

et al. 1998). This is called the medial axis effect.

Medial axes can be useful for characterizing deformable object shapes, e.g., to represent

a human body as a stick figure. Hence, the figureground and medial axis effects appear to

provide tantalizing hints that V1 could play a role in figureground segmentation and higher

order object representation—operations that go beyond highlighting salient border regions

(which is the border effect). In this section, we show that these effects can be explained

(Zhaoping 2003) as side effects of V1 saliency mechanisms that stress image locations where

input translation invariance breaks down. This analysis explains why such effects are weaker

than the border effect, and, furthermore, predicts that these side effects occur only for particular

sizes of figures.

For example, when the figure is sufficiently small, as in Fig. 5.34 B, the responses its bars

evoke should all be higher than those of the larger background texture, since each bar is part of

the border. This is analogous to the popout of an orientation singleton. This “figureground”

effect is observed electrophysiologically when the RF of the recorded neuron is in the figure

region. However, it was predicted (Li 2000a) that this effect should disappear when the figure

is large enough such that the RF of the recorded neuron is no longer a part of the texture

border. This prediction was subsequently confirmed physiologically (Rossi, Desimone and

Ungerleider 2001), and is illustrated in the V1 model simulations shown in Fig. 5.34 C–E.

In fact, the higher responses to the texture border enhance the isoorientation suppression

suffered by the figure regions immediately next to the border; this region is thus termed the

border suppression region. We may refer to the suppression of the border suppression region

by the salient border as the border’s neighbor effect. Hence, when the figure size is such that

the center of the figure is also within the border suppression region flanked by two or more

border sides, as in Fig. 5.34 C, the response to the center of the figure should even be weaker

than the typical responses to the background texture.

However, when the figure is large enough, as in Fig. 5.34 E, the distance between the center
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B: The figure-ground effect

C: The border’s neighbor effect at figure center

D: The medial axis effect
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❇
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Border suppression regions

E: A much larger figure
Emergence of the medial axis

Fig. 5.34: Appropriate sizes of the figures evoke figureground effect, border’s neighbor

effect, and medial axis effect as side effects of the border effect, which is the relatively

higher response to texture borders caused by V1 saliency mechanisms. A defines the terms.

B, C, D, and E show V1 model responses to the figure texture for various figure sizes.

The figureground effect, defined as higher responses to the figure, emerges in B when the

figure size is small enough, making the whole figure its own border. In C–E, responses to

the border suppression regions—the figure texture region next to the figure border—are low

due to the border’s neighbor effect, the stronger isoorientation suppression from the salient

figure border. D manifests the medial axis effect, since the axis escapes the suppression from

the borders by virtue of (1) being sufficiently far from both borders and (2) being subject to

weaker isoorientation suppression from the two flanking border suppression regions that have

themselves been suppressed by the salient borders. E shows the V1 model responses when

the figure size is much larger. Adapted with permission from L. Zhaoping, V1 mechanisms

and some figureground and border effects, Journal of PhysiologyParis, 97(4–6): 503–515,

figure 1 and figure 4, copyright c© 2003, Elsevier.

of the figure and either border is much longer than the typical length of the intracortical V1

connections responsible for isoorientation suppression. In this case, the response to the figure

center becomes indistinguishable from typical responses to the background texture. Feedback

from higher visual areas could subsequently enhance the responses to the figure center, as

suggested physiologically (Lamme, RodriguezRodriguez and Spekreijse 1999, Scholte, Jolij,

Fahrenfort and Lamme 2008), and could partly explain behavioral aspects of the figureground

effect. However, modulation of V1 responses by the immediate context, which is responsible

for the border effect, remains intact after V2 inactivation (Hupé et al. 2001) and is present

whether the animal is awake or under anaesthesia (Knierim and Van Essen 1992, Nothdurft

et al. 1999).

Figure 5.34 D shows how the medial axis effect can arise as a further consequence of the

border effect. The response to the medial axis will be enhanced when the figure is just the

right size such that the following two conditions are satisfied: first, the figure center is out of
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A: V1 model’s responses to a grating disk of increasing diameter
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Fig. 5.35: V1 responses to a disk grating, and crossorientation facilitation (Zhaoping 2003).

A: V1 model’s responses to coarsesampled disk gratings. As the disk size increases, the

center of the grating changes from being part of the border (with a high response), to being

part of the border suppression region (with a suppressed response), to being included in the

emerging medial axis (with an enhanced response). B: Responses of a real V1 neuron to a

disk grating as a function of the diameter of the disk (this curve is called a summation curve).

The model’s response to the largest disk grating in A predicts a second rise in this summation

curve associated with the medial axis effect. C: When the central disk grating is larger than

the optimal size, such that the center of the disk is in the border suppression region (the

fourth grating in A), a surrounding grating can suppress the responses to the border of the

central grating by general (orientationunspecific) surround suppression, thereby releasing

the central response from the border suppression. This may explain some physiological

observations (Sillito et al. 1995) of crossorientation facilitation. Data in B from Jones, H. E.,

Grieve, K. L., Wang, W., and Sillito, A. M. Surround suppression in primate V1, Journal of

Neurophysiology, 86(4): 2011–28, 2001.

reach of isoorientation suppression caused by both lateral borders of the figure; and second,

the figure center is within reach of the relatively weaker suppression occasioned by the border

suppression regions associated with these borders. The resulting suppression of the media

axis could then be weaker than that suffered by typical background texture bars. Therefore,

the medial axis effect should only be observed for certain figure sizes, as is indeed the case

physiologically (Lee et al. 1998).

The dependence of the neural response on the size of the figure is also manifest in the way

that a V1 neuron’s response to a disk grating varies with the disk’s diameter (Zhaoping 2003);

see Fig. 5.35. When the orientation of the grating is that preferred by the neuron whose RF

is centered on the disk, the neural response increases with the diameter for small diameters

when the disk is smaller than the classical receptive field of the neuron, and then the response

decreases with the diameter when the center of the disk moves out of the disk border and
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into the border suppression zone. The overall relationship between response level and disk

diameter is called a summation curve.

When the disk grating is even larger, its center moves out of the border suppression zones,

and the response it evokes should therefore rise again. This is the medial axis effect. It should

lead to a second rise in the summation curve; see Fig. 5.35 B. This prediction is supported by

recent physiological data.16

Consider the case that the disk grating is somewhat larger than the optimal size (where the

summation curve peaks), such that its center is in the border suppression region associated

with the disk border. Then, adding a surrounding grating of a different (e.g., orthogonal)

orientation should suppress the responses to the border of the grating disk, via general,

orientationunspecific, surround suppression. In turn, this should lessen the isoorientation

suppression by the disk grating’s border onto the disk center. In other words, the surround

grating disinhibits the response to the center of the figure grating; see Fig. 5.35 AC. This could

explain physiological observations of crossorientation enhancement (Sillito et al. 1995),

which is indeed often observed when the figure grating is somewhat larger than the optimal

size where the summation curve peaks.

5.4.6 Input contrast dependence of the contextual influences

Contextual influences are dependent on the contrast or strength of visual inputs, with sup

pression decreasing as the input contrast decreases. As will be explained later in equation

(5.94), this is because the inhibitory interneurons, which mediate the suppression, are less

sensitive to inputs from the excitatory cells at lower input contrast. Since salience depends

on isoorientation suppression, this implies that orientation singletons and texture borders are

less salient at low input contrast. This is why most simulations of the V1 model use medium

or high input contrast, as indeed is also true of most behavioral experiments into saliency.

Since figureground and medial axis effects arise from border effects, they are also weaker

at lower input contrast. Consequently, the radius of the grating where a neuron’s summation

curve (Fig. 5.35 B) peaks tends to be larger when the input contrast is weaker. This is true in

the model and is also observed physiologically.

5.4.7 Reflections from the V1 model

In total, building and applying the V1 model has led to the following conclusions.

1. It is possible to build a V1 model which can simultaneously satisfy two requirements:

(1) reproducing the contextual influences that are observed physiologically; and (2)

being able to amplify selective deviations from homogeneity in the input, without

hallucinating heterogeneous responses to homogenous visual inputs. Therefore, V1

mechanisms are plausible neural substrates for saliency.

2. Under the V1 saliency hypothesis, the responses of the V1 model to representative visual

inputs produce saliency maps that are consistent with subjective visual experience and

previous behavioral observations.

3. The V1 model confirms the intuition that isoorientation suppression is the dominant

mechanism underlying various saliency effects. Such effects include the qualitative

distinction between feature and conjunction searches, the greater saliency of locations

where feature contrast is greater, and the dependence of saliency on visual input density

and heterogeneity. The V1 model also demonstrates that other intracortical interactions,

16Private communication from Kenneth D. Miller (2013), who collaborated with Dan Rubin and Stephen Van

Hooser on an investigation which revealed these data.
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including colinear facilitation and general, featureunspecific, contextual suppression,

also play essential roles in shaping saliency. This is especially the case for visual inputs

that are more similar to typical visual inputs and so are more complex than those used

in feature searches.

4. The V1 model can signal saliency at locations of complex shapes such as ellipses

and crosses, even though there is no V1 cell tuned to such shapes. This reaffirms

our understanding that selection of a visual location can occur before recognition of

inputs or objects at this location. One may even ask whether V1 mechanisms can also

contribute to attentional attraction of, e.g., a face, which, like a cross, is a particular

spatial configuration of image elements (like bars and patches of luminance and color)

that activate V1 neurons.

5. Saliency mechanisms have side effects, and these can be understood.

Recall from Fig. 1.1 that an important role for a model is to be an intermediary between

a theoretical hypothesis and experimental data. This role can be fulfilled, for example, by

demonstrating the theory in particular instances or by fitting data to a particular manifestation

of the theory. In our current example, the theory is the V1 saliency hypothesis, the data are

observations of bottomup visual selection, and the V1 model played a role of verifying the

theory by testing the ability of a restricted set of V1 mechanisms to account for some behavioral

observations. The restrictions include: (1) that the model contains only neurons tuned to spatial

locations and orientations; (2) that the model ignores many physiological details; and, (3) that

all the model neurons have the same receptive field size. These restrictions imply that the

model can only be tested against a restricted set of saliency data. For example, the model

is not expected to account well for the saliency of a scale singleton because it omits the

multiscale property of V1. Nevertheless, we can ask whether the V1 model can be successful

when applied to an appropriately restricted set of data.

The success of the V1 model with the restricted data suggests that one can extrapolate and

generalize beyond the current model. For example, the model can be extended to include model

V1 neurons tuned to feature dimensions other than orientation, such as color, motion direction,

scale, disparity, and ocularity (tuning to ocularity can be defined as a relative sensitivity to

inputs from the two eyes). One can expect, and verify, that isofeature suppression should

work in the same way for these feature dimensions as it does for orientation. Indeed, one such

extension has been carried out for the case of color (Li 2002, Zhaoping and Snowden 2006).

Similarly, although the model has mostly been applied to synthetic images (with a few

exceptions (Li 1998a, Li 1999b, Li 2000b)), one can expect, and test, that the theory also

applies to more realistic visual inputs such as those from natural scenes.

V1 neurons that have large and unoriented receptive fields (see Fig. 3.32) can also be

included in the model. Extending isofeature suppression to the feature of the round shapes

of these receptive fields (of a given scale), one would expect mutual suppression between all

nearby neurons of this class. These neurons are likely to play an important role in saliency

for round shapes or patches, perhaps contributing to the attentional attraction of a face (of a

similar size to the receptive fields).

While a model can be used to build confidence in a theory, the theory should be able to

stand despite a model’s inaccuracies or fail despite a model’s fit to many details. Furthermore,

a theory should be ultimately tested against experiment data rather than just against model

simulations (Fig. 1.1). The test in Section 5.3 of the predicted high saliency of an ocular

singleton is an example of a direct test of the theory without the aid of the V1 model. We next

turn to more such tests.
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5.5 Additional psychophysical tests of the V1 saliency

hypothesis

This section presents additional nontrivial predictions and their behavioral tests. Each of these

predictions exploits either a distinctive characteristic of V1 physiology, to test the specifically

V1 nature of the hypothesis, or a qualitative difference between the V1 saliency hypothesis and

conventional ideas about saliency. The V1 model is not necessary as an intermediary between

the hypothesis and the link between physiology and saliency behavior. This is because the

hypothesis is so explicit, and because the knowledge about V1’s physiology is extensive, that

it is easy to predict from physiology to behavior via the medium of the hypothesis. It is also

typically easier to test behavioral predictions using psychophysical experiments than to test

physiological predictions by electrophysiological experiments.

One prediction is based on the featureblind, “auction” nature of selection by saliency that

is depicted in Fig. 5.6. It states that texture segmentation should be more severely impaired

than traditional theories would imply if a taskirrelevant texture is superposed. This prediction

arises because the saliency value at a location can be hijacked by the irrelevant features whose

evoked V1 responses are higher than those of the taskrelevant features. This prediction cannot

be derived from the traditional saliency frameworks that are depicted in Fig. 5.5, so it allows

us to test them against the V1 saliency hypothesis.

The second prediction arises from colinear facilitation, which is a characteristic of V1

physiology. Via the saliency hypothesis, this implies how the ease of texture segmentation

can be influenced by the degree of spatial alignment between the texture bars.

The third prediction arises from the observation that whereas some V1 neurons are tuned

simultaneously to color and orientation (see Section 3.6.6.3), and some V1 neurons are

tuned simultaneously to orientation and motion direction, very few V1 neurons are tuned

simultaneously to color and motion direction (Horwitz and Albright 2005); see Section 3.6.9.

Based on this, according to the V1 saliency hypothesis, we can predict whether the RTs for

finding a feature singleton that is unique in two feature dimensions should be shorter than the

statistically appropriate combinations of the RTs for finding feature singletons that are unique

in just one of the two feature dimensions.

These three predictions are qualitative, in that they anticipate that the RT in one situation

(RT1) should be shorter than another RT in a different situation (RT2). They do not predict a

precise value for the difference RT2 − RT1. The fourth prediction is quantitative, based on

the assumption that there are no V1 neurons (or an insignificant number of V1 neurons) tuned

simultaneously to the three feature dimensions: color, orientation, and motion direction. It

derives a precise relationship among the RTs for a single observer for finding feature singletons

that differ from a uniform background in one, two, or three of these dimensions, and it uses

this relationship to predict the whole distribution of one of these RTs from the distributions

of the other RTs. This is a quantitative prediction that is derived without any free parameters.

Therefore, the V1 saliency hypothesis could be easily falsified if it is incorrect, since there is

no freedom to fit data to the prediction. We will show an experimental confirmation of this

prediction.

5.5.1 The featureblind “auction”—maximum rather than summation

over features

According to the V1 saliency hypothesis, the saliency of a location is signaled by the highest

response to this location, regardless of the feature preference of the neurons concerned. For

instance, the cross among bars in Fig. 5.25 A is salient due to the response of the neuron tuned

to the horizontal bar, with the weaker response of a different neuron tuned to the vertical bar
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being ignored. Therefore, the “less salient features” at any location are invisible to bottomup

saliency or selection, even though they are visible to attention attracted to the location due to

the response to another feature at the same location. This leads to the following prediction: a

visual search or a segmentation task can be severely interfered with by taskirrelevant stimuli

that evoke higher V1 responses than the taskrelevant stimulus does at the same location.

This is because the taskirrelevant stimulus, which makes the taskrelevant stimulus invisible

to saliency, will determine the saliency values of the stimulus and thereby control bottom

up selection. This attention control by taskirrelevant stimuli makes the task performance

inefficient.

Figure 5.36 shows texture patterns that illustrate and test the prediction. Pattern A has

two isoorientation textures, activating two populations of neurons, one tuned to left tilts and

one to right tilts. Pattern B is a checkerboard, evoking responses from another two groups of

neurons tuned to horizontal and vertical orientations.

With isoorientation suppression, neurons responding to the texture border bars in pattern

A are more active than those responding to the background bars, since each border bar has

fewer isoorientation neighbors to exert contextual isoorientation suppression (as explained

in Fig. 5.7). For ease of explanation, let us say that the responses from the most active neurons

to a border bar and a background bar are 10 and 5 spikes/second respectively. This response

pattern renders the border location more salient, making texture segmentation easy. Each bar

in pattern B has as many isoorientation neighbors as a texture border bar in pattern A, and so

it also evokes a response of (roughly) 10 spikes/second.

The composite pattern C, which is made by superposing patterns A and B, activates all

neurons responding to patterns A and B. For simplicity (and without changing the conclusions),

we ignore interactions between neurons tuned to different orientations. Therefore, the neurons

tuned to oblique orientations respond roughly to the same degree as they do to A alone (we call

these relevant responses); and the neurons tuned to horizontal or vertical orientation respond

roughly to the same degree as they do to B alone (irrelevant responses). This implies that all

texture element locations evoke the same maximum response of 10 spikes/second, which is

the largest of the relevant and irrelevant responses to each location.

According to the featureblind auction framework of the V1 hypothesis, it is this maximum

response to a location x, SMAP(x) = maxxi≈xOi (from equation (5.4)) that determines the

saliency SMAP(x) at that location, where xi is the center of the receptive field (which covers

location x) of neuron i giving the response Oi. Thus, by the V1 hypothesis, all locations are

equally salient (or nonsalient), without a saliency highlight at the texture border. Therefore

texture segmentation is predicted to be much more difficult in C than A, as indeed is apparent

in Fig. 5.36. Any saliency signal associated with the taskrelevant, oblique, bars is swamped

by the uniform responses to the taskirrelevant horizontal and vertical bars.

If saliency was instead determined by the summation rule SMAP(x) ∝ sumxi≈xOi (this

is a modification of equation (5.4)), responses to the various orientations at each texture

element location in pattern C could sum to preserve the border highlight as 20 = 10 + 10
(spikes/second) against a background of 15 = 10 + 5 (spikes/second). This predicts that

texture segmentation should be easy (Zhaoping and May 2007). This summation rule is the

basis of traditional saliency models (Itti and Koch 2001, Wolfe et al. 1989) (depicted in

Fig. 5.5). By the maximum rule, it may seem a waste not to include the contributions of

“less salient features” to obtain a “more informative” saliency measure of locations, as in

the summation rule. However, reaction times for locating the texture border17 confirmed the

prediction of the maximum rather than the summation rule; see Fig. 5.36 D.

17In the experiment (Zhaoping and May 2007), each stimulus display consisted of 22 rows × 30 columns of items

(of single or double bars) on a regular grid with unit distance 1.6o of visual angle. Observers were instructed to press
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A: Task relevant B: Task irrelevant C: Composite = A + B
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Fig. 5.36: Psychophysical confirmation of the maximum rule used by the V1 saliency

hypothesis, instead of the summation rule used by traditional models of saliency. A, B, C:

Schematics of texture stimuli (extending continuously in all directions beyond the portions

shown), each followed by schematic illustrations of V1’s responses and a saliency map,

formulated as in Fig. 5.14. Each dot in the saliency map scales with the maximum V1 response

to the corresponding location, rather than the sum of all V1 responses there. Every bar in B,

or every texture border bar in A, experiences less isoorientation suppression. The composite

stimulus C, made by superposing A and B, is predicted to be difficult to segment, since the

taskirrelevant features from B interfere with the taskrelevant features from A, giving no

saliency highlights to the texture border. D: Reaction times of four observers (subjects) for the

texture segmentation task using stimuli similar to A and C. Adapted from Zhaoping, L. and

May, K. A., Psychophysical tests of the hypothesis of a bottomup saliency map in primary

visual cortex, PLoS Computational Biology, 3(4):e62, Fig. 1, copyright c© 2007, Zhaoping,

L. and May, K. A.

The two halves of Fig. 5.36 C have very different second order statistics of visual inputs.18

This is an example for which the breakdown in the translation symmetry of the input statistics,

even though it involves low (i.e., second) order statistics, does not lead to high saliency.

a left or right button as soon as possible to indicate whether the texture border was in the left or right half of the

display.
18These two halves can be easily distinguished by a standard texture segregation model (Bergen and Landy 1991),

which works by examining whether two textures have identical visual inputs in matching orientation channels.
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5.5.1.1 Further discussion and exploration of interference from
taskirrelevant features
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Fig. 5.37: Further illustrations of the interference wrought by taskirrelevant features. A, B,

and C are the schematic stimuli from Fig. 5.36. D is a version of A, with bars being 10o from

vertical, thus reducing the orientation contrast at the texture border to 20o. F is derived from C

by replacing each texture element of two intersecting bars by one bar whose orientation is the

average of the two intersecting bars. G, H, and I are derived from A, B, and C by reducing the

orientation contrast (to 20o) in the interfering bars; each is 10o from horizontal. J, K, and L

are derived from G, H, and I by reducing the taskrelevant contrast to 20o. E plots the average

of the normalized reaction times for three subjects, on stimuli A, D, F, C, I, and L (which

were randomly interleaved within a session). Each normalized RT is obtained by dividing the

actual RT by that of the same subject for stimulus A. Error bars denote standard error of the

mean. Adapted from Zhaoping, L. and May, K. A., Psychophysical tests of the hypothesis of

a bottomup saliency map in primary visual cortex, PLoS Computational Biology, 3(4):e62,

Fig. 2, copyright c© 2007, Zhaoping, L. and May, K. A.

One might wonder whether the composite texture elements in Fig. 5.36 C (each of which

comprises two intersecting bars) are acting (for saliency) as single bars having the average
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orientation at each location; see Fig. 5.37 F. This would make the relevant orientation feature

noisy and impair performance. The control experiment reported in Fig. 5.37 E demonstrates

that this would not have caused so large an impairment. The RT for this “orientationaveraged”

stimulus (Fig. 5.37 F) is at least 37% shorter than that for the composite stimulus (Fig. 5.36 C).

Box 5.2: Alternative accounts for the interference by taskirrelevant features

One may seek alternative explanations for the observed interference by taskirrelevant features

that is predicted by the V1 saliency hypothesis. For instance, in Fig. 5.36 C, one may assign

a new feature type, let us call it feature “X”, to “two bars crossing each other at 45o.”

Then, each texture element is this “X” at a particular orientation, and each texture region in

Fig. 5.36 C is a checkerboard of two orientations of “X”. So the segmentation could be more

difficult in Fig. 5.36 C, in the same way that it is more difficult to segment the texture of

“ABABAB” from “CDCDCD” in a stimulus pattern “ABABABABABCDCDCDCDCD” than

it is to segment “AAA” from “CCC” in “AAAAAACCCCCC.” This approach of creating new

feature types to explain hitherto unexplained data could of course be extended to accommodate

other cases, such as doublefeature conjunctions (e.g., colororientation conjunction), triple,

quadruple, and other multiple feature conjunctions, or even complex stimuli like faces. It

is not clear how long this list of new feature types would have to be. By contrast, the V1

saliency hypothesis is a parsimonious account, since it explains all these data without invoking

additional free parameters or mechanisms. It was also used in Section 5.4 to explain visual

searches for, e.g., a cross among bars or an ellipse among circles without any detectors

for crosses or circles/ellipses. Our aim should be to explain the most data with the fewest

necessary assumptions or parameters. Additionally, the V1 saliency hypothesis is based on

substantial physiological findings. When additional data reveal the limitation of V1 for bottom

up saliency, the search for additional mechanisms for bottomup saliency can be guided

by following conclusions suggested by visual pathways and cortical circuits in the brain

(Shipp 2004).

From the analysis above, one can see that the V1 saliency hypothesis also predicts a

decrease in the interference if the irrelevant feature contrast is reduced. This is evident from

comparing Fig. 5.37 GHI with Fig. 5.37 ABC, and it is confirmed by the RT data (Fig. 5.37 E).

The neighboring irrelevant bars in Fig. 5.37 I have more similar orientations, inducing stronger

isofeature suppression. Consequently, their evoked responses are decreased, say, from 10 to 7

spikes/second. (Colinear facilitation is also greater for this stimulus; however, isoorientation

suppression dominates colinear facilitation physiologically, so the net effect is a decreased

response to each taskirrelevant bar.) Consequently, the relevant responses to the texture

border, i.e., the border highlights, are no longer submerged by the irrelevant responses. The

irrelevant responses interfere less with the relevant responses, although the fact that the former

(at 7 spikes/second) still dominate the latter (5 spikes/second) in the background implies that

there would still be some interference (with the border highlight being reduced from 5 to 3

spikes/second).

Analogously, interference can be increased by decreasing the taskrelevant orientation con

trast at the texture border. This is demonstrated by comparing Fig. 5.37 JKL and Fig. 5.37 GHI,

and it is also confirmed in experimental data (Fig. 5.37 E). Reducing the relevant feature con

trast makes the relevant responses to the texture border weaker, say from 10 to 7 spikes/second.

Consequently, these relevant responses are even more vulnerable to being submerged by the

irrelevant responses. Therefore, interference is stronger in Fig. 5.37 L than in Fig. 5.37 I.

In sum, the existence and strength of the interference depend on the relative levels of

responses to taskrelevant and taskirrelevant features, with these responses depending on the
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corresponding feature contrasts and direct input strengths. When the relevant responses dictate

saliency everywhere, and when their values are barely affected by the presence or absence

of the irrelevant stimuli, there should be little interference. Conversely, when the irrelevant

responses dictate saliency everywhere, interference with the visual selection required for the

task is strongest. When the relevant responses dictate the saliency value at the location of the

texture border but not in the texture background, the degree of interference is intermediate.

In both Fig. 5.37 C and Fig. 5.37 L, the irrelevant responses (approximately) dictate the

saliency everywhere, so the texture borders are predicted to be equally nonsalient. This is

confirmed in the data (Fig. 5.37 E). However, the RT performance of subjects for Fig. 5.37 CL

varies widely, perhaps because the bottomup saliency is so weak for these two stimuli that

subjectspecific topdown factors contribute significantly to the RTs.

Additional data (Zhaoping and May 2007) confirmed analogous predictions from the V1

theory, such as predictions of interference by irrelevant color with orientationbased tasks.

5.5.1.2 Contrasting the V1 saliency hypothesis and traditional frameworks
for saliency

As mentioned, in traditional models, the saliency values in the master map come from

SMAP(x) ∝ sumxi≈xOi, i.e., summing the activations in various feature maps, each based

on one visual feature such as a particular color or orientation; see Fig. 5.5.

The V1 saliency theory differs from traditional theories, partly because one of its motiva

tions was to understand V1. It also aims for fast computation, and thus it calculates saliency

without requiring separate feature maps or decoding of input features. Indeed, many V1 neu

rons are tuned to more than one feature dimension (Livingstone and Hubel 1984, Lennie 1998)

(e.g., to orientation and motion direction), making it impossible that separate groups of V1

cells represent separate feature dimensions or separate feature maps.

In contrast, the traditional theories were motivated by explaining behavioral data. They

do not specify the cortical location of the feature maps or the master saliency map, or

aim for algorithmic simplicity. For example, although the summation rule seems natural

for the featureblind saliency, it is in practice more complex to implement. The value of

SMAP(x) ∝ sumxi≈xOi is sensitive to exactly which activations Oi should be included in

the sum, considering that the receptive fields of different neurons have different sizes, shapes,

center locations, and sharpness of their boundaries. If the boundary of the receptive field of

neuron i is vague, and if this vague boundary barely covers location x, should the neural

activation Oi be included in the summation for SMAP(x)? Should the summation rule be

implemented as a weighted summation of neural activations, and if so, what weights should

be used? The summation step has to be carried out in order to find the most salient location

to direct attention to. In comparison, the most salient location by maximum rule can be easily

found by finding the neuron with the highest neural response.

From the perspective of the featureblind auction process, feature maps, and thus a master

map, are unnecessary. The observations in Fig. 5.36 thus motivate the framework of visual

selection without separate feature maps.

5.5.2 The fingerprints of colinear facilitation in V1

Two nearby V1 neurons can facilitate each other’s responses if their preferred bars or edges

are aligned with each other such that these bars or edges could be parts of a single smooth

contour (Nelson, and Frost 1985, Kapadia et al. 1995). Although such colinear facilitation

is much weaker than the isofeature suppression which is mainly responsible for singleton

popout in bottomup saliency, it also has consequences for saliency behavior.

Figure 5.38 shows the first such consequence. Figures 5.38 A and 5.38 B both have
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two orientation textures with a 90o contrast between them. The texture borders pop out

automatically. However, in Fig. 5.38 B, the vertical texture border bars in addition enjoy full

colinear facilitation, since each has more colinear neighbors than the other texture border bars

in either Fig. 5.38 A or Fig. 5.38 B. The vertical texture border bars are thus more salient

than other border bars. We call a texture border made of bars that are parallel to the border

a colinear border. In general, for a given orientation contrast at a border, a colinear border is

more salient than other borders (Li 1999b, Li 2000b). This is also seen in the output of the

V1 model—compare Fig. 5.22 and Fig. 5.23 A.

Hence, one can predict that it takes longer to detect the border in Fig. 5.38 A than in

Fig. 5.38 B. This prediction was indeed confirmed (Fig. 5.38 E, in the same experiment

reported in Fig. 5.36 D). A related observation (Wolfson and Landy 1995) is that it is easier

to discriminate the curvature of a colinear than a noncolinear texture border.

Since both texture borders in Fig. 5.38 A and Fig. 5.38 B are so salient that they require

very short RTs, and since RTs cannot be shorter than a certain minimum for each subject,

even a large difference between the saliencies of these borders will only be manifest as a

small difference in the RTs to detect them. However, the saliency difference can be unmasked

by the interference caused by taskirrelevant bars. This is shown in Fig. 5.38 CD, involving

the superposition of a checkerboard pattern of taskirrelevant bars tilted 45o away from the

taskrelevant bars. This manipulation is the same as that to induce interference in Fig. 5.36.

Again, for convenience, let us refer to relevant bars as leading to relevant responses from

relevant neurons, and similarly for the irrelevant bars. As argued in Fig. 5.36, the irrelevant

responses in the background texture region are higher than the relevant responses, and so they

dictate the saliency of the background in both Fig. 5.38 C and Fig. 5.38 D. Meanwhile, the

RT for detecting the texture border in Fig. 5.38 D is much shorter than that for Fig. 5.38 C,

since the interference is much weaker in Fig. 5.38 D.

For concreteness, let us say, as we did when analyzing Fig. 5.36, that the relevant responses

in Fig. 5.38 C are 10 spikes/second at the border and 5 spikes/second in the background, and

that they are 15 spikes/second and 5 spikes/second, respectively, in Fig. 5.38 D. Meanwhile,

the irrelevant responses are roughly 10 spikes/second at all locations in both Fig. 5.38 CD

(as in Fig. 5.36). At the colinear vertical border bars in Fig. 5.38 D, the relevant responses

(15 spikes/second) are much higher than the irrelevant responses (10 spikes/second), and so

are less vulnerable to being submerged. However, because the irrelevant responses dictate

and raise the background saliency, the irrelevant texture still causes interference by reducing

the ratio between the maximum responses to the border and background, from a ratio of

15/5 = 3 to 15/10 = 1.5. This interference is much weaker than that in Fig. 5.38 C, whose

bordertobackground response ratio is reduced from 10/5 to 10/10.

Figure 5.39 demonstrates another, subtler, fingerprint of colinear facilitation. The task

relevant stimulus component is as in Fig. 5.38 A. The taskirrelevant stimulus consists of

horizontal bars in Fig. 5.39 A and vertical bars in Fig. 5.39 B. Away from the border,

both relevant and irrelevant bars lack orientation contrast. Thus, they have comparable iso

orientation suppressions and comparable final responses there. However, some readers might

notice that the border in Fig. 5.39 A is slightly easier to notice than in Fig. 5.39 B. This can be

understood by considering three types of intracortical interactions: isoorientation suppression

between the relevant responses, a general contextual suppression between the relevant and

irrelevant responses regardless of the orientation preferences of the neurons, and colinear

facilitation between irrelevant responses. The effects of the first two interactions are the same

in Fig. 5.39 A and Fig. 5.39 B, but the effect of the third differs between the two stimuli.

Consider isoorientation suppression from the relevant responses to the texture border to

the relevant responses to the border suppression region next to the border (see Fig. 5.34 BC

for an illustration of the border suppression region). Because the relevant responses to the
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A: Two textures of oblique bars B: A vertical texture and a horizontal one

C: A superposed with a checkerboard
pattern of horizontal/vertical bars

D: B superposed with a checkerboard
pattern of left/right oblique bars.

E: Normalized RT to locate texture border in the above stimuli

Fig. 5.38: Fingerprint of colinear facilitation in V1: a texture border with texture bars parallel

to the border (called a colinear border) is more salient (Zhaoping and May 2007). A and

B: Stimulus patterns for texture segmentation; each contains two neighboring orientation

textures with 90o orientation contrast at the texture border. The texture border in B appears

more salient. The interference by taskirrelevant bars in C (as schematized in Fig. 5.36) is

analogous to that in D. Nevertheless, the interference is much less effective in D since the more

salient, taskrelevant, colinear border bars are less vulnerable to interference. E: Normalized

RT of subjects to localize the texture borders, given by the ratio of actual RT to each subject’s

(trial averaged) RT for stimulus condition A (493, 465, 363, 351 ms for AP, FE, LZ, and NG,

respectively).

border bars are the strongest among the relevant responses, the isoorientation suppression

that they exert is also strongest, making the relevant responses in the border suppression region

weaker than those further away from the border. In turn, these weaker relevant responses in the

border suppression region generate less general suppression on the local irrelevant neurons,

making the local irrelevant responses slightly higher than the other irrelevant responses.

Hence, in the border suppression region, the relevant responses are slightly weaker, and the

irrelevant responses slightly stronger, than their respective values in the homogenous region

further away from the border. In this region, the irrelevant responses therefore dictate the

local saliencies; furthermore, because these saliencies are slightly higher than those in the

background, they induce interference for the task by reducing the relative saliency of the

texture border. Figures 5.39 A and 5.39 B differ in the direction of the colinear facilitation
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A: Texture segmentation with

translation invariant horizontal bars

B: Same as A, but with

translation invariant vertical bars
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C: Normalized RT for A and B

Fig. 5.39: Differential interference by irrelevant bars due to colinear facilitation (Zhaoping

and May 2007). Stimuli A and B are made by superposing taskirrelevant horizontal (A) or

vertical (B) bars on top of the relevant stimulus from Fig. 5.38 A. C: Normalized reaction

times to locate the texture border in A and B (using the same subjects and presented the same

way as in Fig. 5.38). The RT for B is significantly longer than that for A (p < 0.01) in three

out of four subjects. By matched sample ttest across subjects, the RT for B is significantly

longer than that in A (p < 0.01). For each subject, RTs for both A and B are significantly

longer (p < 0.0005) than that for Fig. 5.38 A.

among the irrelevant bars. This direction is perpendicular to the border in Fig. 5.39 A and

parallel with it in Fig. 5.39 B. Mutual facilitation between neurons tends to equalize their

response levels, thereby smoothing away the response variations in the direction of colinear

facilitation. Consequently, the local peaks in the irrelevant responses in the border suppression

region should be somewhat smoothed away in Fig. 5.39 A but not in Fig. 5.39 B. This predicts

stronger interference in Fig. 5.39 B than in Fig. 5.39 A, as indeed is confirmed by the

segmentation RTs; see Fig. 5.39 C.

5.5.3 The fingerprint of V1’s conjunctive cells

Figure 5.40 shows that a bar that is unique in color, orientation, or in both color and orien

tation can pop out of (at least statistically) identical backgrounds made of bars with uniform

orientation and color. We call the first two cases singlefeature singletons and singlefeature

popouts, and the third case a doublefeature singleton in a doublefeature popout. If it takes

a subject a reaction time of RTC = 500 ms to find the color singleton, and another reaction

time ofRTO = 600 ms to find the orientation singleton, one may wonder whether the reaction

time RTCO for finding the doublefeature singleton should be 500 ms or less.

Let us consider an extremely ideal case, whenRTC = 500ms andRTO = 600ms always,

without any stochasticity or trial to trial fluctuations. Then, if

RTCO = min(RTC , RTO) = 500 ms,
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A: Single-feature pop-out

color singleton

B: Single-feature pop-out

orientation singleton

RTC = 500 ms

V1’s color-tuned cell
signals target’s saliency

RTO = 600 ms

V1’s orientation-tuned cell
signals target’s saliency

C: Double-feature pop-out

color-orientation singleton

RTCO = min(RTC , RTO) = 500 ms, as in a race model,

when the color-tuned cell dictates saliency

or

RTCO < 500 ms, with double-feature advantage,

when the color-orientation conjunctive cell dictates saliency

Fig. 5.40: Schematic of single and doublefeature popout in color and/or orientation. A: The

saliency of the color (C) singleton is dictated by the response of the cell tuned to a red color,

which is the only cell free from isofeature suppression for this input stimulus. B: Similarly,

the saliency of the orientation (O) singleton is dictated by the response of the cell tuned to its

orientation. C: The colororientation (CO) doublefeature singleton highly activates all three

cell types: colortuned, orientationtuned, and conjunctive colororientation–tuned cells; the

most activated among them should dictate the singleton’s saliency. Consider the simplest case

when A, B, and C do not differ in the neural responses to the background bars; furthermore,

let the color (only)tuned cell respond identically to the singletons in A and C, and let the

orientation (only)tuned cell respond identically to the singletons in B and C. When the RTs to

find the singletons are, for example,RTC = 500ms for the color singleton andRTO = 600ms

for the orientation singleton, whether RTCO for the colororientation singleton is less than

or equal to min(RTC , RTO) = 500 ms depends on whether the conjunctive cell is the most

active cell responding to the CO singleton and is more active than its activation in A and B.

we call RTCO an outcome of a race model, as if RTCO is the result of a race between two

racers with times RTC and RTO, respectively. If RTCO < min(RTC , RTO), we say that

there is a doublefeature advantage. The idealization to treatRT s as deterministic, rather than

stochastic, will be removed later when we work with real behavioral RTs. Meanwhile, for

the ease of explanation, we use this idealization without changing the conclusions. We will

explain below that the V1 saliency hypothesis predicts a doublefeature advantage when V1

has cells tuned conjunctively (or simultaneously) to features in both feature dimensions—in

this example, color and orientation.

V1 has conjunctive neurons tuned to color (C) and orientation (O), or to orientation and

motion direction (M). However, experiments have observed few V1 neurons tuned to color and
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motion direction (Horwitz and Albright 2005). Therefore, the V1 saliency hypothesis predicts

that a doublefeature advantage should exist for a colororientation (CO) double feature and a

motionorientation (MO) double feature, but this doublefeature advantage should be absent

for a colormotion (CM) double feature. It is known that V2, receiving inputs from V1, has

neurons selective to all three types of feature conjunctions: CO, MO, and CM (Gegenfurtner,

Kiper and Fenstemaker 1996). Thus, if V2, or visual areas that are further downstream, are

responsible for bottomup saliency, then one would predict doublefeature advantage for all

three types of doublefeature singletons. Therefore, we refer to the prediction of a double

feature advantage for CO and MO singletons but not for CM singleton as a V1 fingerprint.

Below, we provide a rigorous argument for the prediction, starting with the example of

CO singleton. For intuition, though, consider the activity of neurons whose relevant tuning

is solely to C or O, or conjunctively to CO. Due to isofeature suppression, a C (only)tuned

neuron should, by definition, respond identically to the CO singleton and a C singleton, but

it should be less activated by an O singleton. Similarly, an O (only)tuned neuron should

respond identically to the CO singleton and an O singleton, but it should be less activated by

a C singleton. Finally, the response from a COtuned neuron to a CO singleton should be no

less than its response to a C or O singlefeature singleton. Thus, among all neurons, whether

they are tuned to C, O, or CO, the highest response to the CO singleton should be no less

than the highest response to the C singleton or the O singleton. Provided that, for different

singletons, the statistical properties, e.g., the average and standard deviation, of the V1 neural

responses to the background bars are sufficiently similar, the V1 saliency hypothesis predicts

that the CO singleton will be no less salient than the C and O singletons. Since a singleton’s

saliency should relate inversely to the RT for finding it, RTCO ≤ min(RTC , RTO) follows.

For ease of notation, in this section we eschew the usual notation Oi for the output or

response of a V1 neuron indexed by i. Instead, let α denote an input bar, and let Cα, Oα,

or COα, respectively, denote the highest response to this bar from a population of neurons

tuned solely to C, or O, or conjunctively to CO (and these neurons have their RFs cover the

location of this input bar). The value α can be α = C,O, orCO for a C, O, or CO singleton or

α = B for a background nonsingleton bar. Hence (CC , OC , COC) is the triplet of responses

to a color singleton, (CO, OO, COO) to an orientation singleton, (CCO, OCO, COCO) to a CO

doublefeature singleton, and (CB , OB , COB) to one of the many bars in the background.

The maximum rule states that the saliency of the bar indexed by α = C,O,CO, or B is

SMAPα ≡ max(Cα, Oα, COα) . (5.15)

Note that, among the neurons responding to the bar α, the number of neurons tuned to C

may not be the same as the number of neurons tuned to O (or CO). However, this does not

matter in our formulation since Cα, Oα, or COα marks the highest response to the bar from

a subpopulation of neurons having a particular tuning property regardless of the number of

neurons in this subpopulation.

For a neuron tuned only to color or orientation, its response should be independent of any

feature contrast in other feature dimensions. Hence

CCO = CC , OCO = OO, (5.16)

CO = CB , OC = OB . (5.17)

(Note that, although, e.g., CO = CB , this C neuron is still tuned to color.) Furthermore,

isocolor and isoorientation suppression, and the strong saliency of the singletons, imply

CC > CB and OO > OB . (5.18)

Generalizing isofeature suppression to the conjunctive cells, we expect
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COCO ≥ COO, COCO ≥ COC , (5.19)

COO ≥ COB , COC ≥ COB . (5.20)

Since the singletons α = C,O, or CO pop out, we have

SMAPα ≫ SMAPB for α = C,O, or CO. (5.21)

Since OC = OB (by equation (5.17)), then

SMAPC = max(CC , OC , COC) = max(CC , OB , COC).

This, combined with SMAPC ≫ SMAPB and SMAPB ≥ OB , leads to

SMAPC = max(CC , COC), and analogously, SMAPO = max(OO, COO). (5.22)

Then we can derive

SMAPCO = max(CCO, OCO, COCO) (5.23)

= max(CC , OO, COCO) {by equation (5.16)} (5.24)

= max(CC , OO,max(COCO, COC , COO)) {by equation (5.19)} (5.25)

= max(max(CC , COC),max(OO, COO), COCO) (5.26)

= max(SMAPC ,SMAPO, COCO) {by equation (5.22)} (5.27)

≥ max(SMAPC ,SMAPO) . (5.28)

In the above, each {...} is not part of the equation, but it contains text pointing out the equation

used to arrive at the mathematical expression to its left. Equations (5.27) and (5.28) mean that

the doublefeature singleton CO can be more salient than both the singlefeature singletons

C and O if there are conjunctive cells whose response COCO has a nonzero chance of being

larger than both SMAPC and SMAPO to dictate the saliency of the CO singleton (this is

achieved when COCO is larger than OO, CC , COC , and COO). When there is no conjunctive

cell CO, we can simply make COα = 0 in the above equations, eliminating its ability to

dictate the saliency value. Then, inequality (5.28) becomes an equality:

SMAPCO = max(SMAPC ,SMAPO) when there is no conjunctive CO neuron. (5.29)

The saliency SMAPα is taken as determining the RTα for detecting the singleton α via a

monotonic function f(.):

RTα = f(SMAPα), such that f(x1) > f(x2) when x1 < x2, (5.30)

by the definition of saliency. Equations (5.28–5.30) then lead to

RTCO = min [RTC , RTO] ,
the race model, when there is no conjunctive CO cell.

(5.31)

RTCO = min [RTC , RTO, f (COCO)]
≤ min [RTC , RTO] ,

doublefeature advantage, with conjunctive CO cells.
(5.32)

Hence, without conjunctive CO cells, RTCO to detect a CO doublefeature singleton can be

predicted by a race model between two racers SMAPC and SMAPO with their respective

racing times asRTC andRTO for detecting the corresponding singlefeature singletons. With
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conjunctive cells, there may be a doublefeature advantage. The RTCO can be shorter than

predicted by the race model between the two racers SMAPC and SMAPO, since there is now

a third racer, COCO, with its RT as f(COCO); see equation (5.32). Note that, when we say the

race model for the RT of a doublefeature singleton, we mean a race between only two racers

whose racing times are the RTs for the two corresponding singlefeature singletons, without

any additional racers.

Now let us remove the deterministic idealization and treat the RTs and the V1 neural

responses as stochastic, as they are in reality. The neural responses in single trials can be seen

as being drawn from a probability distribution function (pdf). Thus, SMAPC , SMAPO, and

COCO are really all random variables drawn from their respective pdfs, making SMAPCO

another random variable. Accordingly, the RTs are also random variables by their respective

pdfs. In particular, when the race model holds, i.e., when there is no CO conjunctive cell,

Monte Carlo simulation methods based on equation (5.31) can be used to predict RTs for

the doublefeature singleton as follows. Let us denote RTCO(race) as the RTCO by the race

model. We randomly sample one RT each from the distribution of RTC and that of RTO,

respectively, and call these samples RTC(sample) and RTO(sample). This gives a simulated

sample, RTCO(race sample), of RTCO(race) according to the race model as

RTCO(race sample) ≡ min[RTC(sample), RTO(sample)] (5.33)

by equation (5.31). Using a sufficient number of such samples, one can generate a distribution

of RTCO(race). We can then test whether human RTs to detect a CO singleton is statistically

shorter than RTCO(race) predicted by the race model.

The response COCO of the CO neuron to the CO singleton is also stochastic, and its

corresponding (wouldbe) RT f(COCO) also follows a pdf. Averaged over trials, according

to equations (5.27) and (5.32), as long as this additional racer COCO has a nonzero chance

of being larger than both SMAPC and SMAPO, the trialaveraged RTCO should be shorter

than the one predicted by the race model. Note that this doublefeature advantage can happen

even when the average response of the CO neurons are no larger than those of the C and O

neurons.

We also note that, even when there is no CO cell, the racemodel predicted RTCO(race)

can be on average (over the trials) shorter than both the average RTC and the average RTO
(unless the distributions of RTC and RTO do not overlap), since RTCO(race) is always the

shorter one of the two singlefeature RT samples.

The derivation and analysis above can be analogously applied to the doublefeature sin

gletons MO and CM, involving the motiondirection feature. Hence, the fingerprints of V1’s

conjunctive cells are predicted to be as follows: compared to the RT predicted by the race

model from the RTs for the corresponding singlefeature singletons, RTs for the CO and MO

doublefeature singletons should be shorter, but the RT for the CM doublefeature singleton

should be the same as predicted.

This fingerprint was tested (Koene and Zhaoping 2007) in a visual search task for a

singleton bar (among 659 background bars) regardless of the features of the singleton, using

stimuli as schematized in Fig. 5.40. Each bar is about 1×0.2o in visual angle, takes one of the

two possible isoluminant colors (green and purple) against a black background, is tilted from

vertical in either direction by a constant amount, and moves left or right at a constant speed.

All background bars are identical to each other in color, tilt, and motion direction, and the

singleton pops out by virtue of its unique color, tilt, or motion direction, or any combination

of these features. The singleton has an eccentricity 12.8o from the initial fixation point at the

center of the display in the beginning of each search trial. Subjects have to press a button as

soon as possible to indicate whether the singleton is in the left or right half of the display,

regardless of the singleton conditions, which are randomly interleaved and unpredictable.
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B: Normalized RTs for

eight human observers

Race-model predicted RT

C: Average normalized RTs

Race-model predicted RT

A: Comparison of the predicted V1 fingerprint

with the fingerprint predicted by higher cortical areas

Double-feature singleton types Double-feature singleton types

Fig. 5.41: Testing the fingerprint of V1 conjunctive cells in bottomup saliency. A: The

predicted V1 fingerprint, depicted in the left plot, compared with the prediction by V2/higher

cortical areas (right plot). The dashed lines indicate the value of the predicted RT for the

doublefeature singletons by the race model. If bottomup saliency in these tasks were com

puted by higher cortical areas, doublefeature advantage, by an RT shorter than predicted from

the race model, should occur in all doublefeature singletons CO, MO, and CM. By contrast,

V1 predicts a doublefeature advantage for CO and MO singletons but not for the CM sin

gleton. This is because V1 has conjunctive CO and MO cells but no CM cells, but V2/higher

areas have all the three cell types. B,C: Experimental findings by Koene and Zhaoping (2007).

The plotted bars show normalized mean RTs across trials for each subject (in B) or the average

of these means across subjects (in C). The normalization factor comes from the predictions of

the race model. Error bars indicate the standard errors of the means. In C, by matched sample

twotailed ttests, the observed RTCO and RTMO for the doublefeature singletons CO and

MO are significantly shorter than those predicted by the race model, whereas the observed

RTCM for the doublefeature singleton CM is not significantly different from the racemodel

prediction. In B and C, a “*” above a data bar indicates a significant difference between the

RT data and that predicted from a race model.

Trials with incorrect button presses or with RTs shorter than 0.2 seconds or longer than three

standard deviations above the average RTs were excluded from data analysis.

The experiment by Koene and Zhaoping (2007) was designed such that there was a

symmetry between the two possible feature values in each feature dimension, i.e., between the

isoluminant green and purple colors, between lefttilt and righttilt orientations, and between

the leftward and rightward movements. Hence, for our derivation, the highest responses from

the V1 neurons to a bar is assumed to be regardless of whether the bar takes one or the other

of the two possible feature values, e.g.,CC (the highest response of V1 neurons tuned to color

only to a color singleton bar) is regardless of whether a color singleton is the unique green
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bar among purple bars or the other way around (even though the highest response to a green

singleton is from a cell tuned to green and that to a purple singleton is from a cell tuned to

purple). This feature symmetry allows us to pool together the RT data for symmetryrelated

singletons, e.g., a green singleton and a purple singleton, in the data analysis.

Figure 5.41 BC plot the observed RTs for the doublefeature singletons, normalized

by the RTs predicted by the race model. For example, for each observer, a distribution of

RTCO(race) can be predicted from the histograms of the behavioral RTC and RTO data from

this observer, using the Monte Carlo method above. The normalized RT of this observer for

the CO singleton is his/her behavioral RT to detect the CO singleton divided by the average

RTCO(race) predicted by the race model for the same observer. Therefore, a doublefeature

advantage is manifest in a normalized RT smaller than unity, and a racemodel predicted

RT gives a normalized RT equal to unity. The results confirm the predicted V1 fingerprint. A

doublefeature advantage for the CO singleton has been previously observed (Krummenacher,

Müller and Heller 2001). Similarly, a lack of doublefeature advantage has also been observed

when both features are in the orientation dimension (Zhaoping and May 2007), consistent

with the V1 saliency hypothesis, since there is no V1 cell conjunctively tuned to two different

orientations.

Note that traditional models of saliency would predict that a doublefeature singleton

should, if anything, be more salient than the singlefeature singletons. In particular, recall

from Section 5.1.3 that the traditional models should predict that, in the experiment by Koene

and Zhaoping, a CO singleton should be more salient than an O singleton in the same way,

and by the same amount, as a CM singleton is more salient than an M singleton. These

predictions arise from the separation between feature maps and from the summation rule. The

observations shown in Fig. 5.41 refute these predictions.

5.5.4 A zeroparameter quantitative prediction and its experimental

test

Equation (5.31) shows that if there were no V1 neuron tuned simultaneously to both C and

O, then one could quantitatively predict RTCO from RTC and RTO. Hence, for example, an

RTC = 500 ms and an RTO = 600 ms could together predict RTCO = min(RTC , RTO) =
500 ms from the race model, without any free parameters (see Fig. 5.40). As both RTO and

RTC follow their respective probability distributions, the probability distribution of RTCO
could also be quantitatively derived without any parameters, by drawing random samples of

RTCO as RTCO = min(RTO, RTC) from sample pairs (RTO, RTC).
However, because V1 has neurons tuned conjunctively to C and O, the measured proba

bility distribution of RTCO is different from this racemodel prediction derived just from the

distributions of RTC and RTO. This is shown in Fig. 5.42 B.

We mentioned in the previous section that few CM V1 neurons have been found that are

tuned conjunctively to color (C) and motion direction (M). Hence, when RTCM is the RT to

find a doublefeature singleton unique in both color (C) and motion direction (M) and RTM
is the RT to find a singleton unique in motion direction, the distribution of RTCM is the same

as that of min(RTC , RTM ). This is consistent with the observation that, across observers, the

average RTCM is indeed the same as that predicted by the race model (by drawing random

samples ofRTCM asRTCM = min(RTC , RTM )) from sample pairs (RTC , RTM ). However,

a closer observation of Fig. 5.41 B suggests thatRTCM < min(RTC , RTM ) (averaged across

trials) for two out of the eight observers. Indeed, findings by different researchers differ as

to the existence of CM cells in V1 (Horwitz and Albright 2005, Michael 1978)—perhaps

they exist in some observers but are just less numerous than CO and MO doublefeature

conjunctive cells.
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Even if there are some CM neurons in V1, there has yet to be a report of triple feature

conjunctive cells, CMO, which are simultaneously tuned to color (C), motion direction (M),

and orientation (O) features. (Note that the CMO cells should be a subset of the CM cells, and

hence they cannot be more numerous than the CM cells.) Indeed, this dearth is as expected from

the input signaltonoise considerations discussed in Section 3.6.9 that preclude substantial

numbers of V1 neurons from being tuned to multiple feature dimensions. Hence, we can use

exactly the same idea as the one that led to RTCO = min[RTO, RTC ] in equation (5.31) to

derive the following parameterfree equation (Zhaoping and Zhe 2012b) from the V1 saliency

hypothesis:

min(RTC , RTM , RTO, RTCMO) = min(RTCM , RTCO, RTMO). (5.34)

In this expression, CO, MO, and CM are the conjunctions of two features indicated by the

respective letters (C, M, and O), and CMO is the triple feature conjunction of C, M, and O,

and RTα is the RT to find a single, double, or triplefeature singleton denoted by α, which

can take values α = C, M , O, CM , MO, CO, or CMO.

To derive equation (5.34), we proceed as in the last section. Let C, M , O, CM , CO,

and MO denote V1 neurons tuned to a single or double (conjunctive) feature(s) indicated by

the respective letters, and let Cα, Mα, Oα, CMα, COα, and MOα be the responses of these

neurons to singleton α or a background item α = B. Then, as in equation (5.15), the saliency

at the location of item α is

SMAPα = max(Cα,Mα, Oα, CMα, COα,MOα). (5.35)

Just as in equations (5.16–5.20), the neurons should respond more vigorously to a singleton

whose feature uniqueness matches more of its preferred tuning, and its response should be

indifferent to feature contrast in a dimension to which it is not tuned. Hence, statistically,

CC = CCO = CCM = CCMO > CB = CO = CM = CMO,
OO = OCO = OMO = OCMO > OB = OC = OM = OCM ,
MM = MCM =MMO =MCMO > MB =MC =MO =MCO,

CMCM = CMCMO, CMM = CMMO, CMC = CMCO, CMB = CMO,
COCO = COCMO, COC = COCM , COO = COMO, COB = COM ,
MOMO = MOCMO, MOM =MOCM , MOO =MOCO, MOB =MOC .

(5.36)

Furthermore, since the singletons are very salient, we have, for α = C,M,O,CM,CO,MO
and CMO,

SMAPα > SMAPB = max(CB ,MB , OB , CMB , COB ,MOB). (5.37)

From these equations, one can derive

max(SMAPC ,SMAPM ,SMAPO,SMAPCMO) =
max(SMAPCM ,SMAPCO,SMAPMO),

(5.38)

which is the saliency equivalent of the RT equation (5.34) due to the monotonically inverse

relationship between SMAPα and RTα. The above equation can be verified by substituting

equation (5.35) for each SMAPα in equation (5.38), using properties in equation (5.36) and

noting that

max[max(a, b, ...),max(a′, b′...), ...] = max[a, b, ..., a′, b′, ...] (5.39)

for various quantities a, b, a′, and b′, etc.
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Fig. 5.42: Testing a quantitative prediction from the V1 saliency hypothesis using data

collected by Koene and Zhaoping in the same experiment as in Fig. 5.41. Only six out of the

eight observers in the experiment had the complete set of data on all feature singletons. A:

The distribution of RTCMO for one of the six observers is predicted from the other RTs of the

same observer according to equation (5.34). The predicted and observed quantities are plotted

in blue and red, respectively. In comparison, B shows the disconfirmation (using data from the

same observer) of the incorrect prediction, RTCO = min(RTC , RTO) (i.e., predicting RTCO
from RTC and RTO by a race model), which does not arise from the hypothesis, because

of the presence of CO neurons in V1. In A, but not in B, the predicted distribution is not

significantly different from the observed distribution.

Let RT1 ≡ min(RTC , RTM , RTO, RTCMO) and RT2 ≡ min(RTCM , RTCO, RTMO).
Then equation (5.34) states that RT1 = RT2. Because neural responses are stochastic, the

actual equality is between the probability distributions of RT1 and RT2, respectively. Given

the observed distributions ofRTC ,RTO,RTM ,RTCM ,RTCO, andRTMO, one can derive the

distribution ofRTCMO by finding the one which minimizes the difference (quantified by some

appropriate measure) between the probability distributions of RT1 and RT2, respectively.

Figure 5.42 A shows that the predicted and observed distributions of RTCMO agree with

each other quantitatively, up to the noise in estimating these distributions that comes from

the finite number of search trials. Statistical analysis confirms that the difference between

the predicted and observed distributions is not significant for any of the six observers. By

contrast, a test of the incorrect prediction RTCO = min(RTC , RTO) of RTCO from a race

model that assumes no CO neuron fails, since there is a significant difference between the

predicted and the observed distributions of RTCO for most of the six observers. Figure

5.42 shows an example. Two other (examples of) incorrect predictions (which cannot be

predicted by the V1 theory without additional requirements on V1 physiology) of RTCMO

by the race equations min(RTC , RTMO, RTCMO) = min(RTCM , RTCO, RTM , RTO) and

RTCMO = min(RTC , RTM , RTO), respectively, also fail to agree with data for at least some

observers.

The agreement between the quantitative prediction and experimental data further supports

the idea that V1 is the substrate for saliency computation. This is because higher cortical

areas (such as V2) downstream along the visual pathway do have neurons tuned to the triple

or more conjunctions of simple features,19 as expected from the general observation that

neural selectivities become more complex in higher visual cortical areas. Since our prediction

19Private communication from Stewart Shipp, 2011.



| 269The roles of V1 and other cortical areas in visual selection

requires an absence of these triple conjunctive cells, it is unlikely that the higher cortical areas,

instead of V1, used the maximum rule (from equation (5.4)) to compute saliency for the feature

singletons in our search stimuli. Otherwise, the predictedRTCMO would be statistically longer

than the observed RTCMO, just like the racemodel predicted RTCO is longer than the RTCO
in reality.

5.5.5 Reflections—from behavior back to physiology via the V1

saliency hypothesis

Recall from Chapter 1 that one of the aims of a theory is to link physiological and behavioral

observations. So far, we have used the V1 saliency hypothesis to predict behavior in visual

search and segmentation tasks from the physiological properties of V1. From a surprisingly

“impossible” prediction of a salient ocular singleton to a quantitative prediction derived

without any free parameters, experimental confirmations of these predictions build confidence

in the theory.

These successes encourage us to reverse the direction of prediction by applying this

theory to predict V1 neural properties from behavioral data. For example, a significant

difference between the distribution of the behavioral RTCO and that of the race model

RTCO = min(RTC , RTO), seen in Fig. 5.42 B, predicts a nontrivial contribution to the

saliency of the CO singleton from CO neurons in V1; see equations (5.27) and (5.32). This

predicted contribution is the portion that is beyond that by the same CO cells to the saliency

of the singlefeature (C and O) singletons, and it can be quantitatively assessed from the

behavioral RT data (Zhaoping and Zhe 2012a). We predict that the V1 CO neurons should

respond to their preferred conjunction of C and O features more vigorously when this conjunc

tion is a doublefeature rather than a singlefeature singleton. Consequently, the contextual

suppression on a CO cell responding to this conjunction is predicted to be weaker when the

contextual inputs differ from this conjunction in both, rather than just one of, the C and O

dimensions. Analogous predictions hold for the contextual influences on the MO neurons in

V1.

5.6 The roles of V1 and other cortical areas in visual

selection

According to Fig. 2.3 and Fig. 2.29, V1 is just one of the visual areas that send signals to

the superior colliculus (SC) to control gaze. The SC also receives inputs from the retina,

extrastriate areas, lateral intraparietal cortex (LIP), and the frontal eye field (FEF). Figure

5.43 shows a simplified schematic of the brain areas involved in gaze control. If we identify

gaze control with the control of selection (ignoring covert selection), then it is likely that other

brain areas must also contribute to selection, i.e., the guidance of attention.

It is instructive to imagine that the decision as to where, or to what, to direct attention is

by a committee. Various brain areas, including V1, are the committee members which send

their contributions to the decision; and the SC transforms the decision by the committee to

motor responses. The impact of each brain area on the decision is determined by various

factors, including the strength and timeliness of its contribution. Hence, some decisions are

dominated by topdown effects, while others by bottomup ones.

It is generally believed that the frontal and parietal brain areas are involved in many top

down aspects of attentional selection (Desimone and Duncan 1995, Corbetta and Shulman

2002). By contrast, observations in Section 5.3 and Section 5.5.4 suggest that cortical areas

beyond V1 play little role in the bottomup control of selection mediated by the saliency of the
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very salient singletons in the eye of origin, color, orientation, and motion direction. However,

the V1 saliency hypothesis does not preclude additional influences from other cortical areas

to bottomup selection for more complex stimuli. It is therefore important to understand the

extent of their contribution.

LGN
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Fig. 5.43: Brain areas governing gaze control (Schiller 1998). V1 is only one of a number of

areas contributing to the control of gaze. In monkeys and cats, the retina plays a very limited

role in controlling saccades driven by visual inputs (Schiller et al. 1974, Schiller 1998). The

role of higher visual areas can be assessed by investigating the influence on gaze control of

aspects of visual perception that are not processed by V1.

First, various observations suggest that the retina plays little role in visually guided

saccades in normal (nonlesioned) monkeys and cats, even though it can play a role in

stabilizing retinal images during viewer or scene motion via their projection to the accessory

optic system (Schiller 1998). In monkeys, a very small and relatively poorly understood

fraction of retinal ganglion cells, called W cells, projects to the superficial layers of the SC

(Schiller 1998). The axons of these neurons conduct spikes more slowly than parvo and

magnocellular ganglion cells (Schiller and Malpeli 1977). When V1 in monkeys or cats is

removed or cooled, neurons in the intermediate and deep layers of the SC, and in particular,

those eyemovement cells which activate to evoke saccades, can no longer be driven by visual

stimuli. This is the case even though the animals can still make saccades in the dark (but not

in response to visual stimulation) and even though these cells still fire before nonvisually

guided saccades (Schiller et al. 1974, Schiller 1998), which can be controlled by FEF, which

can bypass the SC to control saccades. Also, monkeys suffering V1 lesions do not have proper

visually guided saccades for up to two months after the lesion (Isa and Yoshida 2009).

The LGN lacks direct input to the SC. Thus, apart from the retina, only V1 and brain

areas downstream along the visual pathway can be responsible for visually guided saccades

or selection for normal primates. One key difference between V1 and downstream areas is

latency—the latter typically have longer latencies than V1 in response to visual input, and

so their contributions to bottomup selection, or to topdown selection contingent on visual

input, are likely to lag behind that of V1 (Bullier and Nowak 1995, Schmolesky, Wang, Hanes,

Thompson, Leutgeb, Schall and Leventhal 1998). One can imagine situations in which V1’s

contribution is so strong and fast that the nonV1 contributions could be too slow to have an
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impact. The nonV1 contribution could also be ignored if it is too weak, or if it and V1’s

contributions are redundant. Conversely, it could be substantial when V1’s contribution is too

weak to reach a quick decision.

To investigate the respective contributions by V1 and other brain areas in selection, we

focus on those selections which are contingent on external visual inputs, assuming that V1

plays little role in the other selections. Note that topdown and taskdriven factors can influence

input contingent selections. This is because, when selection has a sufficiently long latency

after visual input, the gist of the scene obtained by observers during the latency could exert

influence associated with the knowledge of the scene or ongoing tasks.

5.6.1 Using visual depth feature to probe contributions of extrastriate

cortex to attentional control

To explore contributions to bottomup selection beyond V1, it helps to identify visual processes

that are carried out in higher visual areas but not in V1, and to investigate how these visual

processes guide selection. A good candidate is stereo vision, which analyzes surfaces and

their depth orders to achieve the perception of threedimensional (3D) surfaces. Even though

V1 cells are tuned to binocular disparities, 3D perception requires stereo processes to suppress

false matches, which occur between visual inputs to the two eyes arising from two different

object features in the scene (see Fig. 6.7 C). It is known that these stereo matching processes

aimed at surface perception are centered outside V1, notably in V2 (Cumming and Parker

2000, Bakin et al. 2000, von der Heydt et al. 1984, von der Heydt et al. 2000, Qiu and von der

Heydt 2005, Janssen, Vogels, Liu and Orban 2003). Hence, attentional guidance by depth or

3D cues should reflect contributions coming from beyond V1.

It has been shown (Nakayama and Silverman 1986, He and Nakayama 1995) that searching

for a target defined by a unique conjunction of depth and another feature is much easier than

typical conjunction searches that lack the depth feature (e.g., the colororientation conjunction

in Fig. 5.3 E). This suggests that 3D cues can help direct attention to taskrelevant locations.

We can measure and compare selection with and without 3D cues while the 2D cues are held

constant. The speedup of attentional guidance by the 3D cues is identified as a contribution

from beyond V1.

One such study (Zhaoping, Guyader and Lewis 2009) is an extension to the experiment

shown in Fig. 5.36, which was used to test the maximum rule in V1 saliency computations.

In that experiment, the segmentation of a taskrelevant texture was subject to interference

from a superposed taskirrelevant texture surface. Denote the taskrelevant image (texture

A in Fig. 5.36) by Irel, the taskirrelevant image (texture B in Fig. 5.36) by Iir, and the

composite image (texture C in Fig. 5.36) as Icom = Irel + Iir. The interference from Iir can

be reduced when Iir’s position is slightly shifted horizontally from Irel by a displacement

x. Let us denote this shifted version of Iir as Iir(x), and the resulting composite image as

Icom(x) = Irel + Iir(x); see Fig. 5.44. The RT for segmenting Icom(x) is less than that for

segmenting the original composite Icom. (One can also simulate the V1 model in Section

5.4 and confirm that the V1 saliency value at the texture border is higher in the 2D offset

images Icom(±x) than in the original Icom.) A horizontal shift −x of Iir in the opposite

direction, giving a composite image Icom(−x), would reduce the RT just as effectively. These

RT reductions are not caused by any 3D cues, since exactly identical textures Icom(±x) are

presented to the two eyes.

If Icom(x) and Icom(−x) are viewed dichoptically by the two eyes, the percept is 3D: the

two texture surfaces Irel and Iir separate in depth (see Fig. 5.44). Whether Irel appears in front

of or behind Iir depends on whether the right or left eye sees Icom(x). If the separation in
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Fig. 5.44: Construction of 2D and 3D stimuli used to assess the contribution to selection

of 3D processes in brain areas beyond V1. The texture images Irel are as textures A in

Fig. 5.36, and texture images Iir(±x) are spatially shifted (horizontally by ±x) versions of

texture B in Fig. 5.36. Superposing Irel and Iir(±x) makes Icom(±x), and Icom(x = 0) is

as texture C in Fig. 5.36. The bottom row shows the 2D offset stimulus 2Dx, created by

presenting the 2D offset image Icom(x) (or Icom(−x)) identically to both eyes, and the 3D

stimuli Groundx and Figurex, created by presenting Icom(x) to one eye and Icom(−x) to

the other. The relative disparity between Irel and Iir in the 3D stimuli is 2x. Adapted with

permission from Zhaoping, L., Guyader, N., and Lewis, A., Relative contributions of 2D and

3D cues in a texture segmentation task, implications for the roles of striate and extrastriate

cortex in attentional selection, Journal of Vision, 9(11), article 20, doi: 10.1167/9.11.20, Fig.

2, copyright c© 2009, ARVO.

depth makes segmentation faster than for the 2D percept arising from binocular (sometimes

called bioptic) viewing of Icom(x), the postV1 3D effect should be credited.

Denote the 2D bioptic stimulus when the 2D offset image Icom(x) or Icom(−x) is pre

sented identically to both eyes as 2Dx, and the 3D dichoptic stimuli when Icom(x) and

Icom(−x) are presented to different eyes as Figurex and Groundx, when Irel is in the fore

ground or background, respectively. These stimuli share the same 2D cues, notably the same
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Fig. 5.45: The contributions of 2D and 3D processes to selection are manifest in the differences

between RTs for texture segmentation using five different types of texture stimuli: Irel, 2D0,

2Dx, Figurex, and Groundx. Each of the last four stimuli (created as in Fig. 5.44) contains

two texture surfaces, Irel, which is task relevant, and Iir, which is task irrelevant. These

two surfaces are placed at the same depth, as in 2D0 and 2Dx, or at different depths, as in

Figurex and Groundx, in which Irel is in the foreground and background respectively. The

2D offset stimulus 2Dx has a spatial offset ±x between textures Irel and Iir; this offset is

zero in 2D0. The contribution of 3D processes to selection should be manifested in the RT

difference RT (2Dx)−RT (Figurex), and it is perhaps also manifested in the RT difference

RT (Groundx) − RT (Figurex) regardless of the eye dominance. Adapted with permission

from Zhaoping, L., Guyader, N., and Lewis, A., Relative contributions of 2D and 3D cues

in a texture segmentation task, implications for the roles of striate and extrastriate cortex

in attentional selection, Journal of Vision, 9(11), article 20, doi: 10.1167/9.11.20, Fig. 3,

copyright c© 2009, ARVO.

2D positional offset between the taskrelevant and taskirrelevant textures. However, the 3D

stimulus has an additional 3D cue, the depth separation between the two textures, to which

3D perception is sensitive. If RT (2Dx), RT (Figurex), and RT (Groundx) are the RTs for

the segmentation task for the corresponding stimuli (see Fig. 5.45), then any 3D contribution

to selection is likely to manifest as the following two differences between the RTs,

the first RT difference ≡ RT (2Dx)−RT (Figurex) and

the second RT difference ≡ RT (Groundx)−RT (Figurex),

being positive. The second RT difference may be positive if the taskrelevant surface in the

foreground helps steer attention.

The result was that these differences were only significantly positive, indicating a contri

bution from 3D processes, for RTs that were at least 1 second long; see Fig. 5.46. This RT

is the time it takes for observers to press one of the two buttons to report whether the texture

border in Irel component is in the left or right half of the visual display. Assuming that it takes

subjects around 300–400 ms after making the decision actually to press the button, this one

second RT implies a roughly 600–700 ms RT for the task decision. The data in Fig. 5.46 thus

suggest that if the saliency signal from V1 is sufficiently fast and adequate for the task, then a
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Fig. 5.46: Contributions from 3D visual processes to selection in a segmentation task are

absent unless observers take at least 1000 ms to register their decision. The task is depicted in

Fig. 5.45. RTs are plotted for various subjects in experiments 1 and 2. These two experiments

differ in that the orientation contrast at the texture border in Irel is 90o in experiment 1 (with

Irel as in Fig. 5.45), and 14o in experiment 2 (Irel, not shown, has roughly oblique texture

bars). Experiment 2 is designed to reduce the saliency of the texture border so that a longer

RT is required. The horizontal axes label the subjects and the experiments in which these RTs

were obtained, e.g., Subject/Exp = “LZ/2” means subject LZ in experiment 2. A “*” on top of

the red data bar (forRT (Figurex)) indicates a significantly larger (twotailed ttest)RT (2D)
or RT (Groundx) than RT (Figurex). Data from Zhaoping, L., Guyader, N., and Lewis, A.,

Relative contributions of 2D and 3D cues in a texture segmentation task, implications for the

roles of striate and extrastriate cortex in attentional selection, Journal of Vision, 9(11), article

20, 2009, doi: 10.1167/9.11.20.

decision can be made quickly without waiting for contributions from higher brain areas. This

situation should apply for cases in which subjects can respond manually within 1 second for

the task, regardless of whether the stimuli are 2D or 3D.

However, if the visual input is such that the V1 saliency signal is inadequate for a quick

and confident task decision, contributions from higher brain areas can be important. This

situation should apply to 3D stimuli like Figurex and Groundx, when their monocular 2D

component images do not give rise to adequate V1 saliency signals for the task within a

short time. Then, depth perception by higher brain areas aids attentional guidance. If the

additional contribution from higher visual areas is absent, or it and the contribution from V1

are redundant, and the V1 contribution is weak, then the task RT can be long. This should

apply to the situation in which observers take longer than 1 second to respond to the stimuli

2Dx or 2D0 without 3D cues. In other words, the findings suggest that, at least for depth

processing, extrastriate areas do not contribute to input contingent selection immediately

upon visual input, but they do contribute around several hundred milliseconds after the input

onset. Meanwhile, V1 dominates in controlling selection within this initial time window after

visual input onset or after a sudden unpredicted change to the visual scene.

It has been observed (Einhäuser, Spain and Perona 2008) that human saccades on static

photographs are better predicted by visual objects (i.e., recognizable objects which are likely
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meaningful to the viewers) than by saliency. However, the first few saccades are very similar to

those made by observers who have visual object agnosia (Mannan, Kennard and Husain 2009),

suggesting that the early saccades are primarily controlled by bottomup saliency rather than

object processes occurring outside V1. These findings are consistent with our observations

using the depth feature.

In everyday life, we may divide our visual experience into separate episodes, each being

defined by our visual exposure to a constant environment, such as a room or an outdoor field. A

typical visual episode may last many seconds, minutes, or hours. Many of the eye movements

in an episode, such as directing gaze to a kitchen counter to look for a kettle, are controlled

by our knowledge of the environment. This knowledge can be obtained very quickly, within

perhaps a second or so after we enter a new environment (and aided by our stored knowledge

of what typical kitchens, or other environments, look like). Viewed from the perspective of

temporal durations of selection control, V1’s contribution to attentional guidance is confined

to just the first second, and will only be a tiny fraction of the total contributions from all brain

areas in typical daily situations. However, by exerting initial control, V1’s role in selection is

special.

5.6.2 Salient but indistinguishable inputs activate early visual cortical

areas but not the parietal and frontal areas

Neural activities correlated or associated with bottomup saliency (which we call saliencylike

signals) have been observed in LIP (Gottlieb et al. 1998, Bislay and Goldberg 2011, Arcizet,

Mirpour and Bisley 2011) and FEF (Thompson and Bichot 2005). Areas such as the pulvinar

and V4 have also been observed to be linked with attentional guidance or maintenance

(Schiller and Lee 1991, Robinson and Petersen 1992, Mazer and Gallant 2003). These areas,

and particularly a frontoparietal network, are often considered to organize the guidance

of attention (Corbetta and Shulman 2002) or the maintenance of information associated

with attention, especially in taskdependent manners. Thus, it is important to know whether

their computational role is confined to controlling topdown and taskdependent attention, and

whether V1 is the origin of the saliencylike signals which are received in order to be combined

with topdown signals in the computation. Importantly, saliencylike signals have always been

evoked in experiments using salient inputs which are highly distinctive perceptually. Hence,

the relevant activities in these regions might come from recognizing or perceiving the input,

rather than saliency itself.

Attentional capture by an eyeoforigin singleton, shown in Fig. 5.9, indicates that some

inputs can be quite salient without evoking any perceptual awareness of how they are distinct

from background items. If there is a difference between the neural response to such a salient

input and the response to a perceptually identical, yet nonsalient, background input, this

difference should represent a relatively pure signal for saliency, with minimal contamination

by nonsaliency factors. Identifying brain areas that exhibit such a pure saliency signal can

help us to identify brain areas involved in computing saliency. Assessing this was the intent

of an experiment (Zhang, Zhaoping, Zhou and Fang 2011) in which functional magnetic

resonance imaging (fMRI) and eventrelated electroencephalography potentials (ERPs) were

used to probe neural responses to salient inputs that are not perceptually distinctive.

In the experiment, we used an input texture containing a regular array of isooriented bars

except for a foreground region of 2× 2 bars tilted differently from the background bars; see

Fig. 5.47. This whole texture was shown for only 50 ms and was quickly replaced by a high

contrast mask texture (which itself lasted for just 100 ms). Meanwhile, the observers directed

their gaze to an everpresent fixation point. The foreground texture could only be at one of the

two possible locations, which were 7.2o to the lower left or lower right of the fixation point.
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Fig. 5.47: A salient cue, which improves discrimination at the cued location but whose

distinction from background inputs is invisible to perception. Upper: stimuli for the cue and

probe. The cue, at the orientation contrast (which may be 0o, i.e., no cue, or 7.5o, 15o, 30o, or

90o), and the probe, the two dots, appeared at the same (in this figure) or different locations

when the probe was cued or uncued, respectively. The cross in each image was the fixation

point. Observers reported whether the upper dot was to the left or right of the lower dot in

the probe. Lower: the cueing effect was the increase in the percentage of the correct reports

by observers in the cued relative to the uncued condition. Adapted from Neuron, 73 (1),

Xilin Zhang, Li Zhaoping, Tiangang Zhou, and Fang Fang, Neural Activities in V1 Create a

BottomUp Saliency Map, pp. 183–92, figures 1 and 2, copyright c© (2012), with permission

from Elsevier.

However, since the presentation was so brief and the mask so powerful, observers could not

tell whether the foreground region was at one or the other location, even if forced to guess.

Nevertheless, given sufficient orientation contrast, the foreground was salient in that it could

serve as an effective exogenous cue to influence the discrimination of an input probe stimulus

that was shown for 50 ms, starting 50 ms after the mask.

The probe consisted of two small dots; observers had to report whether the upper dot was

to the left or right of the lower dot. This task was difficult, such that the accuracy of the task

performance, i.e., the percentage of the reports that were correct, was typically only about
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Fig. 5.48: Brain responses to the salient cue in Fig. 5.47. Brain activations averaged over

observers were seen in the ERPs (lower left). The thinner curves were ERP responses (initially

negative) to visual stimuli shown in the upper visual field for comparison. The C1 component

in ERP, emerging around 55 ms and peaking around 73 ms from the cue onset, was mainly

caused by V1 activities in the occipital region at the back of the scalp. Its polarity depended on

whether the evoking stimulus was in the upper or lower visual field. The upper right plot shows

cueevoked brain activations probed by fMRI in V1–V4 and the intraparietal sulcus (IPS).

They (plotted as colored bars) were significant in V1–V4 but not in the IPS. Each bar marks

the difference between the peak BOLD (bloodoxygenationleveldependent) responses to the

cue at cortical locations (in a particular retinotopic brain area) contralateral and ipsilateral

to the cue. The inset shows the time courses of the BOLD responses in the region of the

retinotopic V1 for the cue location (contralateral) and in the corresponding region in the

opposite hemisphere (ipsilateral), when the orientation contrast at the cue was 90o. All data in

this figure are for when the visual stimuli were in the lower visual field, except for the thinner

curves in the ERP responses (lower left). Data from Zhang, X., Zhaoping, L., Zhou, T., and

Fang, F., Neural activities in V1 create a bottomup saliency map, Neuron, 73(1): 183–192,

2012.
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70%. However, performance on cued trials, when the probe was shown at the same location

as the cue, was up to more than 10% better than on uncued trials, when the probe was shown

at the other location where the cue could have been. This increase in the accuracy is called

the cueing effect, and it makes manifest the saliency of the cue, despite the fact that the cue’s

distinction was invisible to the observers.

The cueing effect was significant when the orientation contrast between the bars at the

cue and those in the background was more than 7.5o. The basic cueing effect, and its increase

with orientation contrast, was also observed using other probe tasks, e.g., discriminating the

motion direction of moving dots or the orientation of a Gabor patch.

We used fMRI to compare the bloodoxygenationleveldependent (BOLD) signals in

regions of the brain processing the visual stimuli for the two possible locations of the salient

but nondistinctive cue. A difference between these signals at these two locations is seen

as a saliency signal. Areas V1, V2, V3, and V4 exhibited significant differences, but the

intraparietal sulcus (IPS, which is thought to contain the human homologue of LIP) did not.

Briefly, increased neural processing in any brain region is thought to increase its demand

for blood and thus the local BOLD signal (which has a slow time constant of a few seconds).

The difference between the BOLD signals with and without any sensory input may be seen

as the BOLD response to this sensory input. In a retinotopic cortical area contralateral to

the cue location, one can identify the region of interest (ROI) as the cortical surface patch

that responds to visual inputs at the cue location. Then, one can quantify a form of saliency

signal by comparing BOLD signals in the ROI to those in the equivalent cortical surface

patch in the ipsilateral hemisphere. We define this to be the maximum difference between the

BOLD responses in these two surface patches over the time course of the fMRI responses for

a trial. This saliency signal is averaged over all trials for a given orientation contrast at the

cue location, with the uniform orientation of the background texture bars randomly chosen

for each trial. These signals are plotted in the upper right panel in Fig. 5.48 for different

retinotopic brain regions (V1, V2, V3, V4, and the IPS), and different orientation contrasts

of the cue. In FEF and LGN, where retinotopy and/or the spatial resolution of the fMRI are

too poor, the lack of a saliency signal was determined by a lack of a difference between the

BOLD responses to cues of different saliencies.

We measured ERPs in a separate experiment. These showed that the earliest scalp potential

response evoked by the invisible cue was a C1 component. This component emerged around

55 ms after the onset of the cue, reaching its peak response around 73 ms after the onset,

and crucially, had an amplitude that increased significantly with the orientation contrast at the

cue. Its polarity depended on whether the cue (with the whole accompanying texture) was in

the upper or lower visual field (see the lower left panel in Fig. 5.48). This C1 component is

believed to be generated mainly by neural activities in V1 in the occipital lobe (at the back

of the brain), because it has a short latency and because of the locationdependence of its

polarity.20

The fMRI activations in V1–V4 evoked by saliency also increased significantly with the

orientation contrast of the cue, but to a degree that decreased from V1 to V4. This suggests

that the saliency activation in V1 is unlikely to be caused by that in V4. Further evidence for

this is that lesioning V4 in a monkey impairs its visual selection of nonsalient objects but

does not impair the selection of salient objects (Schiller and Lee 1991); see Fig. 2.28 B.

Furthermore, for a given orientation contrast, the fMRI activation evoked by saliency

also decreased from V1 to V4. This finding contrasts with that of another study (Melloni,

20The lower and upper visual fields are mapped to the retinotopic V1 at the upper and lower banks, respectively, of

the calcarine fissure. They activate neurons with geometrically opposite orientations in their spatial layout (Jeffreys

and Axford 1972).
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Van Leeuwen, Alink and Müller 2012), in which the stimulus contained four oriented grating

patches and observers had to find a perceptually distinct orientationsingleton patch (which

was oriented orthogonally to the nontarget patches). In that study, the difference between the

fMRI responses to the target and nontarget patches increased from V1 to V4. The contrast

between the findings suggests that recognition, and perhaps also the taskdependency, of the

orientation contrast are the causes for higher saliency signals in higher rather than lower visual

areas. Furthermore, in that study, fMRI responses in IPS were stronger when there was a need

to suppress the distraction of a salient color singleton which was not a target; while fMRI

responses in FEF were stronger to enhance the less salient targets. These observations are

consistent with taskoriented functions in the IPS and FEF regions.

5.7 V1’s role beyond saliency—selection versus decoding,

periphery versus central vision

Crowding: the letter ‘‘T’’ is harder to recognize in the right image while fixating on ‘‘+’’.

T+ + Q G

H

A
T

Fig. 5.49: Crowding is an impairment of the ability to recognize a stimulus in visual periphery

that is caused by surrounding stimuli. In both the left and right images, the letter “T” does not

overlap with any other image elements. However, fixating on the “+,” you will find the “T” in

the right image much harder to recognize.

Our overall framework sees vision in terms of encoding, selection, and decoding. In Chapters

3 and 4, we discussed extensively the possible role of V1 in encoding. Here, we have discussed

how V1 influences selection via its output to the superior colliculus. V1 also projects to higher

cortical areas, receives feedbacks from them, and sends feedback to the LGN (Fig. 5.43), so

it is important to consider how it contributes to postselectional decoding.

Visual spatial selection, and in particular saliency, shifts attention from the current focus

to a new location. Since the current focus generally lies within the fovea, saliency mechanisms

should primarily operate outside it. Take isoorientation suppression, which is the essential

contextual influence underpinning how orientation contrast leads to saliency. Behavioral

studies suggest that this is mostly absent in the fovea (Petrov, Carandini and McKee 2005).

Following this argument, isofeature suppression for other feature dimensions should also be

absent in the fovea. This absence of contextual influence at the fovea is beneficial for decoding

stimuli shown there, since contextual influences would distort the relevant V1 responses. Just

such distortion makes it hard to decode peripheral inputs that are surrounded by context. This

might be part of the cause for crowding, which is an impairment of the ability to recognize or

discriminate peripheral inputs that is caused by having contextual inputs nearby (Levi 2008);

for a demonstration, see Fig. 5.49. Crowding makes it very difficult to read text more than a

few characters down the line from the current fixation.
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Hence, V1 saliency mechanisms operate in the periphery to help select the next focus of

attention and bring it to the fovea by a saccade. Meanwhile, the lack of saliency mechanisms

in the fovea allows the visual representation there to be faithful to the input to facilitate

postselectional visual decoding; see Fig. 5.50.
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Fig. 5.50: The distinct roles of V1 in peripheral and central vision. A: The visual field is

shown in light and dark shades to represent preferential involvement of V1 in saliency and

decoding, respectively. B: V1’s contribution to bottomup selection is mediated through the

superior colliculus; its contribution to decoding involves higher visual areas.

The next target of visual selection is typically influenced by the stimulus that is currently

being decoded. Consequently, along with bottomup saliency, selection is affected by other

factors including the knowledge of decoded visual objects and the ongoing task. Since de

coding is better for foveal inputs, the relative impact of saliency in selection increases with

increasing eccentricity. In the example depicted in Fig. 5.9, both the ocular and orientation

singletons are highly salient because of the contrast between the singleton features and the

background features; however, the ongoing task of finding an orientation singleton makes

topdown selection favor the latter. As the singletons become more peripheral, recognizing

them (i.e., decoding) becomes more difficult, diminishing the taskdependent advantage of

the orientationsingleton target in the competition for selection. Consequently, the nontarget

ocular singleton should become an increasingly effective distractor, damaging performance at

the outset of the search. This was indeed observed (Zhaoping 2012)—75% of the first saccade

during search were directed to the lateral side of the ocular singleton when both singletons
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had an eccentricity of 12 degrees from the initial gaze position (at the center of the displays).

By contrast, only 50% were inappropriately directed when the eccentricity was 7.3 degrees.21

As shown in Fig. 5.50 B and argued in Chapter 6, feedback from higher visual areas to

early visual areas such as V1 is expected to help with decoding, i.e., visual recognition. Given

that decoding is favored in the central visual field, one might expect that feedback, particularly

from ventral visual areas associated with “what” vision, is more extensive at and near the fovea

to help recognizing object features. This suggestion can be tested empirically. It is consistent

with recent observations22 that feedbacks to central and peripheral regions of primate V1

are predominantly from the cortical areas in the ventral and dorsal streams, respectively. It is

also supported by observations in a recent behavioral study (Zhaoping 2013a). The stimuli

in this behavioral study were adapted from the dichoptic stimuli in the experiment shown

in Fig. 3.15 designed to test efficient stereo coding. The percepts induced by such stimuli

are ambiguous, such that two likely percepts correspond respectively to the sum (S+) and

difference (S−) of the visual inputs to the two eyes. Topdown expectations would favor the

sum over the difference, in view of the normal correlations between binocular inputs in daily

visual experience, and is known to influence perception (see Chapter 6). In the fovea, there

was indeed a bias to perceive the sum rather than the difference signal, consistent with this

topdown influence; the bias was weak or absent in the periphery (at about 10o eccentricity),

even though the stimulus was adequately enlarged at periphery to compensate for the drop in

visual acuity.

5.7.1 Implications for the functional roles of visual cortical areas

based on their representations of the visual field

We have argued above that, at least to a first approximation, visual selection by saccades brings

the selected visual inputs to the central visual field to be decoded. Consequently, the neural

representation of the central and peripheral fields in all visual cortical areas should depend on

whether the area is mainly concerned with selection, decoding, or both (Zhaoping 2011). If an

area is concerned with bottomup selection, then the whole visual field should be represented

in its neurons, since salient locations can arise unexpectedly anywhere in the visual field.

However, areas that are mainly concerned with decoding or topdown or taskdependent

selection (which is typically dependent on the current attended object or on knowledge and

memory rather than external sensory stimulus) should have neurons that respond mainly or

solely to central visual inputs.

In particular, if a cortical area contains a bottomup saliency map, then it should represent

the whole visual space, including the full ranges of eccentricity and polar angles. Conversely,

cortical areas further downstream along the visual pathway are likely to devote their resources

to the attended, i.e., near foveal, regions, since they are more likely involved in postselectional

processing.

These arguments allow the experimental literature to be used to discriminate among brain

regions as to which are likely to contain a saliency map. V1 and V2 respond to the whole

visual space (Gattass, Sousa and Rosa 1987, Rosa, Sousa and Gattass 1988) up to at least

80o eccentricity. Nevertheless, a recent fMRI study showed that V2 (and V3) devotes more

cortical area than V1 to the central 0.75 degree of the visual field (Schira, Tyler, Breakspear

and Spehar 2009). However V3 and V4 represent only the central 35–40 degrees (Gattass,

Sousa and Gross 1988). Toward the culmination of the ventral visual pathway, which is

21The stimulus pattern was also different for the two different eccentricity cases, but the densities of the background

bars (when the spatial dimension is measured in the unit of bar length) were comparable (Zhaoping 2012).
22Private communication from Henry Kennedy (2013).
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devoted to processing object features or “what” processing, neurons in the IT cortex (area TE)

have very large receptive fields, typically covering the central gaze region and extending to

both the left and right half of the visual field. However, they are devoted to inputs within 40o

eccentricity (Boussaoud, Desimone and Ungerleider 1991). Along the dorsal visual pathway,

which is more concerned with “where” visual processing, the visual field representation may

be expected to reflect visual selection better. However, area MT has no neural receptive field

beyond 60o (Fiorani, Gattass, Rosa and Sousa 1989). Experiments differ as to the maximum

eccentricities of the RFs of neurons in area LIP, with one (involving a central fixation task)

finding few neurons with receptive fields centered beyond 30o eccentricity (Ben Hamed,

Duhamel, Bremmer and Graf 2001), and another (Blatt, Andersen and Stoner 1990), using

anesthetized monkeys, finding few neurons with receptive fields beyond 50o (albeit with

those having receptivefield radii of up to 20o). V6 (the parietooccipital area PO), which has

many nonvisual neurons and neurons influenced by eye positions (Galletti, Battaglini and

Fattori 1995), is substantially devoted to peripheral vision. Its neurons can respond to visual

inputs up to 80o in eccentricity (Galletti, Fattori, Gamberini and Kutz 1999). The FEF receives

inputs from both the ventral and dorsal streams; however, the spatial coverage of neurons in

FEF is poorly studied. Few receptive fields beyond 35o eccentricity have so far been mapped;

the receptive fields concerned have been seen as being openended in the periphery since their

true extent is unclear (Mohler, Goldberg and Wurtz 1973).

These observations are collectively consistent with the idea that V1 creates a bottomup

saliency map to guide attention. They also imply that some higher visual cortical areas such as

V4 and IT along the ventral pathway are less likely to be involved in bottomup selection than

in decoding. Since some cortical areas in the dorsal visual stream cover a large extent of the

peripheral visual field, their role in bottomup visual selection cannot be excluded, although

it is also likely that the peripheral coverage serve the purpose of visually guided action (such

as grasping and reaching). V2’s coverage of the whole visual field suggests that it may also

be involved in bottomup selection. This motivates future investigations. In sum, applying the

perspective of inferring functional roles from visual field representations (Zhaoping 2011),

V1 is the most likely candidate to compute a bottomup saliency map.

The functional role of V1 should have direct implications on the role of V2 and other

downstream cortical areas along the visual pathway. If V1 creates a saliency map to guide

attention in a bottomup manner, then the downstream areas might be better understood in

terms of computations in light of the exogenous selection, and these computations include

endogenous selection and postselectional decoding (Zhaoping 2013b). This is consistent with

observations (see Section 2.6) that topdown attention associated with an ongoing task can

typically modulate the neural responses more substantially in the extrastriate cortices than in

V1.

5.7.2 Saliency, visual segmentation, and visual recognition

Selection by (bottomup) saliency may be the initial step in visual segmentation, which is the

problem of separating out from the rest of the scene those image locations that are associated

with visual objects that need to be recognized; see Fig. 5.51 A. Most nontrivial visual

functions involve object recognition and localization to enable motor responses and memory

storage; segmentation is a fundamental issue for recognition because it needs to be carried

out before and during this operation. Computer vision approaches have been tried to solve

the problem of image segmentation for decades without a satisfactory solution in the general

input situation. The crux of the problem is the following dilemma: to segment the image area

containing an object, it helps to recognize it first; while to recognize the object requires having
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2D image

Texture Texture region region 1 2

A: Image of an apple
and a house

B: Two texture regions to be segmented

C: Segmentation by classification

Fig. 5.51: Demonstration of the segmentationclassification dilemma. A: To recognize the

apple, it helps to segment the image area associated with it; however, to segment this image

area, it helps to recognize the apple. B: Segmenting the two texture regions from each

other is hard, since the two regions do not obviously differ by mean luminance or another

simple measure. Characterizing local image areas by measures such as smoothness, regularity,

orientation, spectrum of spatial frequencies, etc., could help to distinguish different texture

regions. C: To segment the image into a priori unknown regions, each local image area,

denoted by dashed boxes, needs to be characterized by some such measures.

first segmented the image area that contains it. (Here, we exclude recognizing the gist of a

scene without recognizing individual objects.)

Thus, the many computer vision algorithms that have been developed for image segmen

tation can all be viewed as performing “segmentation by recognition” or “segmentation by

classification.” Consider segmenting the two texture regions in Fig. 5.51 B; this is not triv

ial since the two texture regions do not differ in some obvious measure (such as the mean

luminance or color), and it is not even known a priori whether the image contains one or

two or more regions. Conventional algorithms start by taking any image area, e.g., one of the

dashed boxes in Fig. 5.51 C, and trying to characterize it by some imagefeature measures.

These measures might quantify the mean pixel luminance, regularity, smoothness, dominant

spatial frequency, dominant orientations, characteristics of the histogram of the image pixel

values, or other aspects of the local image area. Each measure is called a “feature” of the

image area, and the image area can be described by a feature vector whose components are

the various feature measurements. When two image areas differ sufficiently by their feature

vectors, they are presumed to belong to different surface regions. Hence, such algorithms

perform “segmentation by classification,” i.e., they segment by classifying the feature vectors.

However, these algorithms operate under the assumption that each image area chosen
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Region 1 Region 2

Fig. 5.52: An example demonstrating that biological vision can operate without performing

segmentation by classification. We can readily see two regions in this image, even though

these regions share all the same feature values. Thus, feature classification is neither sufficient

nor necessary to segment the two regions. There is also no vertical contrast edge at the vertical

region border, so algorithms using edgebased approaches for segmentation would also fail.

Reproduced with permission from Li, Z., Visual segmentation by contextual influences via

intracortical interactions in primary visual cortex, Network: Computation in Neural Systems,

10(2): 187–212, Fig. 1, copyright c© 1999, Informa Healthcare.

to be classified happens to fall into a single surface region to be segmented. This is not

guaranteed since we do not know a priori where the region boundaries are. If a chosen area,

e.g., the central image area bounded by the central dashed box in Fig. 5.51 C, falls on the

border between two regions, it would be hard to characterize its features. The chance of

such an event can be reduced by making the individually inspected image areas smaller. This

inevitably makes the feature vector values less precise, since many feature values, such as the

value of the dominant spatial frequency, require the image area to be large enough for them to

be quantified with sufficient precision. This problem stems ultimately from the dilemma that

segmentation requires classification and classification requires segmentation.

The “classification” of the image patches in the above example is not the same as recogniz

ing an object, although it can provide clues to the underlying object (e.g., inferring a leopard

by its skin) or at least a surface of the object. Nevertheless, the fundamental interdependence

between recognition and segmentation remains.

Figure 5.52 demonstrates that biological vision can operate without employing segmenta

tionbyclassification, since classifying the two identical texture regions flanking the texture

border is neither necessary nor sufficient for the segmentation. One may argue that special

image processing operators could be constructed to detect the border between these two

textures. However, such image processing operators would almost certainly be bespoke for this

particular image example. Different examples analogous to this one would require different

tailored operators to achieve segmentation. It is not desirable to build a big bag of many

tricks to tackle this problem, since one can build many special examples that require special

purpose operators and so make the bag infeasibly large. Apparently, human vision can carry

out segmentation without classification (Li 1999b). This is analogous to making a saccade to

a visual location before recognizing the object at that location (see in Fig. 1.4).

Selection by saliency can underpin segmentation without classification. If the border

between the two texture regions in Fig. 5.52 is salient, it attracts selection. Locating the

border between two objects might be the first step to segmenting them. This first step can be

coarse but can nevertheless provide an initial condition in what could be an iterative process,
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alternating between segmentation and recognition. In other words, the initial segmentation,

by the selection of the border due to its high saliency, can lead to preliminary recognition

which can refine segmentation. In turn, this can refine the recognition, and so on. This iterative

process is likely to involve both V1 and other cortical areas. Understanding the underlying

process is a challenge.

5.8 Nonlinear V1 neural dynamics for saliency and

preattentive segmentation

The credibility of the hypothesis that V1 creates a saliency map is significantly bolstered by

the demonstration in Section 5.4 that a model using plausible V1 mechanisms could realize

the computation concerned. In this section, we show how this model was designed through

the analysis of neural circuit dynamics. Readers not interested in these details can skip this

section.

The computation of saliency transforms one representation of visual inputs based largely

on image contrast to another representation based instead on saliencies. We identify V1

with this transformation, suggesting that its input, the visual stimulus filtered through the

classical receptive fields of the V1 neurons, is transformed to an output represented by the

activities from the V1 output cells, such that the output can be read out for saliency through

the maximum rule in equation (5.4); and the mechanisms it employs are the intracortical

interactions mediated by its nonlinear recurrent neural circuit.

There are two characteristics of this V1 saliency transform. First, we focus on cases in

which topdown feedback from higher visual areas does not change during the course of the

saliency transform but merely sets a background or operating point for V1. In such cases, V1’s

computation is autonomous, consistent with its being bottomup or preattentive. Of course,

more extensive computations can doubtlessly be performed when V1 interacts dynamically

with other visual areas.

Second, the saliency of a location should depend on the global context. Making the output

of a V1 neuron depend nonlocally on its inputs would be hard to achieve in a purely feed

forward network with retinotopically organized connections and local receptive fields. Rather,

the recurrent dynamics enable computations to occur at a global scale despite the local neural

connectivity.

Nonlinear dynamics involving many recurrently connected neurons is typically difficult

to understand and control. As we have seen from Fig. 5.15 B, V1 pyramidal neurons are

generally engaged in mutual excitation or mutual inhibition (via interneurons). Since mutual

excitation or mutual inhibition involves a positive feedback loop, a recurrent neural network

with both interactions is typically unstable against random fluctuations unless the interactions

are very weak. The difficulty of understanding such nonlinear recurrent networks in order

to properly control and design them is apparent in many previous works (Grossberg and

Mingolla 1985, Zucker, Dobbins and Iverson 1989, Yen and Finkel 1998). Nevertheless,

harnessing this dynamics is essential to realize the saliency computation.

In this section, we summarize analysis from various research papers (Li 1997, Li 1998a,

Li 1999b, Li and Dayan 1999, Li 2001) which addressed the following central issues: (1)

computational considerations regarding how a saliency model should behave; (2) a minimal

model of the recurrent dynamics for computing saliency, i.e., to achieve (1); (3) the specific

constraints on the recurrent neural connections; and (4) how recurrent dynamics give rise to

phenomena such as region segmentation, figureground segregation, contour enhancement,

and fillingin. In addressing these issues, we perform a stability analysis of nonlinear dynamics

to examine the conditions governing neural oscillations, illusory contours, and (the absence
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of) visual hallucinations. By contrast, single neural properties such as orientation tuning

that are less relevant to computations at a global scale will not be our focus. Some of the

analytical techniques, e.g., the analysis of the cortical microcircuit and the stability analysis

of the translationinvariant networks, can be applied to study other cortical areas that share

similar neural elements and neural connection structures with V1’s canonical microcircuit

(Shepherd 1990).

5.8.1 A minimal model of the primary visual cortex for saliency

computation

A minimal model is the one which has just barely enough components to execute the necessary

computations without anything extra. This criterion is inevitably subjective, since there is no

fixed recipe for a minimalist design. However, as a candidate, I present a model that performs

all the desired computations but for which simplified versions fail. Since the minimal model

depends on the desired computation to be carried out by the model, I will also articulate this

saliency computation as to what this model should do and what this model should not do.

Throughout the section, we try to keep our analysis of the characteristics of the recurrent

dynamics general. However, to illustrate particular analytical results, approximations, and

simplification techniques, I often use a model of V1 whose specifics and numerical parameters

are presented in the appendix to this chapter, so that the readers can try out the simulations.

We use notation such as {xiθ} to denote a vector containing components xiθ for all iθ.

Hence, {Iiθ} is the input, and {gx(xiθ)} is the response. The V1 model should transform {Iiθ}
to {gx(xiθ)}, with higher responses gx(xiθ) to input bars iθ which have higher perceptual

saliency. This is achieved through recurrent interactions between neurons. What kind of

recurrent model is needed?

5.8.1.1 A lessthanminimal recurrent model of V1

A very simple recurrent model of the cortex can be described by this equation

ẋiθ = −xiθ +
∑

jθ′

Tiθ,jθ′gx(xjθ′) + Iiθ + Io, (5.40)

where −xiθ models the decay (with a time constant of unity) in membrane potential, and

Io is the background input. The recurrent connection Tiθ,jθ′ links cells iθ and jθ′. Visual

input Iiθ (taken as being static for illustration) initializes the activity levels gx(xiθ) and

also persists after onset. The activities are then modified by the network interaction, making

gx(xiθ) dependent on input Ijθ′ for (jθ′) 6= (iθ). The connections are translation invariant in

that Tiθ,jθ′ depends only on the vector i− j and on the angles of this vector (in 2D space) to

the orientations θ and θ′. Reflection symmetry (e.g., when a horizontal bar facilitates another

horizontal bar to its right, so should the latter facilitate the former, with the same facilitation

strength) gives the constraint Tiθ,jθ′ = Tjθ′,iθ.

Many previous models of the primary visual cortex (e.g., Grossberg and Mingolla (1985),

Zucker, Dobbins, and Iverson (1989), and Braun, Niebur, Schuster, Koch (1994)) can be

seen as more complex versions of the one described above. The added complexities include

stronger nonlinearities, global normalization (e.g., by adding a global normalizing input to

the background Io), and shunting inhibition. However, they are all characterized by reciprocal

or symmetric interactions between model units, i.e., Tiθ,jθ′ = Tjθ′,iθ. It is well known

(Hopfield 1984, Cohen and Grossberg 1983) that in such a symmetric recurrent network, the

dynamic trajectory xiθ(t) (given a static input pattern {Iiθ}) will converge in time t to a fixed

point. This fixed point is a local minimum (attractor) in an energy landscape
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E({xiθ}) = −1

2

∑

iθ,jθ′

Tiθ,jθ′gx(xiθ)gx(xjθ′)−
∑

iθ

Iiθgx(xiθ) +
∑

iθ

∫ gx(xiθ)

0

g−1
x (x)dx,

(5.41)

where g−1
x (x) means the inverse function of gx(x). Empirically, convergence to attractors

typically occurs even when the complexities in the previous models mentioned above are

included.

The fixed point x̄iθ of the motion trajectory, or the minimum energy stateE({xiθ}) where

∂E/∂gx(xiθ) = 0 for all iθ, is given by (when Io = 0)

x̄iθ = Iiθ +
∑

jθ′

Tiθ,jθ′gx(x̄jθ′). (5.42)

Without recurrent interactions (T = 0), this fixed point x̄iθ = Iiθ is a faithful copy of the input

Iiθ. Weak but nonzero T makes pattern {x̄iθ} a slightly modified version of the input pattern

{Iiθ}. However, sufficiently strong interactions T can make x̄iθ dramatically unfaithful to

the input. This happens when T is so strong that one of the eigenvalues λT of the matrix T

with elements Tiθ,jθ′ ≡ Tiθ,jθ′g′x(x̄jθ′) satisfies Re(λT) > 1 (here, g′x is the slope of gx(.)
and Re(.) means the real part of a complex number). For instance, when the input Iiθ is

translation invariant such that Iiθ = Ijθ for all i 6= j, there is a translationinvariant fixed

point x̄iθ = x̄jθ for all i 6= j. Strong interactions T could destabilize this fixed point, such

that it is no longer a local minimum of the energy landscape E({xiθ}). Consequently, the

recurrent dynamics pulls {xiθ} into an attractor in the direction of an eigenvector of T that is

not translation invariant, i.e., xiθ 6= xjθ for i 6= j at the attractor.

Computationally, a certain unfaithfulness to the input, i.e., making gx(xiθ) not to be

a function of Iiθ alone, is actually desirable. This is exactly what is required for unequal

responses gx(xiθ) to be given to input bars of equal contrast Iiθ but different saliencies (e.g., a

vertical bar among horizontal bars when all bars have the same input contrast). However, this

unfaithfulness should be driven by the nature of the input pattern {Iiθ} and in particular, driven

by how the input pattern deviates from homogeneity (e.g., smooth contours or figures against

a background). If, instead, spontaneous or noninputdriven network behavior—spontaneous

pattern formation or symmetry breaking—occurs, then visual hallucinations (in this case we

mean saliency outcomes which are drastically different from the saliency values of the input)

would result (Ermentrout and Cowan 1979). Such hallucinations, whose patterns are not

meaningfully determined by external inputs, should be avoided.

For example, given homogenous input Iiθ = Ijθ, if {xiθ} is an attractor, then so is a

translated state {x′iθ} such that x′iθ = xi+a,θ for any translation a. This is because {xiθ}
and {x′iθ} have the same energy value E. The two possible patterns after symmetry breaking

on the right part of Fig. 5.20 are instances of this, being translations of each other. (When

the translation a is onedimensional, such a continuum of attractors has been called a “line

attractor” (Zhang 1996). For two or more dimensional patterns, the continuum is a “surface

attractor.”) That the absolute positions of the hallucinated patterns are random, can even shift,

and are not determined by the sensory input {Iiθ} implies a degree of unfaithfulness that is

undesirable for saliency.

To illustrate, consider the case that Tiθ,jθ′ is nonzero only when θ = θ′, i.e., the con

nections only link cells that prefer the same orientation. (This is a limit of the observations

(Gilbert and Wiesel 1983, Rockland and Lund 1983) that the lateral interactions tend to link

cells preferring similar orientations.) The network then contains multiple, independent, sub

networks, one for each θ. Take the θ = 90o (vertical orientation) subnet, and for convenience,

drop the subindex θ. We have
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Fig. 5.53: A reduced model consisting of symmetrically coupled cells tuned to vertical

orientation (θ = 90o), as in equation (5.43). Five grayscale images are shown; each has

a scale bar on the right. The network has 100 × 100 cells arranged in a twodimensional

(2D) array, with wraparound boundary conditions. Each cell models a cortical neuron tuned

to vertical orientation, arranged retinotopically. The function gx(x) gives gx(x) = 0 when

x < 1, gx(x) = x−1when 1 ≤ x < 2, and gx(x) = 1when x > 2. A: The connection pattern

T between the center cell j and the other cells i. This pattern is local and translation invariant,

with excitation or inhibition between i and j which are, respectively, roughly vertically or

horizontally displaced from each other. B: An input pattern {Ii}, consisting of an input line

and a noise spot. C: Output response {gx(xi)} to the input in B. The line induces a response

that is∼100% higher than the response to the noise spot. D: A sample noisy input pattern {Ii}.

E: Output response {gx(xi)} to the input in D, showing hallucinated vertical streaks. Adapted

with permission from Li, Z., Computational design and nonlinear dynamics of a recurrent

network model of the primary visual cortex, Neural Computation, 13(8): 1749–1780, Fig. 1,

copyright c© 2001, MIT Press.

ẋi = −xi +
∑

j

Tijgx(xj) + Ii, (5.43)

in which Tij is still symmetric, Tij = Tji, and translation invariant. As an example, let T be

a simple, centersurround pattern of connections in a Manhattan grid (for which grid location

i = (mi, ni) has horizontal and vertical coordinates mi and ni, respectively). Let
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(halluci−
 nation)
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Fig. 5.54: Desired inputoutput mapping for saliency computation in three special input

cases. Adapted with permission from Li, Z. and Dayan, P., Computational differences between

asymmetrical and symmetrical networks, Network: Computation in Neural Systems, 10(1):

59–77, Fig. 1, copyright c© 1999, Informa Healthcare.

Tij ∝







T if i = j,
−T if (mj , nj) = (mi ± 1, ni) or (mi, ni ± 1),
0 otherwise.

(5.44)

If T is sufficiently strong, then even with an homogenous input Ii = Ij for all i, j, the

network can settle into an “antiferromagnetic” state in which neighboring units xi exhibit

one of the two different activities xmi,ni
= xmi+1,ni+1 6= xmi+1,ni

= xmi,ni+1, arranged

in a checkerboard pattern. This pattern {xi} is just a spatial array of the replicas of the

centersurround interaction pattern T. Note that the patterns after the spontaneous symmetry

breaking in Fig. 5.20 are simply onedimensional checkerboard patterns.

Intracortical interaction that are more faithful to V1 (Kapadia et al. 1995, Polat and

Sagi 1993, Field, Hayes and Hess 1993) have Tij depend on the orientation of i−j. However,

this Tij will still be translation invariant, i.e., independent of the absolute value of i and

depending only on the magnitude and orientation of i− j. In the subnet of vertical bars, such

V1like interactions specify that two nearby bars i and j excite each other when they are

coaligned and inhibit each other otherwise. More directly, Tij > 0 between i and j which are

close and roughly vertically displaced from each other, and Tij < 0 between i and j which

are close and more horizontally displaced. Figure 5.53 shows the behavior of such a subnet.

Although the network enhances an input (vertical) line relative to an isolated (short) bar, it

also hallucinates other vertical lines when exposed to noisy inputs.

Instead, the recurrent network should have the properties illustrated in Fig. 5.54. First, its

response to a smooth contour should be higher than to a bar segment that is either isolated

or is an element in a homogenous texture. Second, it should not respond inhomogenously to

a homogenous texture. In other words, the network should selectively amplify certain inputs

against some other inputs. The ability of the network to achieve this property can be measured
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by the gain (or sensitivity) to a contour relative to a homogenous texture. We call this the

selective amplification ratio (Li and Dayan 1999):

selective amplification ratio =
gain to contour input

gain to texture input
. (5.45)

A higher selective amplification ratio makes it easier to distinguish salient input (such as a

contour) from the less salient inputs (such as homogenous textures). For instance, if the level of

noise in the neural responses is comparable to the mean response to the homogenous texture,

a selective amplification ratio comfortably larger than two is desirable to make the response

to a contour stand out relative to the responses to a background texture. Physiological data

(Nelson et al. 1985, Knierim and Van Essen 1992, Kapadia et al. 1995) shown in Fig. 5.19

suggest that the selective amplification ratio is up to at least four to five.

The competition between internal interactionsT and the external inputs {Ii} to shape {xi}
makes it impossible to achieve a high selective amplification ratio. For analysis, consider the

following simple pattern of interaction in the vertical bar subnet:







Tij > 0,when i and j are nearby and in the same vertical column,

Tij < 0,when mj = mi ± 1, i.e., i and j are in the neighboring columns,

Tij = 0, otherwise.

Furthermore, denote the total excitatory connection to a neuron from its contour as

T0 ≡
∑

j,mj=mi

Tij > 0, (5.46)

and denote the total suppressive connection to a neuron from neighboring contours as

T ′ ≡ −
∑

j,mj=mi±1

Tij . (5.47)

In addition, for simplicity, take a piecewise linear function for gx(x):

gx(x) =















x− xth if xth ≤ x ≤ xsat, where xth is the threshold,

and xsat > xth is the point of saturation,

xsat − xth if x > xsat,
0 otherwise.

(5.48)

A vertical contour input has Ii = I > xth for i with mi = 1, and Ii = 0 otherwise. Call

the neurons iwithmi = 1 on the vertical line the “line units.” We can ignore all other neurons

since they will be at most suppressed by the line unit, and so none can be activated beyond

threshold. By symmetry, at the fixed point, all the line units i have the same state x̄i = x̄,

where

x̄ = I +
∑

j,mj=mi

Tijgx(x̄) = I + T0gx(x̄), (5.49)

→ gx(x̄) =
I − xth
1− T0

, (5.50)

when I > xth is not too large. Thus, a large T0 < 1 helps to give the following high gain

δgx(x̄)

δI
=

1

1− T0
to an isolated input contour, and 1 > T0 is required for stability.

(5.51)
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By contrast, for a homogenous texture with Ii = I > xth for all units i, the fixed point x̄i = x̄
of the response is

x̄ = I +





∑

j,|mj−mi|≤1

Tij



 gx(x̄) = I + (T0 − T ′)gx(x̄) (5.52)

→ gx(x̄) =
I − xth

1 + (T ′ − T0)
. (5.53)

This means that

the gain
δgx(x̄)

δI
=

1

1 + (T ′ − T0)
to a homogenous input texture (5.54)

can be made small when the net suppression T ′−T0 is made large. Note that T ′−T0 quantifies

the net isoorientation suppression in a homogenous texture. Then,

the selective amplification ratio =
gain to contour input

gain to texture input
=

1 + (T ′ − T0)

1− T0
(5.55)

increases with increasing net isoorientation suppression T ′ − T0 and increasing contour

facilitation T0.

However, in a homogenous texture, a large net suppression destabilizes the homogenous

fixed point xi = x̄ to fluctuations. Consider the fluctuation x′i = xi − x̄, and assume that this

lies within the linear range of gx(.), i.e., xth < x′i + x̄ < xsat. Then

ẋ′i = −x′i +
∑

j

Tij

[

gx(x̄+ x′j)− gx(x̄)
]

= −x′i +
∑

j

Tijx
′
j . (5.56)

This linear equation has an inhomogenous eigenmode, x′i = x′ · (−1)mi for all i, which is

a spatially oscillating pattern (with amplitude x′) of activities like those in the symmetry

breaking solution of Fig. 5.20. To see this, substitute x′i = x′ · (−1)mi into the above equation

to obtain the equation of motion for the amplitude x′:

ẋ′ = −x′ +





∑

j,mj=mi

Tij −
∑

j,mj=mi±1

Tij



x′ (5.57)

= −x′ + (T ′ + T0)x
′ (5.58)

= (T ′ + T0 − 1)x′. (5.59)

This has a solution in which x′ evolves with time t as

x′(t) ∝ exp[(T ′ + T0 − 1) t] . (5.60)

When T ′ + T0 > 1, the amplitude x′ of the inhomogenous eigenmode grows exponentially

with time t. Given an initial deviation {x′i(0)} at t = 0 from the homogenous equilibrium

state xi = x̄, the projection of this deviation pattern on this inhomogenous eigenmode grows

exponentially, driving the activity pattern xi = x̄ + x′i inhomogenous very quickly after

the onset of visual input. The growth will eventually saturate because of the nonlinearity in

gx(x). Hence, given homogenous input, the network spontaneously breaks symmetry from
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the homogenous fixed point and hallucinates a saliency wave whose period is two columns.

As shown in Fig. 5.20, there are two such waves—one has x′i = x′ · (−1)mi and the other has

x′i = x′ · (−1)mi+1—and they are a 180o phase apart. Both of these inhomogenous states are

also equilibrium points of the network even for homogenous input; however, they are stable to

fluctuations, and they arise when T ′ + T0 > 1 to make the homogenous fixed point unstable.

Whether the network state will approach one or the other stable fixed point depends on the

direction of the initial fluctuation pattern.

In sum, contour enhancement makes the network prone to “see” ghost contours whose

orientations and widths match the interaction structure in T. Avoiding such hallucinations

requires T ′ + T0 < 1. This, together with 1 > T0 required by equation (5.51), implies that

the selective amplification ratio is limited to the following:

selective amplification ratio =
1 + (T ′ − T0)

1− T0
< 2. (5.61)

Consequently, enhancement of contours relative to the background is insufficient (Li and

Dayan 1999). Similar numerical limits on the selective amplification ratio apply to the cases

of a general gx(x).
23 Although symmetric recurrent networks are useful for associative

memory (Hopfield 1984), which requires significant input errors or omissions to be corrected

or filledin, they imply too much distortion for early visual tasks that require the output to be

more faithful to the input.

5.8.1.2 A minimal recurrent model with hidden units

The strong tendency to hallucinate input in the symmetrically connected model of equation

(5.40) is largely dictated by the symmetry of the neural connections. Hence, this tendency

cannot be removed by introducing more complex cellular and network mechanisms without

removing the symmetry of the neural connections. (These cellular and network mechanisms

include, for instance, ion channels, spiking rather than firing rate neurons, multiplicative

inhibition, global activity normalization, and input gating (Grossberg and Mingolla 1985,

Zucker et al. 1989, Braun, Niebur, Schuster and Koch 1994), which are used by many neural

network models.) Furthermore, attractor dynamics are untenable in the face of the well

established fact of Dale’s law, namely that real neurons are overwhelmingly either exclusively

excitatory or exclusively inhibitory. It is obviously impossible to have symmetric connections

between excitatory and inhibitory neurons.

Mathematical analysis (Li and Dayan 1999) showed that asymmetric recurrent EI net

works with separate excitatory (E) and inhibitory (I) cells can perform computations that are

inaccessible to symmetric networks. In particular, EI networks support much larger selective

amplification ratios without degenerating into hallucination. To illustrate this, start again with

the simplification of a separated subnet (equations (5.43)) and piecewise linear gx(x), as in

equation (5.48). Then, replace neural units and connections (as in the example in Fig. 5.55):

neural unit xi → an EI pair [excitatory xi, inhibitory yi with time constant τy],

connection Tij → Jij from xj to xi, and Wij from xj to yi,

such that the circuit’s equation of motion becomes

23In such cases, let x̄contour and x̄texture be the fixed points for the contour and texture inputs, respectively. The

response gains for a contour and a homogenous texture are δgx(x̄)/δI = g′x(x̄contour)/ [1− T0g′x(x̄contour)]
and δgx(x̄)/δI = g′x(x̄texture)/ [1 + (T ′ − T0)g′x(x̄texture)], respectively, and the requirement for avoiding

hallucinations becomes (T ′ + T0)g′x(x̄texture) < 1. Consequently, the selective amplification ratio is limited by

an upper bound 2
g′x(x̄contour)

g′x(x̄texture)

[1−T0g
′

x(x̄texture)]
[1−T0g

′

x(x̄contour)]
. If g′x(x̄contour) = g′x(x̄texture), this upper bound is again 2.
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Fig. 5.55: Twopoint EI (as in equations (5.66) and (5.67)) and S networks. There are austere

models to elucidate the essential computation in a recurrent V1 subnetwork involving only

neurons tuned to a single orientation. The two networks are exact counterparts when the

interneurons y1 and y2 are linear, with gy(y) = y. The fixed points of the dynamics in one

network are also the fixed points in the other, but the stabilities of the fixed points, and thus

the computational power, differ in the two networks.

ẋi = −xi − gy(yi) +
∑

j

Jijgx(xj) + Ii (5.62)

τy ẏi = −yi +
∑

j

Wijgx(xj) (5.63)

In this circuit, xi is the excitatory unit and conveys the output of network, and yi is the

inhibitory interneuron (with output gy(yi)), which acts as an auxiliary or hidden unit of the

network.

The fixed point {x̄i, ȳi} of this EI network satisfies ẋi = ẏi = 0. The network can be

designed such that these fixed points are identical (ignoring the y dimension) to the fixed points

{x̄i} of the original symmetric network in equation (5.43). This EI network is then a formal

counterpart of the symmetric network (which we call the S network). This is particularly

simple in the case when gy(y) = y is linear. Then, as the time constant τy of the interneurons

approaches zero, such that yi =
∑

j Wijgx(xj), equation (5.62) becomes

ẋi = −xi +
∑

j

(Jij −Wij)gx(xj) + Ii. (5.64)

Hence, an EI network with very fast interneurons is equivalent to the S network when

Jij −Wij = Tij , τy = 0, and gy(y) = y. (5.65)

If τy > 0, these two networks are counterparts of each other, with the same fixed points but

different dynamics for the motion trajectories. From now on, for simplicity, we always take

τy = 1, and use this simple model to compare EI and S networks.

Consider an EI network that is the counterpart of the particular S subnetwork that only

involves vertical bars (described in equations (5.43–5.48)), and with translationinvariant J

and W, where J0 ≡ ∑

j,mj=mi
Jij , J ′ ≡ ∑

j,mj=mi±1 Jij , and similarly for W0 and W ′.
We have T0 = J0 − W0 and T ′ = W ′ − J ′. Since the EI network has the same fixed

points as the S network, the selective amplification ratio, which is evaluated at fixed points, is

identical for the two networks. A high value for this ratio cannot be realized in the S network
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because of the tendency for hallucination, resulting from the instability of the homogenous

fixed point. However, in the EI network, under homogenous input, all the three fixed points,

one homogenous and two inhomogenous, are unstable. As a result, the primary mode of

instability of the homogenous solution in the EI network (to the homogenous input) is a

spatially homogenous, temporal oscillation, because the network state cannot approach the

nonhomogenous, unstable, fixed points.

These conclusions can be understood by considering a highly simplified problem. In this

simplification, Ii ≡ I1 in all the odd columns have the same strength, and Ii ≡ I2 in all

the even columns also have the same strength. To quantify the selective amplification ratio,

we need to consider responses to two input cases: a homogenous input pattern and a single

contour. The former can be straightforwardly modeled by setting I1 = I2. For the latter, since

the connections Tij do not span more than a single column, we can set I1 > I2 = 0 or

0 = I1 < I2, and thus consider noninteracting contours on either the odd or even columns.

Taking advantage of this simplification and assuming (as is arranged by the dynamics of

the network) that all excitatory and inhibitory units in each column have the same activities,

the input and state variables can be described by twodimensional vectors (I1, I2)
T , (x1, x2)

T

and (y1, y2)
T for the various quantities associated with the odd and even columns. We call

this simplified system the twopoint system (see Fig. 5.55) which captures the essence of our

problem. The equations of motion of the twopoint system are

ẋa = −xa − ya + J0gx(xa) + J ′gx(xa′) + Ia, (5.66)

ẏa = −ya +W0gx(xa) +W ′gx(xa′), (5.67)

where a = 1, 2 and a′ 6= a. Thus, the EI network has been reduced to two pairs of EI units,

one for the odd columns and the other for the even columns of units. The 2 × 2 connection

matrices for this reduced EI network are

J =

(

J0 J ′

J ′ J0

)

and W =

(

W0 W ′

W ′ W0

)

. (5.68)

The S network that is the counterpart of this EI network has just two neurons (rather than

four), and the connection matrix T = J−W.

From Fig. 5.54, we require relatively higher responses to the onepoint input, (I1, I2) ∝
(1, 0), which corresponds to a contour input, and lower responses to the (uniform) twopoint

input, (I1, I2) ∝ (1, 1), which corresponds to a homogenous texture. The symmetry of the

responses must be preserved for the twopoint input (I1, I2) ∝ (1, 1).
In the twopoint S system, the input response function to the onepoint and twopoint

inputs are the same as those in equations (5.50) and (5.53) respectively, with a selective

amplification ratio as in equation (5.55).

We can linearize the EI network to examine the approximate evolution of the deviations

(x′a, y
′
a) ≡ (xa, ya)− (x̄a, ȳa)

from the homogenous fixed point in response to homogenous input (I1, I2) ∝ (1, 1). The

deviation (x′a, y
′
a) follows the equations (for a 6= a′)

ẋ′a = −x′a − y′a + J0x
′
a + J ′x′a′ , (5.69)

ẏ′a = −y′a +W0x
′
a +W ′x′a′ . (5.70)

In comparison, in the twopoint S network, the deviations x′a follow

ẋ′a = −x′a + (J0 −W0)x
′
a + (J ′ −W ′)x′a′ . (5.71)
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Note that matrices J, W, and T commute with each other, with common eigenvectors

V (+) ≡ 1√
2

(

1
1

)

and V (−) ≡ 1√
2

(

1
−1

)

, (5.72)

which are called plus and minus modes, respectively, (note that we used analogous modes for

the stereo summation and opponency signals in the stereo encoding in Section 3.5) or spatial

synchronous and antiphase modes, respectively. The corresponding eigenvalues of J, W, and

T are λJ± = J0±J ′, λW± =W0±W ′, and λT± = λJ±−λW± , respectively. Then states (x′1, x
′
2)

and (y′1, y
′
2) can be represented by their projections x± and y± onto these eigenmodes

(

x′1
x′2

)

= x+V
(+) + x−V

(−),

(

y′1
y′2

)

= y+V
(+) + y−V

(−). (5.73)

Equations (5.69) and (5.70) can then be transformed to

ẋ′± = −x′± − y′± + λJ±x
′
±, (5.74)

ẏ′± = −y′± + λW±x
′
±. (5.75)

Eliminating y′± from these equations, the EI dynamics follow

ẍ′± + (2− λJ±)ẋ
′
± + (λW± − λJ± + 1)x′± = 0. (5.76)

Similarly, the S network dynamics is

ẋ′± = −x′± + (λJ± − λW± )x′±. (5.77)

The solutions to the linear equations are

x′±(t) ∝ exp
(

γEI
± t
)

for the EI network, (5.78)

x′±(t) ∝ exp
(

γS±t
)

for the S network, (5.79)

where γEI
± and γS± are the eigenvalues of the linear system in equation (5.76) for the EI

network and equation (5.77) for the S network, respectively,

γEI
± = −1 +

1

2
λJ± ±

(

1

4
(λJ±)

2 − λW±

)1/2

, and (5.80)

γS± = −1− λW± + λJ±. (5.81)

The fixed point for the EI or S network is unstable if Re(γEI
± ) or Re(γS±) is positive, as then

fluctuations will grow. Note that, since λJ− = J0 − J ′, λW− =W0 −W ′, T0 = J0 −W0, and

T ′ =W ′ − J ′, it follows that

γS− = −1− λW− + λJ− = −1 +W ′ − J ′ + (J0 −W0) = −1 + T0 + T ′.

The above equation and equation (5.60) are showing the same thing: when T0 + T ′ > 1, the

S network is unstable against fluctuations in the x− mode, which is opposing fluctuations in

the odd and even columns (or in x1 and x2).

Although the fixed points for the two networks are the same, their eigenvalues γS± and γEI
±

are different, and so their stabilities can also differ. Since λJ± and λW± are real, γS± is always
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x1

x2

Fig. 5.56: The motion trajectory of the twopoint S network under input I ∝ (1, 1). The

symmetric fixed point (marked by ✸) becomes unstable when the two asymmetric fixed points

(marked by ’s) appear. The symmetric fixed point is a saddle point, and the asymmetric ones

are energy minima, of an energy landscape; the former repels and the latter attract nearby

trajectories. The counterpart EI network has the same three fixed points but different dynamics

(and no energy landscape). When the asymmetric fixed points in the EI networks are also

unstable (and thus unapproachable), the network state can oscillate along the diagonal line

x1 = x2 around the symmetric fixed point into the y dimensions without breaking symmetry.

Adapted with permission from Li, Z. and Dayan, P., Computational differences between

asymmetrical and symmetrical networks, Network: Computation in Neural Systems, 10(1):

59–77, Fig. 4, copyright c© 1999, Informa Healthcare.

real. However, γEI
± can be a complex number, leading to oscillatory behavior if its imaginary

part Im
(

γEI
±
)

is nonzero. One can derive that, for k = + or k = −,

when γSk > 0, then Re
(

γEI
k

)

> 0,

i.e., the EI net is no less stable than the S net; (5.82)

when Im
(

γEI
k

)

6= 0, then γSk < 0,

i.e., the S net is stable when the EI net is oscillatory (stable or not). (5.83)

These conclusions hold for any fixed point. Equation (5.82) can be proven by noting that

γSk = −1 − λWk + λJk > 0 gives λWk < −1 + λJk; hence
[

1
4 (λ

J

k)
2 − λWk

]1/2
>
∣

∣−1 + 1
2λ

J

k

∣

∣,

and thus Re
(

γEI
k

)

> 0 (for one of the roots). Equation (5.83) can be proven by noting that

1
4

(

λJk
)2
< λWk leads to γSk < −1− λWk + 2

√

λWk = −
(

1−
√

λWk

)2

≤ 0.

Now we can understand how the EI network maintains spatial symmetry under homoge

nous input (I1, I2) ∝ (1, 1), even when T ′ + T0 is large enough for the S network to break

symmetry. Figure 5.56 shows the energy landscape and motion trajectory for the twopoint

S network under the homogenous input, with symmetry breaking. As analyzed above, the

symmetry breaking is accompanied by three fixed points: one symmetric x̄1 = x̄2 and two

asymmetric x̄1 6= x̄2. The symmetric one is a saddle point, stable against fluctuations of x+
(i.e., synchronous fluctuations in x1 and x2) from it but unstable against fluctuations of x−
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(i.e., opposing fluctuations in x1 and x2). The x− fluctuation grows, with its initial value

determining to which of the two asymmetric fixed points (x1, x2) will converge.

Symmetry-breaking interactions Symmetry-preserving interactions
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A: Uniform input C: Uniform input

B: Non-uniform input D: Non-uniform input

Fig. 5.57: Motion trajectories of the twopoint S network. The interactions in A and B are

symmetry breaking, with T0 = 0.5 and T ′ = 0.8, so that the responses to uniform inputs

converge to asymmetric fixed points (A). C, D: Lowering the interunit suppression toT ′ = 0.3
allows the network to preserve symmetry; however, the selective amplification ratio is now

quite small. The function gy(y) = y, and gx(x) is a threshold linear function with xth = 1
and no saturation. The red dashed lines mark the threshold (xth). Adapted with permission

from Li, Z. and Dayan, P., Computational differences between asymmetrical and symmetrical

networks, Network: Computation in Neural Systems, 10(1): 59–77, Fig. 2, copyright c© 1999,

Informa Healthcare.

The same three fixed points in the EI network can be all unstable. In particular, synchronous

fluctuations x+ from the symmetric fixed point x̄1 = x̄2 can be made unstable and oscillatory

by

−1 + (J0 + J ′)/2 > 0 and W0 +W ′ > (J0 + J ′)2/4, (5.84)

and the asymmetric fixed point can be made unstable by

−1 + J0 > 0. (5.85)

Note that, at the asymmetric fixed point, the nonactive neural pair contributes nothing to the

dynamics, and so the network becomes a onepoint system, albeit a twoneuron, onepoint

system.

Given this, no fluctuation from the symmetric fixed point can converge—the only other

fixed points (the asymmetric ones) are themselves unstable. Consequently, the fluctuations
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around the symmetric fixed point tend to be symmetric along a trajectory x1(t) = x2(t) and

y1(t) = y2(t), and oscillate in the (x, y) phase space. Small fluctuations in the x− direction

are also unstable; however, in the nonlinear system, they are strongly squashed below the

threshold xth and above saturation at xsat. Overall, this oscillation preserves the symmetry

in the (x1, x2) space. This allows a very large selective amplification ratio without inducing

any hallucination.

Figure 5.57 shows the trajectory of motion in the (x1, x2) space for two S networks.

One network strongly amplifies an asymmetric input I1 6= I2, but it spontaneously breaks

symmetry by responding nonhomogenously, x1 6= x2, to homogenous input I1 = I2 (i.e.,

it strongly amplifies noise). Another network does not spontaneously break symmetry when

I1 = I2, but it cannot amplify asymmetric input to nearly such a degree. Recall that the

symmetric and asymmetric input represent the homogenous texture and isolated contours,

respectively, of visual inputs in the expanded subnetwork for vertical bars. Hence, the S

network cannot realize a sufficiently large selective amplification ratio, and so it is inadequate

as a model of V1.

Uniform inputs I = (3, 3) Non-uniform inputs I = (3, 0)
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A: x1(t) versus y1(t) C: x1(t) versus y1(t)

B: gx(x1)± gx(x2) D: gx(x1)± gx(x2)

Fig. 5.58: Oscillatory trajectories of a twopoint EI network with a high selective amplification

ratio. The connections are J0 = 2.1, J ′ = 0.4, W0 = 1.13, and W ′ = 0.9. In B and D, the

plot of gx(x1) + gx(x2) is in blue, and gx(x1)− gx(x2), in red. In the symmetric (uniform)

input case, gx(x1)−gx(x2) quickly decays in time (B). With asymmetric (nonuniform) input

(C,D), the red and blue curves lie on top of each other (D). Here, gx(x), gy(y), and xth = 1 are

the same as in Fig. 5.57. The red dashed lines in A and C mark the thresholds (xth). Adapted

with permission from Li, Z. and Dayan, P., Computational differences between asymmetrical

and symmetrical networks, Network: Computation in Neural Systems, 10(1): 59–77, Fig. 3,

copyright c© 1999, Informa Healthcare.

Figure 5.58 shows the evolution of a twopoint EI network. The responses to both the

symmetric and asymmetric inputs are oscillatory, but there is no spontaneous symmetry



| 299Nonlinear V1 neural dynamics for saliency and preattentive segmentation

breaking to homogenous inputs, even though the selective amplification ratio is high. Hence,

the EI network is the minimal network architecture for our V1 computation.

We next expand the toy model subset for one particular orientation θ into a full network

including more orientations θ and interactions between orientations. In this case, the dynamical

equations are

ẋiθ = −xiθ − gy(yi,θ) + Jogx(xiθ)−
∑

∆θ 6=0

ψ(∆θ)gy(yi,θ+∆θ)

+
∑

j 6=i,θ′

Jiθ,jθ′gx(xjθ′) + Iiθ + Io, (5.86)

ẏiθ = −αyyiθ + gx(xiθ) +
∑

j 6=i,θ′

Wiθ,jθ′gx(xjθ′) + Ic, (5.87)

which are the same as equations (5.8–5.9) (except for the lack of Inoise). The neural connections

Tiθ,jθ′ in the original S network are now replaced by various components including J, W, Jo,

and ψ.

Although this analysis suggests that, unlike S networks, an EI network might be able to

model V1, it is necessary for the connections J and W to be set appropriately in order to

realize the necessary computations. The next section provides an analytical understanding of

the nonlinear dynamics concerned and provides specific constraints on the J and W.

5.8.2 Dynamic analysis of the V1 model and constraints on the neural

connections

The model state is characterized by {xiθ, yiθ}, or simply {xiθ}, omitting the auxiliary units

{yiθ}. The interaction between excitatory and inhibitory cells makes {xiθ(t)} intrinsically

oscillatory in time (Li and Hopfield 1989), although whether the oscillations are damped

or sustained depends on the external input patterns and neural connections. Thus, given an

input {Iiθ}, the model often does not convergence to a fixed point where ẋiθ = ẏiθ = 0.

However, if {xiθ(t)} oscillates periodically around a fixed point, then after the transient

following the onset of {Iiθ}, the temporal average of {xiθ(t)} can characterize the model

output and approximate the encircled fixed point. We henceforth use the notation {x̄iθ} to

denote either the fixed point, if it is stable, or the temporal average, and denote the computation

as I → gx(x̄iθ).

5.8.2.1 A single pair of neurons

An isolated single pair iθ follows equations

ẋ = −x− gy(y) + Jogx(x) + I, (5.88)

ẏ = −y + gx(x) + Ic, (5.89)

(omitting the redundant index iθ) where we set αy = 1 for simplicity and I = Iiθ + Io. The

gain in the inputoutput transform (I, Ic) → gx(x̄) at a fixed point (x̄, ȳ) is

δgx(x̄)

δI
=

g′x(x̄)
1 + g′x(x̄)g′y(ȳ)− Jog′x(x̄)

,
δgx(x̄)

δIc
= −g′y(ȳ)

δgx(x̄)

δI
, (5.90)

where g′x(x̄) and g′y(ȳ), respectively, are the derivatives of the functions gx(.) and gy(.) at the

fixed point x̄ and ȳ.

Figure 5.59 illustrates an example when both gx(x) and gy(y) are piecewise linear

functions. In this case, the inputoutput transform I → gx(x̄) is also piecewise linear; see
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Input

Input
suppression
region

facilitation

region

A: Excitatory cell output gx(x) versus x

Cell membrane potential x

C: Response gx(x̄) versus I depends on Ic D: Minimum ∆I/∆Ic for contextual facilitation

∆I/∆Ic = g′y(ȳ)

Cell membrane potential y

Background input I to excitation cellInput I to excitation cell

For higher Ic

For lower Ic

B: Interneuron output gy(y) versus y

Fig. 5.59: A,B: Examples of gx(x) and gy(y) functions. C: Inputoutput function I → gx(x̄)
for an isolated neural pair without interpair neural interactions, under different levels of Ic. D:

The overall effect of any additional external or contextual inputs (∆I,∆Ic) on a neural pair is

excitatory or inhibitory depending on whether ∆I/∆Ic > g′y(ȳ); this depends on background

input I . Adapted with permission from Li, Z., Computational design and nonlinear dynamics

of a recurrent network model of the primary visual cortex, Neural Computation, 13(8): 1749–

1780, Fig. 3, copyright c© 2001, MIT Press.

Fig. 5.59 C. The threshold, input gain control, and saturation in I → gx(x̄) are apparent.

The slope
δgx(x̄)

δI is nonnegative; otherwise, I = 0 gives nonzero output x 6= 0. The

slope increases with g′x(x̄), decreases with g′y(ȳ), and depends on Ic. Shifting (I, Ic) to

(I +∆I, Ic +∆Ic) changes gx(x̄) by

∆gx(x̄) ≈ (δgx(x̄)/δI)
(

∆I − g′y(ȳ)∆Ic
)

, (5.91)

which is positive or negative depending on whether∆I/∆Ic > g′y(ȳ). Hence, a more elaborate

model could allow that the interneurons also be partially activated by the external visual input,

as is suggested by physiology (White 1989). It would be necessary that ∆I/∆Ic > g′y(ȳ).

5.8.2.2 Two interacting pairs of neurons with nonoverlapping receptive
fields

Consider two vectors (x1, y1) and (x2, y2) denoting the states of two interacting EI pairs

whose connections are J12 = J21 = J ′ and W12 = W21 =W ′. Then

ẋa = −xa − gy(ya) + Jogx(xa) + J ′gx(xb) + Ia + Io,

ẏa = −ya + gx(xa) +W ′gx(xb) + Ic
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where a, b = 1, 2 and a 6= b. Hence, to the pair (x1, y1), the effect of the pair (x2, y2) is the

same as adding ∆I = J ′gx(x2) to the I1 and adding ∆Ic = W ′gx(x2) to Ic. This gives,

according to equation (5.91),

∆gx(x̄1) ≈ (δgx(x̄1)/δI)
(

∆I − g′y(ȳ1
)

∆Ic) (5.92)

= (δgx(x̄1)/δI)
(

J ′ − g′y(ȳ1)W
′) gx(x2). (5.93)

Hence,

the net effective connection from x2 to x1 is J ′ − g′y(ȳ1)W
′. (5.94)

This connection strength depends on how active the interneuron is, ȳ1, and thus it also depends

on the input activation of the bar associated with (x1, y1). Therefore, since g′y(ȳ1) tends to

increase with the direct input I1 (and with Ic), the influence on x1 from the contextual input

I2 becomes more suppressive as the direct input I1 to the bar becomes stronger. This explains

some of the contrast dependence of the contextual influences that is observed physiologically

(Sengpiel, Baddeley, Freeman, Harrad and Blakemore 1998). In the simplest case, that I ≡
I1 = I2, the two bars (associated with these two EI pairs) suppress each other more strongly as

input contrast increases, but they can facilitate each other’s response when the input contrast

is sufficiently weak and J ′ sufficiently strong. Figure 5.59 D shows an example of how

the contextual inputs can switch from being facilitatory to being suppressive as I increases

(Stemmler, Usher and Niebur 1995, Somers, Todorov, Siapas, Toth, Kim and Sur 1998).

This very simple model of contextual influence, with only two EI pairs, can be applied to

account for various perceptual phenomena involving only single test and contextual bars. For

example, a contextual bar can alter the detection threshold (Polat and Sagi 1993, Kapadia et

al. 1995) or perceived orientation (Gilbert and Wiesel 1990, Li 1999b) of a test bar.

5.8.2.3 A onedimensional array of identical bars

Figure 5.60 ABC shows sample input stimuli comprising infinitely long horizontal arrays of

evenly spaced, identical bars. These can be approximated as

Iiθ =

{

Iarray for i = (mi, ni = 0) on the horizontal axis and θ = θ1,

0 otherwise.
(5.95)

The approximation is to set Iiθ = 0 for θ 6= θ1; this is reasonable when the input contrast

is weak and the neurons have small orientation tuning widths. When bars iθ outside the

array are silent (i.e., gx(xiθ) = 0) due to insufficient excitation, we omit them and treat the

onedimensional system that only contains the activated neurons. Omitting index θ and using

i to index locations, we get

ẋi = −xi − gy(yi) + Jogx(xi) +
∑

j 6=i

Jijgx(xj) + Iarray + Io, (5.96)

ẏi = −yi + gx(xi) +
∑

j 6=i

Wijgx(xj) + Ic. (5.97)

Translation symmetry implies that all units have the same equilibrium point (x̄i, ȳi) = (x̄, ȳ),
and

˙̄x = 0 = −x̄− gy(ȳ) +



Jo +
∑

i6=j

Jij



 gx(x̄) + Iarray + Io, (5.98)

˙̄y = 0 = −ȳ +



1 +
∑

i6=j

Wij



 gx(x̄) + Ic. (5.99)
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E:

D:
θ1

A:

B:

C:

Fig. 5.60: Examples of onedimensional input stimuli. A: Horizontal array of identical bars

oriented at angle θ1. B: A special case of A when θ1 = π/2 and, in C, when θ1 = 0.

D: An array of bars arranged as being tangential to a circle; the pattern in B is a special

case of this circle when the radius is infinitely large. E: Same as D except that the bars are

perpendicular to the circle’s circumference; the pattern in C is a special case of E when the

radius is infinitely large. Reproduced with permission from Li, Z., Computational design

and nonlinear dynamics of a recurrent network model of the primary visual cortex, Neural

Computation, 13(8): 1749–1780, Fig. 4, copyright c© 2001, MIT Press.

This array is then equivalent to a single EI neural pair (cf. equations (5.88) and (5.89)), making

the substitution Jo → Jo +
∑

j Jij and g′(ȳ) → g′y(ȳ)
(

1 +
∑

j Wij

)

. The response to bars

in the array is thus higher than to an isolated bar if the net extra excitatory connection

E ≡
∑

j

Jij (5.100)

is stronger than the net extra inhibitory (effective) connection

I ≡ g′y(ȳ)
∑

j

Wij . (5.101)

The inputoutput relationship I → gx(x̄) is qualitatively the same as that for a single bar, but

with a quantitative change in the gain

δgx(x̄)

δI
=

g′x(x̄)

1 + g′x(x̄)
[

g′y(ȳ)− (E − I)
]

− Jog′x(x̄)
. (5.102)

When E −I = 0, the gain reverts back to that of a single bar. The connections E and I depend

on the angle θ1 between the bars and the array; see Fig. 5.60 A. Consider connections as in

the association field in Fig. 5.15 B. When the bars are parallel to the array, making a straight

line (Fig. 5.60 B), E > I. The condition for enhancing the responses to a contour is

contour facilitation Fcontour ≡ (E − I)gx(x̄) > 0. (5.103)

When the bars are orthogonal to the array (Fig. 5.60 C), E < I, and the responses are

suppressed. This analysis extends to other onedimensional, translationinvariant arrays like
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A: Infinitely long line

B: Half infinitely long line,

ending on the left

C: Infinitely long array

of oblique bars

D: Infinitely long horizontal

array of vertical bars

E: Uneven circular

array

F: Uneven radiant

array

G: An isolated bar

Fig. 5.61: The response gx(xiθ) of the V1 model (visualized by thickness) to onedimensional

arrays of bars. The input Îiθ = 1.5 is of low/intermediate contrast for all visible bars.

Compared with the isolated bar in G, contextual facilitation causes higher outputs in A, B,

E; contextual suppression causes lower outputs in C, D, F. The uneven spacings between the

bars (E, F) or at an end of a line (at the left end of B) cause deviations from the translation

invariance of responses. Note that the responses taper off near the end of the line in B, and

the responses are noticeably weaker to bars that are more densely packed in F. In A and B,

cells preferring orientations that are nearly (but not exactly) horizontal are also excited above

threshold. This goes beyond the approximate treatment in the text. Adapted with permission

from Li, Z., Computational design and nonlinear dynamics of a recurrent network model of

the primary visual cortex, Neural Computation, 13(8): 1749–1780, Fig. 5, copyright c© 2001,

MIT Press.

those in Fig. 5.60 DE. The straight line in Fig. 5.60 B is in fact the limit of a circle in

Fig. 5.60 D when the radius goes to infinity. Similarly, the pattern in Fig. 5.60 C is a special

case of the one in Fig. 5.60 E.

How good the approximations in equations (5.95–5.99) are depends on the input. This

is illustrated in Fig. 5.61. In Fig. 5.61 A, cells whose RFs are centered on the line, oriented

close to, but not exactly, horizontal, are also excited above threshold. This is not consistent

with our approximation gx(xiθ) = 0 for nonhorizontal θ. (This should not cause perceptual

problems, though, given population coding.) The cells for these nonhorizontal bars can be
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activated by direct visual input Iiθ for θ 6= θ1 (θ ≈ θ1), due to the finite width of orientation

tuning and by the colinear facilitation from other bars in or along the line. In Fig. 5.61 B, the

approximation of translation invariance x̄i = x̄j for all bars is compromised by the fact that

the array comes to an end. The bars at or near the left end of the line are less enhanced since

they receive less or no contextual facilitation from their left. Uneven spacing between bars in

Fig. 5.61 EF also compromises translation invariance. In Fig. 5.61 F, the more densely spaced

bars are more strongly suppressed by their neighbors.

5.8.2.4 Twodimensional textures and texture boundaries

A: A texture of bars oriented at B:

F: G:E:D:

A texture of vertical bars

Two neighboring textures of bars

Four example pairs of vertical arrays of bars

θ1
θ2

θ1

θ1

C:

Fig. 5.62: Examples of twodimensional textures and their interactions. A: Texture made of

bars oriented at θ1 and sitting on a Manhattan grid. This can be seen as a horizontal array of

vertical arrays of bars, or indeed as a vertical or oblique array of arrays of bars, as in the dotted

boxes. B: A special case of A when θ1 = 0. C: Two nearby textures with a boundary. D, E,

F: Examples of nearby, identical, vertical arrays. G: Two nearby but different vertical arrays.

When each vertical array is seen as an entity, one can calculate the effective connections J ′

and W ′ between them (see the definitions in the text). Adapted with permission from Li, Z.,

Computational design and nonlinear dynamics of a recurrent network model of the primary

visual cortex, Neural Computation, 13(8): 1749–1780, Fig. 6, copyright c© 2001, MIT Press.
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The analysis of infinitely long onedimensional arrays can be extended to an infinitely large

twodimensional texture of uniform inputs Iiθ1 = Itexture in the case that i = (mi, ni) sits

on a regularly spaced grid (Fig. 5.62 A). The sums E =
∑

j Jij and I = g′y(ȳ)
∑

j Wij are

now taken over all j in that grid.

Physiologically, the response to a bar is reduced when the bar is part of a texture (Knierim

and Van Essen 1992). This arises when E < I. Consider, for example, the case when

i = (mi, ni) form a Manhattan grid with integer values of mi and ni (Fig. 5.62). The texture

can be seen as a horizontal array of vertical arrays of bars, e.g., a horizontal array of vertical

contours in Fig. 5.62 B. The effective connections between two vertical arrays (Fig. 5.62 DEF)

spaced apart by a are:

J ′
a ≡

∑

j,mj=mi+a

Jij , W ′
a ≡

∑

j,mj=mi+a

Wij . (5.104)

Then E =
∑

a J
′
a and I = g′y(ȳ)

∑

aW
′
a. The effective connection within a single vertical

array is J ′
0 and W ′

0. One should design J and W such that contour enhancement and texture

suppression can occur using the same neural circuit (V1). That is, when the vertical array is a

long straight line (θ1 = 0), contour enhancement (i.e., J ′
0 > g′y(ȳ)W

′
0) occurs when the line

is isolated, but overall suppression (i.e., E =
∑

a J
′
a < I = g′y(ȳ)

∑

aW
′
a) occurs when that

line is embedded within a texture of lines (Fig. 5.62 B). This can be satisfied when there is

sufficient excitation within a line and sufficient inhibition between the lines.

Computationally, contextual suppression within a texture region endows its boundaries

with relatively higher responses, thereby making them salient. The contextual suppression of

a bar within a texture is

Cθ1
wholetexture ≡

∑

a

[

g′y(ȳθ1)W
′θ1
a − J ′θ1

a

]

gx(x̄θ1) = (I − E)gx(x̄θ1) > 0, (5.105)

where x̄θ1 denotes the (translationinvariant) fixed point for all texture bars in an infinitely

large texture, and J ′θ1
a and W ′θ1

a are as the quantities in equation (5.104) with the addition of

the superscript θ1 to indicate the orientation of the texture bars, i.e., the connections Jij and

Wij refer to Jiθ1jθ1 and Wiθ1jθ1 , respectively, in the full V1 model.

Consider the bars on the vertical axis i = (mi = 0, ni). Removing the texture bars to their

left, j = (mj < 0, nj), removes the contextual suppression from them and thereby highlights

the boundary bars i = (mi = 0, ni). Then the activity (x̄iθ1 , ȳiθ1) depends onmi, the distance

of the bars from the texture boundary. Asmi → ∞, the responses (x̄iθ1 , ȳiθ1) approach those

(x̄θ1 , ȳθ1) to the bars within an infinitely large texture. The contextual suppression of the

boundary bars (mi = 0) is

Cθ1
halftexture ≡

∑

mj≥0

[

g′y(ȳiθ1)W
′θ1
mj

− J ′θ1
mj

]

gx(x̄jθ1) (5.106)

≈
∑

a≥0

[

g′y(ȳθ1)W
′θ1
a − J ′θ1

a

]

gx(x̄θ1) < Cθ1
wholetexture, (5.107)

making the approximation (x̄jθ1 , ȳjθ1) ≈ (x̄θ1 , ȳθ1) for all mj ≥ 0.

The boundary highlight persists when there is a neighboring texture whose bars have a

different orientation θ2, with bar positions i = (mi < 0, ni) (Fig. 5.62 C). To analyze this,

define connections between arrays in different textures (Fig. 5.62 G) as

J ′θ1θ2
a ≡

∑

j,mj=mi+a

Jiθ1jθ2 , W ′θ1θ2
a ≡

∑

j,mj=mi+a

Wiθ1jθ2 . (5.108)
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When θ1 = θ2, then J ′θ1θ2
a = J ′θ1

a and W ′θ1θ2
a =W ′θ1

a . The contextual suppression from the

neighboring texture (θ2) on the texture boundary (mi = 0) is

Cθ1,θ2
neighbor−halftexture ≡

∑

mj<0

[

g′y(ȳiθ1)W
′θ1θ2
mj

− J ′θ1θ2
mj

]

gx(x̄jθ2).

With connections as for the association field, Jiθ1,jθ2 and Wiθ1,jθ2 , J ′θ1θ2
a and W ′θ1θ2

a tend

to link similarly oriented bars θ1 ∼ θ2. Consequently, Cθ1,θ2
neighbor−halftexture is minimum or

zero when θ1 ⊥ θ2 and increases with decreasing |θ1 − θ2|. Hence, the boundary highlight

is expected to increase with the orientation contrast |θ1 − θ2|. The net contextual suppression

on the border, contributed by both textures, is

Cθ1,θ2
two halftextures ≡ Cθ1

halftexture + Cθ1,θ2
neighbor−halftexture.

Hence, the border enhancement, or the reduction of contextual suppression at the border

relative to regions further inside the texture is

δC ≡ Cθ1
wholetexture − Cθ1,θ2

two halftextures (5.109)

≈ Cθ1,θ2=θ1
neighbor−halftexture − Cθ1,θ2

neighbor−halftexture (5.110)

≈
∑

a<0

[

g′y(ȳθ1)W
′θ1
a − J ′θ1

a

]

gx(x̄θ1) (5.111)

−
∑

a<0

[

g′y(ȳθ1)W
′θ1θ2
a − J ′θ1θ2

a

]

gx(x̄θ2). (5.112)

Here, in addition to the previous approximation (x̄jθ1 , ȳjθ1) ≈ (x̄θ1 , ȳθ1) for all mj ≥ 0, we

approximated x̄jθ2 ≈ x̄θ2 formj < 0. Usually x̄θ2 6= x̄θ1 since the fixed point should depend

on the relative orientation between the bars and the orientation of the arrays.

Assuming J ′θ1θ2
a ≈ 0 and W ′θ1θ2

a ≈ 0 when |θ1 − θ2| = π/2, and noting that x̄θ1 ≈ x̄θ2
when θ1 ≈ θ2,

δC ≈







0 for θ1 ≈ θ2,
∑

a<0

[

g′y(ȳθ1)W
′θ1
a − J ′θ1

a

]

gx(x̄θ1) > 0 for θ1 ⊥ θ2,
roughly increases as |θ1 − θ2| increases.

(5.113)

Thus the border highlight diminishes as the orientation contrast approaches 0; this was seen

in Fig. 5.23. Furthermore, even at a given contrast |θ1 − θ2|, the border enhancement δC
depends on θ1. For instance, with |θ1−θ2| = π/2 and using the association field connections,

the enhancement δC for border bars parallel to the border θ1 = 0 (which form a contour) is

higher than that for border bars perpendicular to the border θ1 = π/2. This is because both

the suppression g′y(ȳθ1)W
′θ1
a − J ′θ1

a between parallel contours (θ1 = 0 and a 6= 0) and the

facilitation J ′θ1
0 − g′y(ȳθ1)W

′θ1
0 within a contour (Fig. 5.62 D) are much stronger than their

counterparts for the vertical arrays of horizontal bars (Fig. 5.62 E). Thus the strength of the

border highlight is predicted to be tuned to the relative orientation θ1 between the border

and the bars (Li 2000b). This explains the asymmetry in the responses in Fig. 5.22 B—the

highlight of the vertical border is much stronger for the vertical texture bars at the border than

for the horizontal ones.

The approximations (x̄iθ1 , ȳiθ1) ≈ (x̄θ1 , ȳθ1) for mi ≥ 0 and x̄iθ2 ≈ x̄θ2 for mi < 0,

which were used to arrive at equation (5.113), clearly break down at the border. This is

especially true at more salient borders like that in Fig. 5.22 B. This breakdown accentuates

the tuning of the border highlight to θ1.
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As oft noted, isoorientation suppression underlies the border highlight. By equation

(5.105), its strength I − E depends on input contrast through g′y(ȳ). Since g′y(ȳ) usually

increases with increasing ȳ, the highlight is stronger at higher contrast. This is essentially

the same as the dependence on input contrast of the contextual influence between two bars

analyzed around equation (5.94). From just the perspective of dynamics, neural connections

could be designed such that either of the following two situations holds: one is that iso

orientation suppression holds at all input contrasts; the other is that isoorientation suppression

holds only at sufficiently high input contrast and becomes isoorientation facilitation at very

low contrast (Li 1998a, Li 1999b). Psychophysically, texture segmentation does require an

input contrast that is well above the texture detection threshold (Nothdurft 1994), suggesting

that isoorientation suppression diminishes at low input contrast. Computationally, facilitation

certainly helps texture detection, which could be more important than segmentation at low

input contrast.

For the parameters we have used here for the V1 model (Li 1998a, Li 1999b) (given in the

appendix; see Section 5.9), contour facilitation (Fcontour > 0) occurs at all contrasts, since no

W connection links the contour segments. Connections different from the bowtie association

field would have to be employed to model diminished contour enhancement at high contrast

(Sceniak, Ringach, Hawken and Shapley 1999).

5.8.2.5 Translation invariance and popout

A: B: C:

Fig. 5.63: Model responses to globally homogenous (A, B) and inhomogenous (C) input

images, each composed of bars of equal input contrasts. A: The response to this globally

homogenous (though locally inhomogenous) texture is uniform saliency. B: In this globally

homogenous texture, the vertical bars are more salient than the horizontal ones; however, the

whole texture has a translation invariant saliency distribution. C: The small figure pops out

from the background; this is where translation invariance breaks down in the input, with the

whole figure being its own boundary. Adapted with permission from Li, Z., Computational

design and nonlinear dynamics of a recurrent network model of the primary visual cortex,

Neural Computation, 13(8): 1749–1780, Fig. 8, copyright c© 2001, MIT Press.

Consider the familiar case from above of two homogenous textures, each made of iso

oriented bars. There is an orientation contrast at the border between the two textures. This

border is highlighted by higher responses to the border bars. However, if orientation contrasts

are spatially homogenous within the texture itself, then their evoked responses will also

be spatially homogenous. Figure 5.63 A shows an example in which the texture is made of

alternating columns of bars at θ1 = 45o and θ2 = 135o in even and odd columns, respectively.

Let (x̄θ1 , ȳθ1) and (x̄θ2 , ȳθ2) denote the states for the bars oriented at θ1 and θ2, respectively.

The contextual suppression of a bar oriented at θ1 is
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Ccomplex−texture =
∑

even a

[

g′y(ȳθ1)W
′θ1
a − J ′θ1

a

]

gx(x̄θ1)

+
∑

odd a

[

g′y(ȳθ1)W
′θ1θ2
a − J ′θ1θ2

a

]

gx(x̄θ2).

Since Ccomplex−texture 6= Cθ1
wholetexture, the value of x̄θ1 is not the same as it would be in

a simple texture of bars uniformly oriented at θ1. This applies similarly to x̄θ2 . Furthermore,

for general θ1 and θ2, x̄θ1 6= x̄θ2 . In Fig. 5.63 A, reflection symmetry leads to x̄θ1 = x̄θ2 ,

i.e., a uniform saliency within the whole texture. In Fig. 5.63 B, the vertical bars evoke higher

responses than the horizontal ones because of contour facilitation. Nevertheless, no local patch

within this complex texture is more salient than any other patch. This translation invariance in

saliency is simply the result of the network preserving the translation invariance in the input

(texture), as long as the translation symmetry is not spontaneously broken (see Section 5.8.1).

A special case of a texture boundary is when one small texture patch is embedded in a

large and different texture. The small texture is small enough that the whole texture is its

own boundary, and thus pops out from the background (Fig. 5.63 C). In general, orientation

contrasts do not correspond to texture boundaries and thus do not necessarily pop out. Through

contextual influences, the highlight at a texture border can alter responses to nearby locations

up to a distance comparable to the length of the lateral connections. Hence, the response to a

texture region is not homogenous unless this region is far enough away from the border. This

was elaborated in Section 5.4.5.

5.8.2.6 Fillingin and leakingout

Small fragments of a contour or homogenous texture can be missing in inputs due to input

noise or to the visual scene itself. We define fillingin as the phenomenon of not noticing or

not perceiving the missing visual input fragments as missing. It could be caused by one of

the following two possible mechanisms. The first is that the neurons for the missing fragment

are activated by contextual influences just as if they had actually received direct visual input

themselves. This is a common assumption in models (Grossberg and Mingolla 1985). The

second possibility is that, even though the missing fragments do not evoke any significant

response in the neurons whose RFs cover their locations, the input locations bordering the

missing fragments are not sufficiently salient or conspicuous to attract attention strongly. In

other words, according to this explanation, fillingin arises if the “saliency of the hole,” which

we analyzed in Section 5.4.4.7, is insufficient. Consequently, the missing fragments are only

noticeable by visual scrutiny. It is not yet clear from physiology (Kapadia et al. 1995) which

mechanism is involved.

Consider these two mechanisms for the case of a single bar segment i = (mi = 0, ni = 0)
that is missing in a smooth contour—e.g., the horizontal line of Fig. 5.64 A. To excite the cell

i to firing threshold, i.e., xi > xth (such that gx(xi) > 0), contextual facilitation

∑

j=(mj 6=0,nj=0)

[

Jij −Wijg
′
y(ȳi)

]

gx(x̄j)

should be strong enough, or, approximately,

Fcontour + Io = (E − I)gx(x̄) + Io > xth, (5.114)

where Io is the background input not caused by external visual input,Fcontour and the effective

net connections E and I are as defined in equations (5.100–5.103), and the approximation

(x̄j , ȳj) ≈ (x̄, ȳ) is adopted as if responses to all the nonmissing bars are unaffected by the

missing fragment.



| 309Nonlinear V1 neural dynamics for saliency and preattentive segmentation

A: B:
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Fig. 5.64: Examples of fillingin; model responses gx(xiθ) to inputs composed of bars of

equal contrasts in each example. A: A line with a gap; the response to the gap is nonzero. B: A

texture with missing bars; the responses to bars near the missing bars are not noticeably higher

than the responses to other texture bars. Adapted with permission from Li, Z., Computational

design and nonlinear dynamics of a recurrent network model of the primary visual cortex,

Neural Computation, 13(8): 1749–1780, Fig. 9, copyright c© 2001, MIT Press.

However, it is necessary that finite lines do not either grow longer or fatter as a result of

contextual effects. For the first, we require that the neuron i = (mi = 0;ni = 0) should not

be excited above the threshold xth if the left (or right) half j = (mj < 0, nj = 0) of the

horizontal contour is removed. Otherwise the contour will extend beyond its end or grow in

length—this is referred to as leakingout. To prevent leakingout,

Fcontour/2 + Io < xth, (5.115)

since the contour facilitation to i is approximately Fcontour/2, half of that Fcontour in an

infinitely long contour. The inequality (5.115) is satisfied for the line end in Fig. 5.61 B and

should hold at any contour saliency gx(x̄). Not having leakingout also means that large gaps

in lines can not be filled in.

To the extent that segments within a smooth contour facilitate each other’s firing, missing

fragment i reduces the saliencies of the neighboring contour segments j ≈ i. The missing

segment and its vicinity are thus not easily noticed, even if the cell i for the missing segment

does not fire.

To prevent contours growing fatter—e.g., the activation of i = (mi = 0, ni = 1) along

the side of an infinitely long horizontal contour such as that in Fig. 5.60 B, we require
∑

j∈contour

[

Jij − g′y(ȳi)Wij

]

gx(x̄) < xth − Io

for i 6∈ contour. This condition is satisfied in Fig. 5.61 A.
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Fillingin in an isoorientation texture with missing fragments i (texture fillingin) can

only arise from the second mechanism, i.e., to avoid conspicuousness near i. This is because

i can not be excited to fire given that the net contextual influence within an isoorientation

texture is suppressive (which also means that textures do not suffer leakingout around their

borders). If i is not missing, its neighbor k ≈ i receives contextual suppression, as in equation

(5.105) but omitting the index θ for the orientation of the bars for simplicity,

Cwholetexture = (I − E)gx(x̄) ≡
∑

j∈texture

[

g′y(ȳ)Wkj − Jkj

]

gx(x̄). (5.116)

A missing i makes its neighbor k more salient by the removal of its contribution, which

is approximately
[

Wkig
′
y(ȳ)− Jki

]

gx(x̄), to the suppression. This contribution should be a

negligible fraction of the total suppression, in order to ensure that the neighbors are not too

conspicuous. Hence,

g′y(ȳ)Wki − Jki ≪ (I − E) ≡
∑

j∈texture

[

g′y(ȳ)Wkj − Jkj

]

. (5.117)

This can be expected to hold when the lateral connections are extensive and reaching a large

enough contextual area, i.e., when Wki ≪
∑

j Wkj and Jki ≪
∑

j Jkj .

Note that there is an inevitable conflict between active fillingin by exciting the cells for a

gap in a contour (equation (5.114)) and preventing leakingout from contour ends (equation

(5.115)). It is not difficult to build a model that achieves active fillingin. However, preventing

the model from leakingout and creating illusory contours that are not perceptually apparent

implies a small range of choices for the connection strengths in J and W.

5.8.2.7 Hallucination prevention, and neural oscillations

To ensure that the model performs the desired computations analyzed in the previous sections,

the mean or fixed points (X̄, Ȳ) should correspond to the actual behavior of the model. Here

we use bold face capitals to represent state vectors. Section 5.8.1 showed that an EI network

exhibits oscillatory responses. It also showed that these oscillations can be exploited to prevent

hallucinations (or spontaneous symmetry breaking) such that the temporally averaged model

responses can correspond to the desired fixed points (X̄, Ȳ). To ensure this correspondence,

we now revisit the stability conditions in the general case, to examine constraints on J and W

over and above the requirements for enhancing contours and texture borders (the inequalities

(5.103), (5.105), (5.114), (5.115), and (5.117)).

To simplify the notation, we denote the deviation (X− X̄,Y − Ȳ) from the fixed point

(X̄, Ȳ) just as (X,Y). A Taylor expansion of equations (5.8) and (5.9) around the fixed point

gives the linear approximation

(

Ẋ

Ẏ

)

=

(

−1 + J −G′
y

G′
x +W −1

)(

X

Y

)

, (5.118)

where J,W,G′
x, andG′

y are matrices with elements Jiθjθ′ = Jiθjθ′g′x(x̄jθ′) for i 6= j, Jiθ,iθ =
Jog

′
x(x̄iθ), Wiθjθ′ = Wiθjθ′g′x(x̄jθ′) for i 6= j, Wiθ,iθ′ = 0, (G′

x)iθjθ′ = δijδθθ′g′x(x̄jθ′),
and (G′

y)iθjθ′ = δijψ(θ − θ′)g′y(ȳjθ′), with ψ(0) = 0. To focus on the output X, eliminate

variable Y to give

Ẍ+ (2− J)Ẋ+
[

G
′
y(G

′
x +W) + 1− J

]

X = 0. (5.119)

As inputs, we consider bars arranged in a translationinvariant fashion in a one or two

dimensional array. For simplicity and approximation, we again omit bars outside the arrays
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and omit the index θ. This simplification and translation symmetry implies (x̄i, ȳi) = (x̄, ȳ),
(G′

y)ij = δijg
′
y(ȳ), (G′

x)ij = δijg
′
x(x̄), (G′

yG
′
x)ij = g′x(x̄)g

′
y(ȳ)δij , and (G′

yW)ij =
g′y(ȳ)Wij . Furthermore, J(i − j) ≡ Jij = Ji+a,j+a and W (i − j) ≡ Wij = Wi+a,j+a

for any a. One can now perform a spatial Fourier transform to obtain

Ẍk + (2− Jk)Ẋk +
{

g′y(ȳ) [g
′
x(x̄) +Wk] + 1− Jk

}

Xk = 0, (5.120)

where Xk is the Fourier component of X for frequency k such that eikn = 1 (note that, here,

we use a nonitalic font for “i” in a mathematical expression, such as eikn, to indicate that

i =
√
−1 denotes an imaginary unit value and that “i” in a mathematical expression is not

an index), where n is the number of spatial positions in visual space (in twodimensional

space, this becomes eikxnx+ikyny = 1), Jk =
∑

a J(a)e
−ika, and Wk =

∑

aW (a)e−ika.

Xk evolves in time t as Xk(t) ∝ eγkt where

γk ≡ −1 + Jk/2± i
√

g′y(g′x +Wk)− J 2
k /4. (5.121)

When Re(γk), the real part of γk, is negative for all k, any deviation X decays to zero, and

hence no hallucination can occur. Otherwise, the mode kwith the largestRe(γk)will dominate

the deviation X(t). If this mode has zero spatial frequency k = 0, then the dominant deviation

is translation invariant and synchronized across space, and hence no spatially varying pattern

can be hallucinated. Thus, the conditions to prevent hallucinations are

Re(γk) < 0 for all k, or Re(γk)|k=0 > Re(γk)|k 6=0 . (5.122)

When Re(γk=0) > 0, the fixed point is not stable, and the homogenous deviation X is

eventually confined by the threshold and saturating nonlinearity. All spatial units xi oscillate

synchronously over time when g′y(g
′
x + W0) − J 2

0 /4 > 0 or when there is no other fixed

point which the system trajectory can approach.

Since J(a) = J(−a) ≥ 0 and W (a) = W (−a) ≥ 0, Jk and Wk are both real. They are

largest, as J0 and W0, respectively, for the zero frequency k = 0 mode. Many simple forms

of J andW make Jk and Wk decay with k. For example, J(a) ∝ e−a2/2 gives Jk ∝ e−k2/2.

However, the dominant mode is determined by the value of Re(γk) and may be associated

with k 6= 0. In principle, given a model interaction J and W and a translationinvariant input,

whether it is arranged on a Manhattan grid or some other grid,Re(γk) should be evaluated for

all k to ensure appropriate behavior of the model (i.e., that inequalities (5.122) are satisfied).

In practice, only a finite set of k modes needs to be examined, this is because there is a finite

range of connections J and W, spatial locations in the image grid is discrete, and there is a

rotational symmetry on this image grid.

Let us look at some examples using the bowtie connections shown in Fig. 5.15 B. For an

isolated contour input like that in Fig. 5.60 B, Wij = 0. Then,

Re(γk) = Re
(

−1 + Jk/2± i
√

g′yg′x − J 2
k /4

)

increases with Jk, whose maximum occurs at the translationinvariant mode k = 0, and

J0 =
∑

j Jij . Then no hallucination can happen, though synchronous oscillations can occur

when enough excitatory connections J link the units involved. For onedimensional non

contour inputs like Fig. 5.60 CE, Jij = 0 for i 6= j; thus Jk = Jii, and γk = −1 + Jii/2 ±
i
√

g′y(g′x +Wk)− J2ii/4. Hence Re(γk) < −1 + Jii = −1 + Jog
′
x(x̄) < 0 for all k, since

−1 + Jog
′
x(x̄) < 0 is always satisfied (otherwise an isolated principal unit x, which follows
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equation ẋ = −x+Jxgx(x)+I , is not well behaved). Hence there should be no hallucination

or oscillation.

For twodimensional texture inputs, frequency k = (kx, ky) is a wave vector perpendicular

to the peaks and troughs of the waves. When k = (kx, 0) is in the horizontal direction,

Jk = g′(x̄)
∑

a J
′
ae

−ikxa and Wk = g′(x̄)
∑

aW
′
ae

−ikxa, where J ′
a andW ′

a are the effective

connections between two texture columns as defined in equation (5.104) (except for J ′
0 =

Jo +
∑

j,mj=mi
Jij). Hence, the texture can be analyzed as a onedimensional array as

above, substituting bartobar connections with columntocolumn connections. However,

the columntocolumn connections J ′
a and W ′

a are stronger, have a more complex Fourier

spectrum (Jk,Wk), and depend on the orientation θ1 of the texture bars. Again we use the

bowtie connection pattern as an example. When θ1 = 90o (horizontal bars), W ′
b is weak

between columns, i.e., W ′
b ≈ δb0W

′
0 and Wk ≈ W0. Then, Re(γk) is largest when Jk is,

at kx = 0—a translationinvariant mode. Hence, illusory saliency waves (peaks and troughs)

perpendicular to the texture bars are unlikely. Consider, however, vertical texture bars for

the horizontal wave vector k = (kx, 0). The bowtie connection gives nontrivial J ′
b and W ′

b

between vertical columns, or nontrivial dependencies of Jk and Wk on k. The dominant

mode with the largest Re(γk) is not guaranteed to be homogenous, and J and W must be

designed carefully, or screened, to prevent hallucination.

Given a nonhallucinating system (i.e., when spontaneous symmetry breaking is pre

vented), and under simple or translationinvariant inputs, neural oscillations, if they occur,

can only be homogenous, i.e., synchronous and identical among the units involved, with

k = 0. Since γ0 = −1 + J0/2± i
√

g′y(g′x +W0)− J 2
0 /4, and Jk =

∑

j Jij for k = 0, the

tendency to oscillate increases with increasing excitatorytoexcitatory links Jij between units

involved. Hence, this tendency is likely to be higher for twodimensional texture inputs than

for onedimensional array inputs, and it is lowest for a single small bar input. This may explain

why neural oscillations are observed in some but not all physiological experiments. Under the

bowtie connections, a long contour is more likely to induce oscillations than a onedimension

input that does not form a contour (Li 2001). These predictions can be physiologically tested.

Indeed, physiologically, grating stimuli are more likely to induce oscillations than bar stimuli

(Molotchnikoff, Shumikhina and Moisan 1996).

The oscillation frequency for the model is
√

g′y(g′x +W0)− J 2
0 /4 in the linear approxi

mation for a homogenous onedimensional or twodimensional input. It increases with the total

connection W0 from the pyramidal cells to the interneurons and decreases with the total con

nection J0 between pyramidal cells (even when considering nonlinearity when Re(γ0) > 0).

Adjusting these connection strengths can make the oscillation frequencies exhibited by the

model resemble those observed physiologically, e.g., gamma oscillations.

5.8.3 Extensions and generalizations

Understanding neural circuit dynamics is essential to reveal the computational potential and

limitations, and it has allowed an appropriate design of the V1 model (Li 1998a, Li 1999b).

The analysis techniques presented here can be applied to other recurrent networks whose

neural connections are translationally symmetric.

Many quantitatively different models that share the same qualitative architecture can

satisfy the design principles described. My V1 model is one such, and interested readers

can explore further comparisons between the behavior of that model and experimental data.

Although the behavior of this model agrees reasonably well with experimental data, there

must be better and quantitatively different models. In particular, connection patterns which
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are not bowtie like (unlike those in my model) could be more computationally flexible and

could thus account for additional experimental data.

Additional or different computational goals might call for a more complex or different

design; this might even be necessary to capture aspects of V1 that we have not yet modeled. For

example, our model lacks an endstopping mechanism for V1 neurons. Such a mechanism

could highlight the ends of, or gaps in, a contour. By contrast, responses in our model to

these features are reduced (relative to the rest of the contour) due to less contour facilitation

(Li 1998a). Highlighting line ends can be desirable, especially for high input contrasts, when

the gaps are clearly not due to input noise, since both the gaps and ends of contours can

be behaviorally meaningful. Without endstopping, our model is fundamentally limited in

performing these computations. Our model also does not generate subjective contours like

those evident in the Kanizsa triangle (see Fig. 6.6 B) or the Ehrenstein illusion (which could

enable one to see a circle whose contour connects the interior line ends of bars in Fig. 5.60 E).

However, these perceptions of illusory contours should be more related to decoding and,

hence, not the same as saliency. Evidence (von der Heydt et al. 1984) suggests that area V2,

rather than V1, is more likely to be responsible for these subjective contours; they are the

focus of other models (Grossberg and Mingolla 1985, Grossberg and Raizada 2000).

5.8.3.1 Generalization of the model to other feature dimensions such as
scale and color

The V1 model presented in this chapter omits for simplicity other input features such as color,

scale, motion direction, eye of origin, and disparity. However, the same principle to detect

and highlight deviations from input translation invariance should apply when these other

dimensions are included. For example, it is straightforward to add at each spatial location i
additional model neurons tuned to different colors or to different conjunctions of color and ori

entation. Isocolor suppression can be implemented analogously to isoorientation suppression

by having nearby pyramidal neurons tuned to the same or similar colors (or colororientation

conjunctions) suppress each other by disynaptic suppression. Such an augmented V1 model

(Li 2002, Zhaoping and Snowden 2006) can explain feature popout by color, as expected,

and can also explain interactions between color and orientation in texture segmentation.

It may also be desirable to generalize the notion of “translation invariance” to the case

in which the input is not homogenous in the image plane but instead is generated from a

homogenous flattextured surface slanted in depth (Li 1999b, Li 2001). If so, V1 outputs to

such images should be homogenous, preventing any visual location from being significantly

more salient than any other. This would require multiscale image representations and recur

rent interactions between cells tuned to different scales. More specifically, model neurons

should be tuned to both orientation and scale; therefore, isofeature suppression should be

implemented between neurons tuned to the same scale, to make isoscale suppression, and

extended appropriately to between neurons tuned to neighboring scales.

5.9 Appendix: parameters in the V1 model

The following parameters have been used in equations (5.8 ) and (5.9) of the V1 model since its

initial publication (Li 1998a) in 1998. They have been applied to representations of the visual

space based on both hexagonal and Manhattan grids. The K = 12 preferred orientations of

the model neurons are θ = m · π/K for m = 0, 1, 2, ...,K − 1. The units of model time are

the membrane time constant of the excitatory neurons, and αx = αy = 1.
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gx(x) =







0 if x < Tx = 1,

(x− Tx) if Tx ≤ x ≤ Tx,

1 if x > Tx + 1;

(5.123)

and (5.124)

gy(y) =







0 if y < 0,

g1y if 0 ≤ y ≤ Ly ,

g1Ly + g2(y − Ly) if 0 < Ly ≤ y,

in which Tx = 1, Ly = 1.2, g1 = 0.21, and g2 = 2.5. The function ψ(θ) = 0 except when

|θ| = 0, π/K, or 2π/K, for whichψ(θ) = 1, 0.8, or 0.7, respectively; Ic = 1+Ic,control, with

Ic,control = 0 for all simulations in this book. Li (1998a) discusses the case of Ic,control 6= 0
to model topdown feedback to V1; Io = 0.85+ Inormalization. For each excitatory neuron iθ,

Inormalization = −2.0

[

∑

j∈Si

∑

θ′ gx(xjθ′)
∑

j∈Si
1

]2

,

where Si is a neighborhood of all grid points j no more than two grid points away from i
along each of the axes (horizontal and vertical axes for the Manhattan grid, and hexagonal

axes for the hexagonal grid). Noise input, Inoise, is random, with an average temporal width

of 0.1 and an average height of 0.1, and is independent across different neurons.

d
iθ θ1

jθ′

θ2

|θ1| ≤ |θ2| ≤ π/2

The value Jo = 0.8. Connections Jiθ,jθ′ and

Wiθ,jθ′ are determined as follows. Let ∆θ ≡
min(a, π − a) with a ≡ |θ − θ′| < π. Let the

connecting line linking the centers of the two ele

ments iθ and jθ′ have lengthd in grid units, with θ1
and θ2 being the angles between the elements and

the connecting line, such that |θ1| ≤ |θ2| ≤ π/2,

with θ1,2 being positive or negative, respectively, when the element bar rotates clockwise

or anticlockwise toward the connecting line through an angle of no more than π/2. Let

β ≡ 2|θ1|+ 2 sin(|θ1 + θ2|). Then Jiθ,jθ′ is zero except when the following three conditions

are satisfied simultaneously: (1) d > 0, (2) d ≤ 10, and (3) either β < π/2.69, or β < π/1.1
while |θ2| < π/5.9. Given that these conditions are satisfied,

Jiθ,jθ′ = 0.126 · exp
[

−(β/d)2 − 2(β/d)7 − d2/90
]

.

Meanwhile,Wiθ,jθ′ = 0 if any of the following expressions holds: d = 0, [d/ cos(β/4)] ≥ 10,

β < π/1.1, |θ1| ≤ π/11.999, ∆θ ≥ π/3; otherwise,

Wiθ,jθ′ = 0.141 ·
{

1− exp
[

−0.4(β/d)1.5
]}

exp
{

− [∆θ/(π/4)]
1.5
}

.

In equations (5.8) and (5.9), the external visual input value Iiθ to xiθ is derived from the

input contrast Îiγ of input bars at location i and oriented at γ which are within the orientation

tuning width of neuron iθ. In particular, Îiγ contributes Îiγφ(θ−γ) to Iiθ, as shown in equation

(5.10). The function φ(x) = exp[−|x|/(π/8)] for |x| < π/6, and φ(x) = 0 otherwise.


