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Abstract

It has been proposed that V1 creates a bottom-up saliency map, where saliency
of any location increases with the firing rate of the most active V1 output cell re-
sponding to it, regardless the feature selectivity of the cell. Thus, a red vertical bar
may have its saliency signalled by a cell tuned to red color, or one tuned to verti-
cal orientation, whichever cell is the most active. This theory predicts interference
between color and orientation features in texture segmentation tasks where bottom-
up processes are significant. The theory not only explains existing data, but also
provides a prediction. A subsequent psychophysical test confirmed the prediction
by showing that segmentation of textures of oriented bars became more difficult as
the colors of the bars were randomly drawn from more color categories.
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1 Introduction

A saliency map aids the selection of visual inputs for further processing given

limited computational resources. To better understand the selection, we sepa-
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rate bottom-up from top-down mechanisms (Wolfe, Cave, and Franzel, 1989,

Cave, 1999), and consider a saliency map of the visual field constructed by

bottom-up mechanisms only, such that a location with a higher scalar value

in this map is more likely to attract attention and be further processed. It

has been proposed (Li 1999a, Li 2002) that the primary visual cortex creates

a saliency map from direct visual input defined mainly by contrast, and that

the saliency of a visual location increases with the firing rate of the most

responsive V1 output cell to that location, regardless of the feature tuning

of the cell. The primary visual cortex receives many top-down inputs from

higher visual areas. Hence, the proposed bottom-up saliency map in V1 is an

idealization when the top-down influences are ineffective, such as very shortly

after visual presentation onset and without specific top-down knowledge, or

when the animal is under anesthesia. The condition of “shortly after stimulus

onset” should not be viewed as a severe restriction, since, computationally,

bottom-up selections must be fast, and, should be less necessary after the ini-

tial selection or long after the corresponding stimulus onset. Furthermore, the

saliency value should be such that it is regardless of the visual features like

color and orientation (Treisman and Gelade 1980) such that, e.g., the saliency

of a red dot can be compared with that of a vertical moving bar (Nothdurft

2000). This desirable property may have led to a common belief, as implicitly

or explicitly expressed in previous works (Treisman and Gelade 1980, Wolfe

et al 1989, Koch and Ullman 1985, Itti and Koch 2000) on saliency maps,

that saliency must be signalled by cells untuned to features, such as cells in

parietal cortex (Gottlieb et al 1998, Itti and Koch 2001) and that the saliency

map must be outside V1 whose cells are feature tuned. However, just like the

purchasing power of an UK sterling is regardless of the holder’s nationality or

gender, the firing rate of V1 cells could be an universal currency for saliency

with or without simultaneously decoding the input features from them. Thus,

in principle, the read out from the bottom-up saliency signal could be feature-

blind.

Indeed, V1 sends outputs directly to superior colliculus which is involved in

generating saccades (Shipp 2004) and could be viewed as reading out the V1

saliency map. It is recently shown that electrical micro-stimulation of neurons

in V1, with currents as low as 2 µA, can evoke saccades by monkeys towards

the receptive field locations of the stimulated cells (Tehovnik, Slocum and

Carvey 2003). Meanwhile, V1.s role for bottom up saliency does not preclude

it from serving other roles such as contributing to object recognition.
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Physiologically, the response of a V1 cell to inputs within its classical receptive

field (CRF) can be influenced by contextual inputs near but outside the CRF,

due to the long but finite range intra-cortical interactions linking nearby cells

(Knierim and van Essen 1992, Sillito et al 1995, Kapadia et al 1995). Hence,

by our proposal that the V1 response dictates saliency, the saliency of a lo-

cation is determined by both the input strength (or contrast) at that location

and by its context, as expected (Nothdurft 2000). For instance, a vertical bar

will pop out of a background of horizontal bars, but not from a background

of vertical bars. This is because the evoked response to the vertical bar (in

a cell tuned to vertical orientation) would be much higher than responses

to the background horizontal bars (in cells tuned to horizontal orientation),

making the vertical bar most salient in the input image. The contextual in-

fluence processes most responsible in this case is iso-orientation suppression

(Knierim and van Essen 1992), the observation that a cell’s response to the

optimally oriented bar within its CRF is suppressed by up to 80% when the

bar is surrounded by bars of the same orientation outside the CRF. Cells

tuned to the horizontal orientation responding to the horizontal bars in the

background experience iso-orientation suppression, whereas the cell tuned to

vertical bar responding to the single vertical bar does not (Li 1999a,b, Sillito

et al 1995). Hence, iso-feature suppression is the neural basis for pop out.

Long range connections indeed tend to link cells tuned to similar features (Li

and Li 1994). In particular, iso-color suppression has also been physiologically

observed (Wachtler, Sejnowski, and Albright 2003), and, from the analysis

above, should be responsible for color pop out, say a red among greens.

Physiologically, a visual location containing one or more (overlapping) visual

items can evoke responses from many V1 cells whose CRFs overlap. For in-

stance, a small vertical red bar may excite cells tuned to vertical orientation,

or cells tuned to red but untuned to orientation, or cells whose optimal orien-

tation is 5 degrees from vertical and whose tuning width is 15o, etc. According

to our theory (Li 2002), the saliency of a location is determined by the firing

rate of the most responsive V1 output cell to it, regardless of the cell’s optimal

feature value. Hence, the saliency of the red vertical bar are likely signalled by

a cell tuned to vertical, or a cell tuned to red, but less likely by a cell tuned

to 10 degrees from vertical. (For simplicity of our argument without loss of

generality, we ignore cells simultaneously or conjunctively tuned to both color

and orientation in most of this paper. We will show later that including the

conjunction cells does not change our main conclusions qualitatively.) Which
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cell will be the most active to signal the saliency of this red vertical bar will

depend on the contextual stimuli of this bar. For instance, if this red vertical

bar is surrounded by a background of green vertical bars, the bar will pop out

psychophysically due to its unique color. Physiologically, this bar would excite

a cell tuned to red color much more than it does to a cell tuned to vertical

orientation at the same CRF location, assuming that the activity levels are

comparable in color tuned and orientation tuned cells responding to the back-

ground bars (otherwise, when the color signals are too weak, color pop-out

ceases anyway). This is because the responding cell tuned to vertical orien-

tation would experience iso-orientation suppression (due to a background of

vertical bars) while the cell tuned to red color would not experience iso-color

suppression (the background has only green but not red bars). Analogously,

a red vertical bar in a background of red horizontal bars will pop out by its

unique orientation, and would have its saliency signalled by a cell tuned to

vertical orientation.

In this paper, we will apply our theory of the V1 saliency map to under-

stand and predict the phenomena of color-orientation interference in texture

segmentation. It is common knowledge that visual search for a target bar of

unique orientation, i.e., orientation singleton, oriented at 45o among 135o dis-

tractor bars is easy, so is the segmentation between two textures of uniformly

oriented bars at 45o and 135o respectively. Snowden (1998) observed that the

texture segmentation became difficult when each stimulus bar was randomly

assigned a color from two choices (say red and green), whereas the orientation

singleton search remained easy under the same color randomization (see Fig.

(2)A-D). Note that in both tasks only orientation feature should matter for

the task decision. Nevertheless, color feature seems to interfere in the perfor-

mance. (Nothdurft (1997) also observed interference of luminance variations

on orientation based texture segmentation.) Although the tasks, often per-

formed under brief visual presentation and/or under time pressure, require

final decisions based on the orientation feature, they also require an initial

and presumably dominant task component, namely selection (of the orienta-

tion singleton or border) by bottom-up saliency, which is feature blind. The

observed color interference is comprehensible in our framework by noting the

changes in the saliencies of the orientation singleton or the texture border

under the color randomization. It essentially arises because (1) saliency of a

colored bar may be signalled by a color tuned cell or an orientation tuned cell

depending on the stimulus context, and (2) the saliency of one colored bar
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signalled by a color tuned cell can be compared with the saliency of another

signalled by an orientation tuned cell to judge which bar is more salient to

compete for visual selection. In this paper, a V1 model is used to implement

the saliency map theory to account for such color interference. Furthermore,

we show a theoretical prediction that color interference in orientation texture

segmentation should increase with more color categories in the color random-

ization (Fig. (2)B,D, F). A psychophysical experiment is then carried out to

test and confirm the prediction.

There have been previous models of saliency maps, in particular, those by

Koch and Ullman (1985) and by Itti and Koch (2000). These works differ from

our theory (and model) in the following ways. First, previous works either do

not specify the cortical area for the saliency map, or presume explicitly or

implicitly that the saliency map is outside V1. Whereas our theory explicitly

states V1 as the locus of the map. Second, the previous works require separate

feature maps which extract local spatial discontinuities in the features such as

color and orientation. So for instance, a color feature map can help to extract

the color pop out features. These separate feature maps are then combined by

summation or weighted summation of their outputs to a master saliency map

so that the saliency of a visual location is encoded irrespective of the particular

feature which is responsible for this location to be salient. In contrast, our the-

ory (to signal saliency by the activity of the most responsive cell to a visual

location regardless of its feature tunings) does not require separate feature

maps, nor any subsequent combinations of them. Indeed many V1 cells are

known to be tuned simultaneously to different features such as orientation and

motion direction, they could also signal saliency and it would be impossible to

have separate feature maps unless cells tuned to the conjunctive feature form

yet another, e.g., orientation-motion conjunction feature map — in which case

the arguments for the single feature maps become weaker. Furthermore, not

requiring combinations of any maps gets rid of a computational complexity.

After all, physiologically, numerous V1 cells respond to a single visual item;

many overlapping but non-identical and unequal-sized receptive fields cover a

single visual location. It is computationally complex and expensive, perhaps

too complex and expensive for the initial bottom up selection purpose before

object recognition, to decide which cells should contribute in which way to

the saliency of a visual location. To select a location to attend to, it is com-

putationally cheap (perhaps cheapest) to simply attend to the receptive field

location of the most responsive output cell in V1, no matter which features the
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cell is tuned to and which other cells respond (though less vigorously) to the

same visual location. In this sense, saliency signals in V1 are represented by a

field of neural activity levels from all V1 output cells, from which the location

of the highest single cell activity is selected for further visual processing.

If each V1 cell is tuned to no more than one feature dimension, and one cell’s

response to one feature value does not affect another’s response to another

feature, then V1 may be viewed as composed of separate cell groups, each

is defined by their common preferred feature value and forms a single fea-

ture map. In this case, our proposed selection process may be viewed as a

maximum operation over both feature maps and spatial locations. This is in

contrast to the (weighted) summation operation over feature maps and maxi-

mum operation over spatial locations in traditional saliency models (Treisman

and Gelade 1980, Koch and Ullman 1985, Itti and Koch 2000, Wolfe et al 1989,

Muller et al 1995, Krummenacher et al 2001). Note that the selection process

of maximum operation over both feature maps and spatial locations means a

maximum operation over all cells, thereby rendering the feature maps irrele-

vant for bottom-up saliency computation even if they exist. This also means

that, it is not necessary to separately represent or replicate (in V1 or elsewhere)

the maximum response over feature maps or cell groups for a given visual lo-

cation. (Within V1, it is doubtful that separate feature maps exist since there

is interaction between cells responding to different features via mechanisms

of feature unspecific surround suppression between nearby neurons regardless

of their feature preferences (Heeger 1992) and lateral connections linking cells

tuned to non-identical feature values (Knierim and van Essen 1992, Kapadia

et al 1995). However, for simplicity of presentation (as used sometimes in this

paper), non-interaction between V1 responses to different feature values or

feature dimensions can be viewed as a crude approximation.) We will discuss

in the last section how our experimental findings relate to different models

of saliency maps. In particular, we will show that, if the previous models of

saliency maps should be adopted, then our psychophysical observations will

constrain the combination rules of the separate feature maps into a master

saliency map.

In the next section, we will simulate the saliency map using a physiologically

and anatomically based, and computationally designed, V1 model. This sim-

ulation is a necessary substitution of physiological observations since current

experimental techniques can not yet provide sufficient information on a real

V1 saliency map which requires sufficiently dense or high spatial resolution
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recordings of V1 responses covering whole scenes of visual search or segmen-

tation stimulus patterns. In section 3, we apply the model saliency map to the

stimulus with both color and orientation features, accounting for existing data

on color-orientation interference and providing testable predictions. In section

4, we describe the psychophysical experiment testing the prediction and the

confirming results. We end with summary and discussions in section 5.

2 Implementing the saliency map by a V1 model

A V1 model (Li 1999b, Li 2000), based on physiological and anatomical data

(Rockland and Lund 1983, Gilbert and Wiesel 1983, Hirsch and Gilbert 1992,

Fitzpatrick 1996, Knierim and van Essen 1992, Kapadia et al 1995, Sillito et

al 1995, Nothdurft, Gallant and van Essen 2000), has been used to validate

the saliency map theory. For clarity, we start by describing a model (Li 1999b,

Li 2000) which includes only cells tuned to orientation. The model (Fig. 1A)

focuses on layer 2-3 of V1 where there is prevalent intra-cortical connections

that are responsible for the contextual influences to determine the saliency

map. Each model pyramidal cell receives direct visual inputs within its classi-

cal receptive field (CRF). CRFs are distributed in space. Each spatial location

has twelve model pyramidal cells with overlapping CRFs, roughly modeling

a hypercolumn. Each pyramidal cell is tuned to one of the twelve different

orientations spanning 180o, with a half tuning width of roughly 15o. Local

inhibitory interneurons form reciprocal interactions with the local excitatory

pyramidal cells. Longer range interactions between pyramidal cells are medi-

ated by the horizontal collaterals from the pyramidal cells (Rockland and Lund

1983, Gilbert and Wiesel 1983), reaching a distance of about a few CRF sizes in

the model (or a few millimeters in the real cortex). These connections enable a

pyramidal model cell to excite another mono-synaptically, or inhibit another

di-synaptically via inhibitory interneurons. They link cells tuned to similar

(not necessarily identical, see Fig. (1C)) orientations (Fitzpatrick 1996), and

tend to be mono-synaptic excitatory when the two CRFs are colinear or align

to potentially form parts of a smooth curve, and di-synaptic inhibitory oth-

erwise (Fig. (1C)). Orientation unspecific local surround suppression is also

implemented phenomenologically as local activity normalization (Nothdurft,

Gallant, and van Essen 1999, Heeger 1992). The response to each bar depends

on both the input contrast and the contextual stimuli via the lateral connec-

tions. The model produces the usual contextual influences observed physio-
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A: V1 model, its input, and outputs
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C: Lateral connection schematics.
Thick solid bar: (oriented) CRF of
the pre-synaptic pyramidal. Thin
solid (dashed) bars: post-synaptic
pyramidal CRFs via mono-synaptic
excitation (di-synaptic inhibition)

Fig. 1. The V1 model. A: A principal pyramidal cell receives direct visual contrast
input from a bar within its CRF, comparable in size with the bars in the two input
images. Pyramidal cells interact reciprocally with the local interneurons, and in-
teract mono-synaptic-excitatorily and di-synaptic-inhibitorily with other pyramidal
cells tuned to similar orientations within a distance of a few CRFs (see C). Each
input/output/saliency map image plotted is only a small part of a large extended
input/output/saliency map image. The thickness of the bars are plotted as propor-
tional to the input/output strengths of bars for visualization (as in other figures).
For example, all input bars in the two input images have the same input contrast,
but evoke different V1 response levels (from the pyramidal cells) due to input con-
text via intracortical interactions in the model. In the saliency maps, the radius of a
disk is plotted proportionally to the firing rate of the most active cell responding to
that visual location. B: The histogram of all non-zero model responses (regardless
of the preferred orientation of the cells) to the right input image (cross in bars) in
A. The model responses are always within range [0,1]. C: The schematics of the
lateral connection pattern between pyramidal cells.

logically. In particular, a cell’s response to an optimally oriented bar within

its CRF is suppressed if the CRF is surrounded by contextual bars, with the

strongest suppression from surrounding bars oriented parallelly to the central

bar within the cell’s CRF (termed iso-orientation suppression) and weakest

suppression from surrounding bars oriented orthogonally to the central bar

(Knierim and vanEssen 1992, Sillito et al 1995, Nothdurft et al 1999). The
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cell’s response can be enhanced when contextual bars align with the central

bar to form a smooth contour — colinear facilitation (Kapadia et al 1995).

The model parameters are designed (Li 2001) to be consistent with the known

physiology and anatomical data, and to avoid generating spontaneous or hal-

lucinating model outputs not generated by inputs. All the model details and

parameters (including activity normalization procedures, lateral connection

strengths, etc) of this model are available in (Li 1999b) for interested readers

to reproduce the results.

When the model is presented with visual stimuli resembling those in visual

search and texture segmentation experiments, the strongest responses are lo-

cated at or near the pop out targets or texture boundaries, as observed phys-

iologically (Knierim and van Essen 1992, Nothdurft et al 1999, 2000). In the

example in Fig (1A) on the right, the cross pops out among the bars since its

horizontal bar, the only one that does not experience any iso-orientation sup-

pression from other (vertical) bars in the image, evokes the highest response

in the image. Hence, iso-feature suppression is the neural basis for the ease

of feature search, when the target has a feature (horizontal orientation) not

present in the distractors (Treisman and Gelade 1980). Being the maximum

response at its location, the response to the horizontal bar signals the saliency

of the location of the cross. If we pick the dominant response to each visual

location regardless of the cell’s preferred feature, a histogram of the non-zero

dominant responses will show the response outlier to the horizontal bar away

from the population responses to the background (Fig. (1B)). The degree to

which this response as an outlier could be quantitatively measured by a z score

(Li 1999a) and phenomenologically linked to the perceptual saliency. Mean-

while, a sufficient orientation contrast at the border between two textures of

uniformly oriented bars (Fig. (1A) left) can pop out because a border bar,

having half as many iso-oriented contextual neighbors as those of bars away

from the border, experiences reduced iso-orientation suppression and evokes

relatively higher responses. This V1 model has been applied to many other

visual stimulus patterns similar to those used in visual search and segmenta-

tion tasks, giving results consistent with human visual behavior (Li 1999a,b,

2000), such as the quantitative dependence of the strength of orientation pop-

out on the quantitative orientation contrast in the stimulus. It elucidates how

the just-noticable-difference for orientation pop-out relates to the structure

of the lateral connections. Although all kinds of contextual influences, includ-

ing iso-feature suppression, colinear facilitation, and general feature unspecific
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surround suppression, contribute to the final V1 outputs and the saliency map

(Li 1999a,b, 2000), iso-feature suppression is usually the dominant one, and

is the most responsible and relevant for the stimulus examples in this paper.

Hence, for simplicity of presentation in this paper, we sometimes estimate a

cell’s response by the number of iso-feature contextual neighbors for the opti-

mal feature value and dimension of the cell. However, no such approximation

is used in the actual model simulation or the figures, where a cell’s response

is quantitatively influenced by specific spatial configurations and quantitative

feature values of stimulus at and around the CRF and by the level of the local

neural activities.

3 Extending the model to the color-orientation feature spaces

Fig. (2, see next page) caption: (A-G): Colour interference in orientation fea-
ture based visual search or texture segmentation tasks as demonstrated in
the stimuli in the left column, and simulated by the V1 model in the other
columns. Each stimulus/response pattern is a small portion of a spatially ex-
tended pattern. Second column: the model responses from color tuned cells
and from orientation tuned cells. The responses from the color tuned cells are
plotted as proportional to the sizes of the colored disks of the corresponding
colors. The same ratios, bar thickness:response and disk radius:response, are
used in all plots in this column, and they are such that the response levels of
the orientation tuned and color tuned cells to the background bars are similar
in A. In the saliency maps (third column), the color of a dot is the preferred
color of the cell signalling the saliency. If it is black, an orientation tuned
cell signals the saliency. The radius:response ratio is the same as that used in
the second column. Fourth and fifth columns: the model outputs and saliency
maps (using the same size:response ratios as in previous columns) when the
model includes cells tuned to both color and orientation, i.e., the conjunction
cells. The half-length of the minor axis of the colored ellipses is proportional
to the responses from the conjunction cells tuned to the corresponding color
and orientation, and the ratio (half) minor axis:response is the same as the
radius:response for color tuned cells. Note that color disks, which indicate the
responses from color tuned cells, are invisible when the superposing ellipses are
larger, indicating stronger responses from the conjunction cells. In the saliency
maps (fifth column), when a bar’s saliency is signalled by a conjunction cell,
the color of the disk is dark-red, dark-blue, or dark-green to correspond to the
color tunings of the conjunction cells and distinguish from the saliency disks
(lighter colored) signalled by the color tuned cells. Note that color random-
ization increases mainly the responses in color but not the orientation tuned
cells. Note that the target or border saliency is the highest in A, B, C, and E
but not in D, F, and G, indicating significant color interference in D, F, and
G. Note that this conclusion holds with or without the conjunction cells in
the model.
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Stimulus Model output Saliency Map Model output

For model including conjunctive cells

Saliency map

A: Orientation visual search task in uniform color

B: Orientation texture segmentation in uniform color

C: Orientation visual search task in two random colors

D: Orientation texture segmentation in two random colors

E: Orientation visual search task in three random colors

F: Orientation texture segmentation in three random colors

G: Visual search task with orientation and color singleton

Fig. 2. , see the previous page for caption.
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To account for the color-orientation interference, the original V1 model was

augmented by adding the color feature dimension without changing any pa-

rameters in the original model. At each hypercolumn location, three model cell

units, one each tuned to red, green, and blue colors respectively, are added

to the set of orientation tuned model units. They have the same pyramidal-

interneuron interactions as the orientation tuned units, thus the same input

response properties. In this simplified model, a cell is either tuned to color

or to orientation but not to both. The mutual suppressive interactions be-

tween neighboring units tuned to the same color, i.e., iso-color suppression,

as observed physiologically (Wachtler et al 2003), is implemented analogously

to the iso-orientation suppression between the orientation tuned cells, except

that, since color tuned cells are untuned to orientation, iso-color suppression

depends only on the magnitude but not the direction of the displacement be-

tween the pre- and post-synaptic cells. Like the orientation tuned cells, each

color unit is subject to the same local activity normalization (see Li 1999b for

details), thus the feature unspecific local suppression from neighboring (color

or orientation tuned) cells. Besides the activity normalization which intro-

duces interactions between cells tuned to different colors or different feature

dimensions, we make the simplest assumption that no additional interaction

exist between cells tuned to different colors or different dimensions. For the

ease of analysis and discussion in this paper, without loss of generality, each

color unit is modelled as tuned to a primary color feature of either red, or

green, or blue, rather than to the opponent color features (such as red-green

opponency) or other hues in real V1 (Gegenfurtner 2003). (Broad tuning to

the wavelength of light enables the model cells to respond to non-primary

color as well.)

A colored bar evokes response O from an orientation tuned cell and response

C from a color tuned cell, in the same hypercolumn, giving a saliency sig-

nal Max(O, C), the maximum of the responses. Let a neuron’s response to

a bar of preferred orientation be Osingle when the bar is an orientation sin-

gleton, and Oground when the bar is one of the elements in an iso-orientation

texture. Let Csingle and Cground be the analogous responses from color tuned

cells to a color singleton and a color element in a uniform color texture. Iso-

feature suppression means Osingle > Oground and Csingle > Cground. In typ-

ical stimulus situations with colored bars, color singleton and orientation

singleton pop out, implying that both Osingle and Csingle are significantly

larger than both Oground and Cground. For illustration and in our simula-
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tions in Figs. (2) and (3), we use examples in which Osingle ≈ Csingle and

Oground ≈ Cground, meaning that the color and orientation dimensions have

comparable input stimulus strength (for all bars in the figures) and compara-

ble intra-cortical interaction strengths. With uniform color stimuli as in Fig.

(2)AB, all bars evoke suppressed responses Cground from color tuned cells, while

only the background bars evoke suppressed responses Oground from orientation

tuned cells. The orientation singleton and texture border bars, with no or

fewer iso-orientation neighbors, evoke higher responses Osingle and Oborder re-

spectively, with Osingle > Oborder(> Oground) since the singleton is the only

one with no iso-orientation neighbors. They pop out when their saliencies,

Max(Osingle, Cground) and Max(Oborder, Cground) respectively, are significantly

higher than the background saliency Max(Oground, Cground). This is the case

when Cground ∼ Oground or when Cground is significantly weaker than Osingle

and Oborder. Note that the singleton is always more salient than the texture

border as long as Cground < Osingle. When each bar randomly takes one of

the two colors as in Fig. (2)CD, the number of iso-color neighbors of any

bar is halved on average. Thus the color tuned cell gives a less suppressed

response Crandom > Cground. If Crandom > Oground (which happens in stimu-

lus of sufficient color strengths and contrasts), the background saliency signal

will increase from Max(Oground, Cground) to Max(Oground, Crandom) = Crandom.

The texture border, less salient than the singleton, is more likely submerged

by the background saliency to weaken its pop-out strength, and explaining

the observations by Snowden (1998). In particular, Crandom ∼ Oborder when

Osingle ≈ Csingle and Oground ≈ Cground, since on average a border bar has

as many iso-orientation neighbors as a colored bar has iso-color neighbors.

Thus the responses Oborder to the border from the orientation tuned cells are

submerged by the background responses Crandom from the color tuned cells.

Meanwhile, the orientation singleton pop out is not impaired since its evoked

response Osingle remains the most vigorous against the less-suppressed back-

ground responses Crandom, and the excited cell is the only one tuned to either

feature dimension to escape iso-feature suppressions. See Fig. (2C). Therefore,

assuming that object saliency rather than subject scrutiny (for feature values)

plays a dominant role in such tasks (often performed under brief visual presen-

tations and under time pressure), the essential reason for the color interference

is the following: saliency is regardless of the feature dimension(s) of cells sig-

nalling it — hence the activity of a color tuned cell signalling saliency of one

bar is compared with the activity of an orientation tuned cell signaling saliency

of another to see which bar is more salient for visual selection. Increased color
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responses from the background make the orientation responses to border no

longer response outliers (i.e., the z score is lower). In other words: being re-

gardless of features, saliency allows color feature to interfere in an orientation

feature based task.

From the analysis above, one can arrive at another observation. Suppose that

only one distractor bar in an orientation singleton search stimulus has a dif-

ferent color from other bars (Fig. (2)G), then, this color (distractor) singleton

also pops out when its evoked color response Csingle is significantly higher than

the background responses Oground and Cground. When Csingle ∼ Osingle, the ori-

entation singleton target and the color singleton distractor have comparable

saliencies Max(Osingle, Cground) = Osingle and Max(Oground, Csingle) = Csingle

for visual selection. This impairs the visual search task for the orientation

singleton, as has indeed been observed (Pashler 1988, Theeuwes and Burger

1998).

We can also predict phenomena that have not been previously observed. Sup-

pose that the number of color categories available to randomly assign to each

stimulus bar increases from two to three, the texture segmentation task should

become even more difficult. This is because each bar now has on average only

1/3 of its neighbors of the same color, further reducing the iso-color suppres-

sion on the color tuned cells. This gives further elevated response Crandom and

background saliency, see Fig. (2)EF. Next section describes a psychophysics

experiment to test this prediction.

Our simple assumption so far of no conjunction cells (i.e., cells tuned conjunc-

tively to color and orientation) agrees more with some physiological data (Liv-

ingstone and Hubel 1984, Ts’o and Gilbert 1988, Conway 2001) and less with

other data (Leventhal et al 1995, Gegenfurtner et al 1996, Johnson et al 2001,

Friedman et al 2003, Hegde and Felleman 2003). While there is a tendency for

color tuned cells to be less tuned to orientation and vice versa, as seen from

data (see Fig. 5 in the review by Gegenfutner 2003) and argued from efficient

coding considerations (Li and Atick 1994), we show here that including the

conjunction cells in the model will not change our conclusions qualitatively.

In each model hypercolumn, six conjunction units are added, each tuned to

one of the six color-orientation conjunctions (red, green, blue) × (45o,−45o)

relevant in our stimulus, and each has the same input response properties as

that of other model units. The pattern of the intra-cortical connections be-

tween conjunction cells tuned to similar conjunction features is modelled as a
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weighted average of that between color tuned cells and that between the ori-

entation tuned cells. Such an interaction pattern and strength are consistent

with the limited physiological data (Hedge and Felleman 2003) so far about

the contextual influences using both feature dimensions. The conjunction cells

are also modeled to suppress and be suppressed by the single feature tuned

cells preferring similar orientation or color, but with a 90% reduction in sup-

pression strength compared to the iso-feature suppression within a single cell

class. This interaction between the single feature tuned cells and conjunctive

feature tuned cells is included so that, as in behaviral data (e.g., Treisman

and Gelade 1980), the color-orientation conjunction search tasks may ot be as

easy as the feature search tasks. The conjunction cells also participate in the

feature unspecific surround suppression. The response from a conjunction cell

to a colored bar can be estimated approximately by the number of the bar’s

neighbors of the same conjunction feature, due to the iso-conjunction-feature

suppression. Analogous to notations for other cell types, COsingle, COground,

COrandom, and COborder, respectively, are the responses from a conjunction

cell to a preferred conjunction bar presented as a conjunction singleton, sur-

rounded by iso-(conjunction) feature neighbors, in a color randomized iso-

orientation field, and at an orientation texture border, respectively. Then, to

an iso-orientation background texture stimulus with or without color random-

ization, conjunction cells and the color tuned cells respond with comparable

strengths Cground ∼ COground and Crandom ∼ COrandom, since the orientation

feature is uniform. To an orientation singleton, the conjunction cell and the ori-

entation cell respond comparably Osingle ∼ COsingle since both cells experience

no iso-feature suppression. Hence, introducing the conjunction cells does not

qualitatively change the saliency of the orientation singleton, whose pop-out

remains insensitive to color-interference. To an orientation texture border, the

responses from the conjunction cells should be comparable to or higher than

those from the orientation tuned cells, COborder
>

∼

Oborder, when the stimulus

have uniform or random colors, since a border bar has the same or fewer iso-

conjunction-feature neighbors as iso-orientation neighbors. Hence, conjunction

cells make the border saliency higher or roughly unchanged when the stimu-

lus color is or is not randomized. However, these enhanced border responses

from the conjunction cells are not sufficient to offset the increased mean and

variances of the responses to the background also due to color randomization.

This means, orientation texture segmentation should remain susceptible to

color interference when the conjunction cells are included. This is confirmed

in model simulation shown in the two right columns in Fig. (2). Increasing
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color randomization makes the texture border increasingly submerged by re-

sponses to the background, while the orientation singleton continues to evoke

the highest response against the background.

4 Testing the model prediction of increased color-orientation in-
terference

4.1 Methods

Stimuli: Texture patterns consisted of a grid of 12 by 12 elements that occupied

a square of side 6.6 cm (6.6 deg), thus the average separation between elements

was 0.60 deg. The actual position of each individual element within this grid

was randomly jittered in both the horizontal and vertical axis by up to 0.135

cm (deg) using a flat probability profile. Most of the elements were assigned

to be background whilst an area of 2 by 8 elements was designated to be

foreground (or target, like that in Fig. (3)). The position of this target area

was random save that it was not allowed to intrude into the outermost elements

so that it was always surrounded by background elements. The orientation of

the target area (vertical or horizontal) was randomly chosen from trial to trial,

and this was the judgement that the observer was required to make. To define

this target area the orientation of the target elements was 90 deg different to

that of the background elements. On each trial the orientation of all the target

elements was randomly chosen to be either +45 deg or -45 deg with respect

to the vertical, and thus the background elements were either -45 or +45 deg

respectively.

On each trial the colour of any element could be red, green or blue simply

defined here as the output of each of the three colour guns in isolation. The

salience of the elements was adjusted to be equal in pilot experiments that

matches the apparent brightness of the elements in three observers. (We do not

mean to imply by this that the differently colored elements were equiluminant.)

The average brightness matches of the observers were then used throughout

all the experiments. Each color was approximately 8 cd/m2, the background

was a dark grey at 0.1 cd/m2. For reasons not expounded further here the

elements could have a length of either 3 or 6 mm, and a width of 0.6 or 1.2

mm (on any single trial all elements had the same length and width, chosen

randomly for each trial). The data from these manipulations are not analysed
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further in this paper and data were simply collapsed across these conditions.

In all 5 conditions were run (Red, Green, Blue, two-colours (Red & Green)

and three-colours (Red, Green & Blue)). Each single colour condition was run

in order to check that there were no overall differences due to the different

colors used. Each observer received 100 trials in each of these conditions. In

the next condition each element (both target and background) was randomly

assigned to be either red or green we term this the two-colour condition. The

two-colour condition does not include other color pairs in order to shortern the

total duration of an experimental block. In the final condition each element

(both target and background) was randomly assigned to be either red, green

or blue we term this the three-colour condition. Observers received 300 of each

of these last two conditions. Thus in total each observer saw 900 trials which

were presented within a single block of trials in a random order.

Procedure: Each subject was given instructions as to the nature of the task

and had a small practice session (approx. 30 trials) before any data were gath-

ered. The observers were told to perform as quickly as possible whilst trying

not to commit errors. Each trial consisted of a blank interval (375 ± 125ms),

followed by a fixation cross (375 ± 125ms) placed at the centre of where the

stimulus array would be presented (i.e. the centre of the screen). Following the

extinguishing of the fixation cross the stimulus array appeared. The observer

then made a speeded two-option forced choice (vertical or horizontal) as to

the orientation of the target area. Stimuli were presented until the observer

responded and then the screen was blanked. Reaction times and correctness

of response were recorded by the computer and feedback was given via an

auditory signal for incorrect responses. Observers were given breaks (approx-

imately 5-10 minutes) every three hundred trials or that they could stop at

any time if they so wished (but none did).

Observers: Nine observers were used (7 female) with an age range of 19-38.

Eight of them were naive to the aims of the experiment whilst one was one of

the authors (RS). All were screened for colour deficiencies using the Ishihara

test.

Data analysis: Reaction times were first screened for extreme outliers (> 3000

ms or less than 100 ms) and these were removed (< 1% for any observer).

As RT scores do not form a normal distribution the median RT was then

calculated for each observer in each of the 5 colour conditions using only
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trials on which the observer was correct. The percentage of trials on which

the observer was incorrect was also noted. Differences in RTs and errors were

examined via a series of a priori planned comparisons using t-tests.

4.2 Results

Figure (3)A displays the means and standard error of measurement for the

5 conditions. Comparison of the data from each of the three single colour

conditions revealed that performance was not statistically different for each

of the colours (2-way t-tests; RvG t(8)= -0.08, ns; RvB t(8) = -1.22, ns;

GvB t(8)= -0.59, ns) and thus data from these conditions were collapsed

so as to form a single variable termed ’one colour’. As predicted the two-

colour condition gave reaction times that were significantly longer than the one

colour condition (one-way t-test: t(8) =2.89, p=0.010), and the three-colour

condition was slower than the two-colour condition (one-way t-test: t(8)=

2.61, p=0.015). Not suprisingly the three-colour was significantly slower than

the one-colour condition (one-way t-test: t(8) =2.89, p=0.005). Error rates

were always quite low (0.2 - 8.1%) for all subjects tested. Statistical analysis

(ANOVA) did not reveal any significant effects (ps> 0.05).

Figure (3)B shows the model simulations which agree qualitatively with the

experimental outcome. For simplicity, only the simulations in a model with-

out conjunction cells were shown, since those including conjunction cells are

qualitatively the same. Note that although the stimuli are mainly of a texture

segmentation type, they have an element of orientation search stimuli in it

since the foreground region has only 2x8 elements. (When the foreground has

only one element the stimulus pattern is the same as that in the singleton

search task). This is manifested in the most vigorous responses to the two of

the corners of the foreground since they have the fewest iso-orientation neigh-

bors, and, they have a particular spatial configuration of the bars around them

to enable favorable contextual influences. Hence, the rate of deterioration of

the foreground saliency with increasing color randomization is somewhat be-

tween those for the texture segmentation stimulus and the orientation single-

ton stimulus in Fig. (2). In realistic stimulus, this is common since a texture

region has to be spatially bounded with the extreme corners, unlike in the

model simulation where the space boundary is wrapped around to simulate

an infinitely large spatial texture. Note that although color randomization may
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B: Model behavior on the test stimulus patterns

A: Experimental data

Stimulus Model output Saliency Map

Uniform color input

Two random color inputs

Three random color inputs

Fig. 3. A: Data from experimental test of the model predictions: more random color
features should introduce more color interference on orientation feature based seg-
mentation tasks. Nine subjects performed the tasks of identifying the orientation
(vertical or horizontal) of a 2x8 textured foreground area. Shown are averaged re-
action times (and their error bars, 900 trials for each subject), as measurements of
the difficulties of the tasks. Shortest reactions were for cases when all bars are of
uniform color (red, green, or blue, averaged in “1 colour”, the third column from
right), longer reactions are for colors of bars randomly drawn from red and green
(second column from right), longest reactions were for bars randomly drawn from
the three colors (the right most column). B: model simulation of the tasks. Note
that the averages and variations of the responses of the color tuned cells to the
background increase as more varieties of color features are introduced randomly to
the bars, submerging responses to the foreground.
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shift the most salient image location from foreground to background, such as

in Fig. (2)DF and Figure (3)B, this does not mean that the foreground be-

comes invisible. Visibility and saliency pop out are two different things. Less

salient targets simply require longer reaction times, to allow visual attention

to visit more salient locations first before being registered in the awareness

(i.e., become visible).

5 Summary and Discussion

We applied the theory of a saliency map in V1 to the color-orientation inter-

ference phenomena using a model of V1. This theory is unique in proposing

that saliency of a visual location or an object (e.g., a short colored bar) is

signalled by the activity level of the most active V1 cell responding to it,

and is regardless of the feature tuning properties of the V1 cells signalling it.

Hence, the activity of a color tuned cell signalling saliency of a colored bar can

be compared with the activity of an orientation tuned cell signalling saliency

of another bar to see which bar is more salient. Meanwhile, whether a color

tuned or an orientation tuned cell signals the saliency of a colored bar depends

on (1) the input strength in color and orientation and (2) the color and ori-

entation contextual input of the bar concerned. This contextual dependence

is computed by the intra-cortical interactions in V1 linking neighboring cells,

and demonstrated in this paper by a V1 model.

This model explained the existing data (Pashler 1988, Snowden 1998) on the

interference of the color features in orientation feature based tasks, in particu-

lar, the orientation singleton search and orientation texture segmentation. The

ease of these tasks, especially when performed under time pressure, depend

largely on the saliencies of visual objects. Specifically, our framework explains

why randomizing the colors of the bars impairs performance in some segmen-

tation tasks but not others. In addition, we predict from our model that the

color interference should increase with increasing color categories used in the

colors of the oriented bars in the stimulus. A psychophysics experiment was

carried out to test the prediction, and reaction times in texture segmentation

task was shown to increase with increasing color categories, confirming the

model prediction.

Nothdurft has observed that non-isoluminant stimuli could contribute to in-
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terference in orientation feature based segmentation (Nothdurft 1997). Since

our experments used different luminance values for bars of different colors, it

could happen that luminance variations in the background texture contributed

to the observed interference. However, we believe that such a luminance fac-

tor is minimal or non-significant in our experiment since the reaction times of

the orientation segmentation under uniform color are similar (Fig. 3A) for all

three colors, implying that the saliencies of differently colored bars are compa-

rable in uniform textures without color randomization. This implies that any

changes of saliency values in color randomized stimuli are caused by changes

in color feature values rather than the luminance values.

One could ask if the previous models of bottom-up saliency map (Koch and

Ullman 1985, Itti and Koch 2000) could also explain our experimental data.

These models assume that separate feature maps, such as color feature maps

and orientation feature maps, are constructed to obtain the saliency highlights

in separate feature dimensions, and these separate feature maps are then sub-

sequently combined into a master, feature unspecific, saliency map. Without

diving into details of how separate feature maps are constructed, these separate

maps obtain as highlights feature discontinuities such as singletons or borders

in each feature dimension (Koch and Ullman 1985, Itti and Koch 2000). These

mechanisms correspond to contextual interactions between cells tuned to the

same dimension in our V1 model. These models then assume some mechanism

that combines the results from different feature maps. The combination rule

used has been to sum (or feature weighted sum) the outcomes from the feature

maps into a scalar master map ( Muller Heller and Ziegler 1995, Itti and Koch

2000). Given that the orientation feature map gives a highlight at the texture

border while the color feature map has its high lights spatially distributed in

the whole image, the summation of the two maps would produce saliency high-

lights still along the texture border. This means, the orientation segmentation

task should not be sensitive to color interference. Arguably, it is possible that

some degree of feature interference could still be predicted by this summa-

tion rule, considering that the color feature map gives a very inhomogeneous

highlights due to the random assignments of colors to the bars. This creates

a noisy background in the master map and this noisy background makes the

border highlight not as conspicuous as it is under uniform color (Duncan and

Humphrey 1989, Rubenstein and Sagi 1990). Alternatively, if the feature map

combination rule into a master map is the maximum rather than summation

rule, i.e., the master map takes the maximum among the feature maps at
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each spatial location, the outcome would be qualitatively equivalent to our

model without the conjunction cells. Hence, the color-orientation interference

phenomena argue that if the previous models of the saliency map were to be

adopted, the combination rule from separate feature maps to the master map

is more likely a maximum or winner-take-all rule, in which case, separation

of feature maps is no longer relevant. Meanwhile, it has been observed that

double feature search or searching for a dimensionally redundant target, such

as searching for a vertical red bar among horizontal green bars, is faster than

either of the single feature searches in either dimension alone, e.g., a vertical

bar among horizontal bars, or a red among green (Krummenacher, Muller,

and Heller 2001, Nothdurft 2000). This observation can not be explained by

a maximum rule of the feature maps since it would argue that a double fea-

ture search should not be easier than the easiest of the single feature searches.

In particular, the maximum rule means that the reaction time to the double

feature target should be the shorter one of the two single feature search reac-

tion times. This is called the race model inequality, i.e., taking the reaction

time of one of the two single feature dimensions that reaches the task decision

first in a race between the two feature dimensions, see Krummenacher et al

(2001). However, in our theory, where there is no separate feature maps nor

any combinations of them, the faster double feature search can be explained

by introducing the conjunction cells (Li 2002). This introduces a third racing

element in the reaction time race which is now between three competitors:

the color tuned cell, the orientation tuned cell, and the conjunction tuned

cell. While each of the former two competitors determine the reaction time

for the single feature search, the double feature search can be faster when the

conjunction cell’s signal becomes the race winner in some of the trials.

We also note that top-down mechanisms (Wolfe et al 1989, Muller et al 1995,

Cave 1999), whether or not to construct the saliency map, could not explain

the interference phenomena in this paper. This is simply because top-down

control would argue instead that, color, being the irrelevant feature for the

tasks, should not interfere.

To summarize, we applied the theory and model of the saliency map in V1

to the phenomena of color interference in orientation feature based tasks. Our

framework explains the existing data, provided a prediction which is tested and

confirmed psychophysically. While our results here favour the V1 saliency map

theory over others, they do not conclusively rule out any particular theory.

However, our findings and our analysis of the scenarios here can motivate
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future investigations to better distinguish the alternative theories. One of these

new investigations (Zhaoping and May 2004) has already generated additional

findings that strengthen our conclusions here and will be reported in a future

paper.
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