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Summary

A border between two image regions normally be-
longs to only one of the regions; determining which
one it belongs to is essential for surface perception
and figure-ground segmentation. Border ownership is
signaled by a class of V2 neurons, even though its
value depends on information coming from well out-
side their classical receptive fields. I use a model of
V2 to show that this visual area is able to generate
the ownership signal by itself, without requiring any
top-down mechanism or external explicit labels for
figures, T junctions, or corners. In the model, neurons
have spatially local classical receptive fields, are
tuned to orientation, and receive information (from
V1) about the location and orientation of borders.
Border ownership signals that model physiological
observations arise through finite range, intraareal in-
teractions. Additional effects from surface features
and attention are discussed. The model licenses test-
able predictions.

Introduction

Separating figure from background in an image is one
of the most important tasks in vision and is commonly
seen as a prerequisite to object recognition. However,
we still do not understand its neural basis. Figure and
ground information in an image can be represented by
assigning ownership of the border between two sur-
faces as belonging to one of the surfaces as the figure,
which then occludes the other, the ground. The border
is said to be owned by the assigned or occluding figure.
The shapes of the surfaces and the resulting perception
depend crucially on this allocation of border ownership
(BOWN), as is well demonstrated by the famous exam-
ple in Figure 1A (Rubin, 2001). Here, the bistable per-
ception of either the flower vase or the mirrored, profile
faces depends on whether the contour in the image is
interpreted as owned by the lighter or darker regions.

Many neurons in V2 have been observed to be selec-
tive to both the orientation and BOWN of contours
(Zhou et al., 2000). That is, for instance, a cell preferring
vertical contours responds more vigorously to a vertical
contour segment within its classical receptive field
(CRF) if this segment belongs to the surface to the left
rather than the right side of this contour.

For example, the white square of Figure 1B is more
readily seen as a figure occluding a gray background
than as a hole in a gray surface revealing an underlying
white background. In BOWN terms, the bounding con-
*Correspondence: z.li@ucl.ac.uk
tour of the square is more readily owned by the white.
In contrast, Figure 1F is generally interpreted as a gray
square in a white background. By construction, the left
border of this square is at the same spatial location as
the right border of the white square in Figure 1B. Con-
sider the CRF of a model cell shown by the ellipses in
the figures. It is centered on this border location but is
much smaller than the whole border of the squares. If
this cell is tuned to BOWN, its responses to the stimuli
depicted in Figures 1B and 1F should differ signifi-
cantly, even though the stimulus patterns within its CRF
are exactly the same for the two examples. It is the
stimulus pattern in the context outside the CRF that
determines the BOWNs and the neural responses.

Figure 1 shows that the same white-left to dark-right
luminance contrast stimulus within the CRF can be
generated by other Gestalt-based stimulus configura-
tions and BOWN examples: by partial occlusion be-
tween white and gray surfaces (Figures 1C and 1G); by
a white or gray C-shaped figure in front of gray or white
backgrounds (Figures 1D and 1H); by a white semi-
transparent rectangle on top of a black one (Figure 1I);
and by four nonoverlapping black or white figures on a
gray background (Figure 1E). The stimulus patterns in
Figures 1B–1I are similar to those used by von der
Heydt and colleagues to demonstrate BOWN tuning in
V2 neurons. They observed that a cell tuned to a figure
to the left prefers Figures 1B–1E to Figures 1F–1I (Zhou
et al., 2000; F.T. Qiu et al., 2001, Soc. Neurosci., ab-
stract; R. von der Heydt et al., 2003, J. Vis., abstract;
von der Heydt et al., 2000). As the size of figure square
in Figure 1B grows toward occupying the whole left
half of the image, BOWN becomes ambiguous. Corre-
spondingly, the BOWN signals in V2 neurons also
weaken (Zhou et al., 2000), i.e., the differences in re-
sponses to Figures 1B and 1F are reduced.

Von der Heydt and colleagues also observed that
neural tunings to BOWN are not tightly constrained by,
or dependent on, any particular image cue such as sur-
face luminance. BOWN tuning was also observed for
figures defined by depth using random-dot stereo-
grams (F.T. Qiu et al., 2001, Soc. Neurosci., abstract) or
motion (R. von der Heydt et al., 2003, J. Vis., abstract),
or even for figures in line drawings (e.g., a square line
drawing; Zhou et al., 2000). Furthermore, BOWN tuning
observed when luminance is the cue is consistent with
that observed when disparity (von der Heydt et al.,
2000; von der Heydt et al., 2003) or motion (R. von der
Heydt et al., 2003, J. Vis., abstract) is the cue, if a cell is
tuned to BOWN using more than one cue. Furthermore,
while surface feature differences between two neigh-
boring surfaces can be qualitatively signaled by the
feature contrast polarity of the border, not all cells
tuned to BOWN of a contour are tuned to luminance
contrast polarity and vice versa (Zhou et al., 2000), and
many cells are tuned to BOWN irrespective of other im-
age cues such as luminance contrast (von der Heydt et
al., 2003). Figure 1G demonstrates that the gray figure
is perceived as a whole nonoccluded surface, even
though the contrast polarity changes along its border
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Figure 1. Border Ownership Examples a
(A) The bistable perception of a flower vase or two faces depends (
on whether the borders between the luminance regions are as- d
signed to the lighter or darker regions.

e(B–I) Schematics of stimulus patterns similar to those used in ex-
hperiments by von der Heydt and colleagues. The oval depicts a
Eclassical receptive field (CRF) of an orientation-tuned cell in V2 and

is not part of the stimulus. In all these patterns, the stimulus within p
the CRF is the same, but the border within the CRF belongs to the
figure to its left in the top row stimulus (B–E), and to the figure to V
its right in the bottom row (F–I). If the cell is tuned to prefer a border

downed by a figure to the left of its CRF, then its responses to the
Itop row stimuli will be higher than those to the bottom row, as
aobserved in V2 cells.
p

tdue to changes of the occluded region (see also Dis-
ncussion and Figure 5A). This implies that the contour
pinformation overrides the contrast polarity information
tto determine BOWN.
tTuning in BOWN is significantly weaker or even ab-
dsent in V1 (Zhou et al., 2000). Thus, the question arises
twhether the context-dependent neural tuning to BOWN

in V2 is generated by mechanisms within this area, or
Rby top-down feedback from one or more higher visual

areas, or by a combination of both top-down and local
Mmechanisms (von der Heydt et al., 2003). The insightful
tpsychophysical observations of Nakayama et al. (1995)
Cweigh against higher areas. First, they demonstrated
tthat manipulating stimuli to change perceived BOWNs
odramatically affects behavior in rapid visual tasks like
mvisual search. Second, in the case of “impossible ob-
tjects,” such as the famous Penrose “impossible” trian-
Tgle, BOWN processing leads to perceptions of three-
idimensional objects that can never be realized in the
rreal world and that must therefore violate higher-level
tobject knowledge. A possible neural substrate for a lo-
ncal mechanism to process contextual information cer-
0tainly exists in the form of the intracortical, lateral,
tneural connections within V2 that link cells with non-
soverlapping CRFs separated by a finite distance (An-
tgelucci et al., 2002).
pOther evidences support contributions beyond V2.
tThe first one comes from data on the latencies of

BOWN signals, defined by the times (since initial re-
wsponses) at which neural responses first differ between
rinputs with identical CRF stimulation, but different, con-
Ctextually defined BOWN. In V2, BOWN latency does not
Tseem to depend on the sizes of the figures such as the
usquare in Figure 1B. The essential contextual informa-
mtion needed to determine the ownership of a contour
Tsegment on a side of a square come from the ends
cof the side or other sides of the square. If finite range
pintracortical connections were used to propagate the
wcontextual information, then larger squares would seem

to require longer propagation times, thus requiring
onger latencies. That this is not true for squares of
izes 3° and 8° has prompted the suggestion that
entral (global) feedbacks from visual areas with larger
eceptive fields are involved (T. Sugihara et al., 2003,
oc. Neurosci., abstract). Secondly, the bistable per-
eption of the flower vase or faces can be influenced by
oluntary attention, suggesting top-down modulation.
odels have duly been constructed in which BOWN

uning results from a combination of V2 mechanisms
nd additional, presumably top-down, information such
s labels for global figures, T junctions, and corners
unless one views that T junctions and corners can be
etected by the end-stopped cells in V1 or V2; Heitger
t al., 1992; Heider et al., 2000), all of which are very
elpful to determine BOWN (Finkel and Sajda, 1994;
. Craft et al., 2004, J. Vis., abstract; E. Craft et al.,
ersonal communication).
Understanding the capacity of local mechanisms in

2 to generate BOWN, particularly with size-indepen-
ent latency, is therefore a key first step. In this paper,
describe a network model of V2 in which generic local
nd contextual contour (orientation) information (inde-
endent of the input cues responsible for the contours
hemselves) can feasibly be used by local V2 mecha-
isms to construct BOWN tuning consistent with all the
hysiological observations so far described. The addi-
ional contributions to BOWN tuning from surface fea-
ure (e.g., luminance) cues and top-down factors will be
iscussed in the Discussion, along with the relationship
o previous works.

esults

odel neurons have CRFs and preferred orientations
hat sample the visual space evenly. For each (discrete)
RF location i and preferred orientation 0 % θ < 180°,

here are two neurons with opposite preferred BOWNs;
ne indicating that the figure owning the contour seg-
ent at (i,θ) is to the left of the contour and the other

hat it is to the right (when one faces the direction θ).
o represent BOWN graphically, we adopt a convention
n which we show neurons with 360° tuning to direction
ather than 180°, with values differing by 180° favoring
he same orientation, but opposite BOWN. Thus, each
euron is shown as being tuned to direction θ spanning
° to 360°, where θ = 0° is the three o’clock (east) direc-
ion, and θ increases counter-clockwise. In this repre-
entation, a neuron tuned to direction θ prefers orienta-
ion θ if θ < 180°, and θ − 180° otherwise, while its
referred figure side is always to the right of the con-
our segment (i,θ) when facing direction θ.

Figure 2 shows the model elements and the way we
ill visualize them. A neuron is represented by a di-

ected edge (plotted with or without an arrow) at its
RF location i and pointing in its preferred direction θ.
his edge has a fin directed toward the side of the fig-
re the cell assumes owns the border (Figure 2Aa). As
entioned, this is always the right side when facing θ.
hus, a cell preferring a vertical orientation, θ = 90°,
ould have preferred direction either 90° or 270°, de-
ending on whether it prefers a figure to the east or
est of the border.
Model inputs are assumed to arise from population
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Figure 2. Visualizing the Model Elements

(A) Visualizing neural elements and activity
patterns.
(Aa) A V2 neuron visualized by its preferred
features: the CRF position, contour orienta-
tion, and preferred side of the owner figure
as indicated by a fin, or equivalently, the di-
rection of the border segment.
(Ab) Input from a V1 neuron is directed
equally to two V2 neurons (with the same
CRF position and orientation preference)
preferring two opposite BOWNs.
(Ac) An input image from V1 with no BOWN
biases.
(Ad) Desired V2 responses (outputs) with
BOWN biases.
(B) Examples of mutual excitation (via con-
nections J in Equation 1) and mutual inhibi-
tion (via connections W in Equation 2) be-
tween pairs of model neural elements coding
border segments (of specific orientations,
BOWNs, and CRF positions) as shown. Apart
from (Bc) and (Bf), mutual excitation/inhibi-
tion is more likely and stronger between neu-
rons signaling border segments that are
more consistent/inconsistent with belonging
to a single figure. The strength of excitation
decreases from (Ba) to (Bb) (see [C]). Mutual
excitation between neurons is stronger when
the corresponding two border segments
could be linked by a rightward rather than a
leftward turn from one segment to another
(also see [C]), reflecting the Gestalt structure
of the visual world for which object surfaces

tend to be convex rather than concave. (Bc) and (Bf) are connections when the two border segments are consistent and inconsistent,
respectively, with a T junction.
(C) The actual model connections between cells receiving inputs from an example occlusion pattern (thin black contour segments). The thick
border segment marks the example postsynaptic cell. The connection strengths from the presynaptic cells scale with the length × width of
the colored fins of the border segments.
activity of topographically localized and orientation-
tuned V1 output neurons, representing images of con-
tour segments (see Figure 2Ac), i.e., short oriented
bars. Each input signal Iiθ is a graded firing rate repre-
senting the strength (e.g., contrast) of a contour seg-
ment (i,θ). However, to answer whether generic contour
information is sufficient to determine BOWNs through
context, the model inputs are abstracted as not speci-
fying whether the underlying contour segments are de-
rived from luminance or disparity cues, or are simply
contour lines (even though the actual V1 does provide
some such information to higher visual areas). Most
critically, the inputs are not explicitly biased for the
BOWN of their contour segments. Hence, unless other-
wise stated, equal input strengths Iiθ = Ii,θ + 180° are al-
ways directed to two model cells (i,θ) and (i,θ + 180°)
preferring the two possible BOWNs given (i,θ).

Figure 2Ac shows an example model input pattern
for a square contour, where Iiθ is nonzero for the pairs
of directed border segments (i,θ) on each side of the
square, and zero for all other border segments. V2 re-
sponses have BOWN biases, with unequal response
(pyramidal) outputs Oi,θ s Oi,θ + 180° for border seg-
ments (i,θ) and (i,θ + 180°) of the same orientation and
border location but opposite BOWN preference. This is
visualized by a bar at location i and orientation θ, with
a fin pointing to the dominant figure side. The thickness
of the bars (i,θ) is proportional to max(Oi,θ, Oi,θ + 180°),
the dominant output of the two pyramidals, and the
length of the fin increases with

|Oi,q−Oi,q + 180∘| /max(Oi,q,Oi,q + 180∘),

the fractional difference between the two responses
Oi,θ and Oi,θ + 180°. Figure 2Ad shows a possible V2 re-
sponse pattern, preferring a square figure to a hole, to
the V1 inputs shown in Figure 2Ac.

The model neurons not sharing the same CRF loca-
tion excite or suppress each other through monosynap-
tic excitation or disynaptic inhibition (via interneurons)
through intracortical connections that are characteris-
tic of V2 (Angelucci et al., 2002). The connections link
nearby, and not necessarily overlapping CRFs. Their
nature and strengths depend on the CRF locations and
preferred orientations and BOWNs of the pre- and post-
synaptic cells. Two neurons facilitate or suppress each
other’s activities if the two corresponding border seg-
ments and BOWNs are consistent or inconsistent with
being owned by a single figure surface. For example, if
two neurons represent two nearby and coaligned con-
tour segments, they facilitate each other if they prefer
the same figure side (Figure 2Ba) and inhibit each other
otherwise (Figure 2Bd). The connections also satisfy
other Gestalt grouping principles. For instance, in the
visual world, borders of figures tend to be convex rela-
tive to the figure, i.e., object surfaces tend to have
rounded or oblique corners rather than spiky or acute
corners. In other words, when walking along the border
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with the figure on the right side, the border tends to v
aturn right toward the figure rather than turning left away

from it. This convexity bias is represented in the model n
tconnections as stronger facilitation between neurons

representing two border segments related to each (
aother through a right turn (Figures 2Bb and 2C) than

through a left turn. Neurons are connected inhibitorily t
cif they represent border segments that could plausibly

be part of two borders colliding toward each other at o
isome point (Figure 2Be) or departing from each other

at a point (Figure 2Bd). Furthermore, while the model
2does not have neurons explicitly detecting T junctions,

two neurons for two border segments that are plausibly B
dthe top and stem, respectively, of a T junction facilitate

each other if the neuron for the T top has a BOWN b
bpreference consistent with an occluding surface (Fig-

ure 2Bc), otherwise, suppressive connections are de- o
tsigned between the two neurons (Figure 2Bf). A conse-

quence of this interaction is that cells should manifest s
eend-stopping properties. Meanwhile, the connection

strengths also decay with distances between linked t
hcells. All these Gestalt grouping features of the connec-

tion patterns can be visualized in Figure 2C in an exam- t
dple input pattern. Finally, the connection strengths are

such that, if there is no visual stimulus within the CRF n
Bof a neuron, no single contextual stimulus bar segment

is sufficient to evoke any sustained responses from it. t
Note that the model connection structure requires
many links between cells tuned to very different, e.g., B

sorthogonal, orientations. This is in contrast to what is
believed to be in V1, where interconnected neurons s

3tend to prefer similar orientations. Indeed, it is easier
to observe in V2 than in V1 correlated firings between 2

rneurons preferring very different orientations (Tamura
et al., 1996). Interactions between nearby, orthogonally V

soriented elements have also been seen psychophysi-
cally (Yu et al., 2002; Popple, 2003). t

iSince BOWN latency is diagnostic, the model has to
address finite time conduction. A presynaptic neuron’s i

doutput arrives at its postsynaptic target after an axonal
conduction latency or delay. The existing data from var- n

iious experiments still leave much uncertainty about the
true range of the conduction latency or velocity (Grin- v

lvald et al., 1994; Bringuier et al., 1999; Girard et al.,
2001; Bair et al., 2003), and it is possible that the con- d

rduction velocity varies with the axon length (see Dis-
cussion). I henceforth assume in this paper that the a

tconduction latency between the pre- and postsynaptic
cells is randomly in the range of 8–10 ms (or, for neu- b

irons with a membrane time constant of 10 ms, between
80% and 100% of the membrane time constant), re- t

mgardless of the distance between the connected cells
(Girard et al., 2001; see Discussion section for the data s

aand considerations behind this assumption). Neural
signal integration time at the postsynaptic cell is addi- i

btionally modeled through the membrane time constant
in the model neuron. The Experimental Procedures sec- e
tion lists all the model details and parameters neces-
sary to reproduce the results, and the same model b

aparameters are used in the simulations of all examples
in this paper. c

aFigure 3 demonstrates that the model responds in
accordance with psychophysical observations. The mod- n

ael’s initial response (Figure 3B) reflects the feedforward
isual input (Figure 3A), which contains no BOWN bias,
nd the random input noise perturbing each model
euron. Later, systematic differential responses to the
wo possible assignments of figure and ground emerge
Figure 3C) and grow toward an asymptotic level as the
ctivities evolve (Figure 3D). Through intracortical in-
eractions, border segments in the context of a given
ell’s CRF bias its responses, in a way that depends
n their preferred BOWNs. The cell’s response in turn

nfluences the responses of the contextual segments.
Physiologically (Zhou et al., 2000; T. Sugihara et al.,

003, Soc. Neurosci., abstract), the latency of the
OWN signal is defined by the time at which significant
ifferences appear in the responses of a neuron to two
order stimuli with the same local features in the CRF,
ut opposite BOWNs (such as the border within the
val in Figures 1B and 1F). In our model, the latency of
he BOWN tuning is equivalently defined using a single
timulus, as follows. Given one border stimulus pattern,
.g., Figure 1B, we examine the temporal responses of
he two neurons that prefer two opposite BOWNs but
ave the same CRF and preferred orientation matching
he border, e.g., the oval in Figure 1B. The latency is
efined by the time when the responses in these two
eurons start to differ significantly. The strength of the
OWN signal may be seen as the difference between

he two responses.
The physiological data show that, for square figures,

OWN arises about 30 ms after the initial neuron re-
ponses (T. Sugihara et al., 2003, Soc. Neurosci., ab-
tract), and this latency is the same for squares of sizes
° and 8°. From anatomical data (Angelucci et al.,
002), it is reasonable to assume that 3° corresponds
oughly to the longest length of lateral connections in
2. In our model, we examine responses to three
quares whose sides are 1, 2, and 3 times as long as
he longest intracortical connection length (which is 10
n grid units) in the model (Figure 3). For these squares,
t is instructive to consider a border segment in the mid-
le of a figure side, since this is furthest from the cor-
ers of the square, which is the only location in the

mage where there is any BOWN bias (arising from con-
exity). For the smallest square, the lateral connections
ink the middle border segment to the closest corners
irectly; for the largest square, no corner is within

each. Figures 3E–3G show that the BOWN signal
rises roughly with the same latency, between two and
hree membrane time constants (i.e., 20–30 ms if mem-
rane time constant is 10 ms) after stimulus onset or

nitial responses, for all three square sizes, even though
he strengths of the BOWN signals are weaker (in the
iddle border segments) for larger squares, as ob-

erved physiologically (Zhou et al., 2000). Figures 3F
nd 3G show that, for larger squares, the BOWN signal

ncreases more quickly with time initially for the corner
order segments than the middle border segments,
ven though the two BOWN latencies are comparable.
These simulation results suggest that top-down feed-

ack is not necessary to create size-invariant latencies,
t least within a range of figure sizes. This may seem
ounterintuitive, given the finite lengths of connections
nd the nonzero axonal conduction delays. However,
ote that the BOWN latency in the model is in any case
bout two to three times the axonal conduction delay
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Figure 3. Model’s Input-Output

Stimulus onset at time = 0; all times are in the units of membrane time constant. (A) The input is a square contour frame, with equal strength
inputs for both options of BOWN for each contour segment. (B) Initial model response at time = 0.6 reflects the feedforward input in (A). The
BOWN signals in the border segments are weak and inconsistent between border segments, reflecting the random noise added in the model
(otherwise no BOWN bias in any border segment would appear before the contextual influences arise). (C) Model responses at time = 2.4
start to consistently favor the choice of the inside of the square as being the figure. (D) Model responses at a later stage have stronger BOWN
signals. Visualization of responses in (A)–(D) is as follows. For each border segment, let O1 and O2 be the responses to this segment from
two neurons preferring opposite BOWN, and assume O1 > O2. The thickness of each border bar is plotted roughly proportional to O1, with
the fin pointing to the dominant figure side, and the fin length, increasing with the BOWN bias O1 − O2, is 0.1 + 0.9(O1 − O2)/(O1 + 0.05) as a
fraction of the border bar length. (E) Time courses of the responses corresponding to (B)–(D). In each subplot, the blue solid curve on top is
the response from the neuron(s) preferring the square as the figure, the red dashed curve is that of the neuron(s) preferring the opposite
BOWN, and the black solid (thin) curve is the difference between them, i.e., the BOWN strength. The top subplot is the average response
from all eight border segments at the corners of the squares. The bottom subplot is the average response from four border segments in the
middle of the four sides of the square. (F and G) Same as (E), but for larger square sizes, indicated by the length of one side of the square.
Note different scales of the vertical axes between the top and bottom subplots, and that responses of all model neurons are bounded
between 0 and 1. Note that BOWN latencies are about two to three membrane time constants in all square sizes, regardless of whether the
border segment is a corner or middle border segment; BOWN signal is weaker in larger squares; and the BOWN signal strength initially
increases more quickly in time for the corner than the middle segments in (F) and (G).
and the membrane time constant. Within this temporal
window, the contextual information at the corners of
the figure surface could propagate to a distance up to
two to three times as long as the longest intracortical
connections. It does suggest, however, that the size in-
variance of BOWN latency may not hold for much larger
figures, a prediction that could be physiologically
tested (see Discussion).

Figures 4A–4D demonstrate four other examples of
the model’s response to inputs resembling those used
in physiological experiments, including figure occlu-
sion, a C-shaped figure, figure transparency, and four
squares (see Figures 1C–1E and 1G–1I). Just as ob-
served in physiology, the model exhibits appropriate
BOWN tuning.

In Figure 4A, the occluding square owns the occlud-
ing borders. That the two T junctions “1” and “2” pro-
vide the essential cue for the occlusion in cases such
as this has led to suggestions that T junction detectors
or labels are needed to determine figure-ground rela-
tionships. Indeed, this has been the basis of previous
models (Finkel and Sajda, 1994; E. Craft et al., 2004, J.
Vis., abstract). In our model, there is no explicit T junc-
tion detector, rather the information about T junctions
is implicit in the lateral interactions.

In Figure 4B, if the context of the borders “1,” “2,”
“3” (the “]” shape) were to be removed, the BOWN re-
sponses to these three borders would be the opposite
of that shown, due to the local convexity bias among
the three borders. The intracortical interactions, though
of limited range, are able to cooperatively or collectively
process contextual information from all the other borders,
even ones that are far away. In the simulation, the laten-
cies (from initial responses) of the BOWN signals for these
borders “1,” “2,” “3” are about twice as long as those of
other borders whose ownership can more straightfor-
wardly be determined. This is as if BOWNs for the ambig-
uous borders are determined after those of the less am-
biguous ones. It is also apparent that the BOWN signal
strength is weaker for the ambiguous borders.
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Figure 4. Model Responses to Various Fig-
ure Stimuli

Model responses to stimuli used in physio-
logical experiments (A–D), and those not yet
tried physiologically (E and F). Same format
as in Figures 3B–3D. The pictures show
model outputs after the initial transients,
using stimulus patterns analogous to Figure
3A for which there is no border ownership
bias. (E) and (F) are further variations of the
stimulus from those of (C) and (D). Again,
ownership tuning of cells is visualized by the
fins of the contour segments. The number
markings show particular borders and junc-
tions that are described in the text.
Figures 4C and 4D are responses to stimuli adapted c
afrom the stimulus patterns depicted in Figures 1I and

1E, which are like those used in physiological experi- t
hments (F.T. Qiu and R. von der Heydt, 2003, J. Vis., ab-

stract). The two stimulus patterns differ only by a few f
contour segments, effectively rounding the corners of
the four squares. Nevertheless, the perceived BOWNs o

nof the central borders are dramatically different, leading
to changes in surface perception. Figure 4C is a trans- t

oparent rectangle on top of another one, and Figure 4D
involves four identical square shapes with rounded cor- c

sners. In both physiology (F.T. Qiu and R. von der Heydt,
2003, J. Vis., abstract) and the model, the neuronal re- e

vsponses are consistent with the perceived ownership
signals. Note that, for the central border segments, the o

ralternative contextual borders provide different and
conflicting BOWN biases. Hence, the BOWN decisions
for the central borders depend on the relative strengths D
of the conflicting contextual biases. Clearly, small
changes in the stimulus from the inputs to Figure 4C to W

mthe inputs to Figure 4D reversed the relative order of

the strengths of the conflicting biases. The model laten-
ies of the BOWN signals for the central borders are
gain longer (especially in Figures 4D and 4E) than
hose for the borders in the periphery. The conflicts in-
erent in the contextual influences are likely to account
or much of the longer latencies.

Figures 4E and 4F show model simulations of two
ther variants of the stimulus for Figure 4C, which have
ot yet been tried physiologically. Figure 4E changes
he transparent occluder in Figure 4C into an opaque
ccluder, by removing border segments in the oc-
luded region. Figure 4F displaces the top and bottom
quares slightly away from the other two squares. Both
xamples further demonstrate that the slight stimulus
ariations can lead to dramatic changes in perception
f the surfaces and BOWNs and that these changes are
eadily matched by the model.

iscussion

e have shown that intracortical interactions in a V2
odel suffice to explain the physiologically observed
neural tuning to border ownership in this area, without
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invoking top-down feedback, explicit signals (such as
labels for T junctions), or other mechanisms beyond V2.
We demonstrated this in a model that involves only the
essential elements relevant for this question: intracorti-
cal connections for contextual influences and analog,
nonspiking neuron models.

Based on many insightful psychophysical observa-
tions, Nakayama et al. (1995) had previously argued
that low-level, bottom-up mechanisms should control
surface perception and border ownership. However, in-
fluences over surface perception (such as the bistable
perception of the flower vase and faces) of voluntary
control suggest at least some role for top-down mecha-
nisms. Physiological data cannot decide the extent of
top-down involvement conclusively, since the short la-
tency of the border ownership signal favors low-level
mechanisms (Zhou et al., 2000), while the invariance of
the latencies to figure size favors higher-level mecha-
nisms (T. Sugihara et al., 2003, Soc. Neurosci., ab-
stract). Our model suggests that it is indeed plausible
that top-down mechanisms only play a modulatory role
in the perception of border ownership.

To model the latency of BOWN signal and its depen-
dence on figure sizes, one important model parameter
is the axonal conduction latency between linked V2
cells. However, most indirect experimental measure-
ments of this latency, coming from examining temporal
characteristics of neural responses to visual stimulation
at various distances (Grinvald et al., 1994; Bringuier et
al., 1999; Bair et al., 2003), obtain latency values (and
inferred conduction speed) that include membrane in-
tegration time of neurons (even potentially including re-
lay neurons) as well as axonal conduction time. Girard
et al. (2001) measured the latency more directly by acti-
vating axons (using a stimulating electrode) and record-
ing (with a separate electrode) the resulting orthodromi-
cally propagated spikes a small distance away. They
found intracortical conduction latencies to range be-
tween 1 and 10 ms, with about 90% of the latencies
below 7 ms (Figure 3 of Girard et al., 2001). Further and
unpublished analysis of the data (P. Girard, personal
communication) show that this conduction latency
does not seem to depend on the conduction distance
and that the conduction speed shows a trend of grow-
ing linearly with conduction distance (in the range, 0.5–
5.3 mm, of the distances observed). One should further
note the following. (1) In the experiment of Girard et al.
(2001), if polysynaptic activations are excluded, then
the stimulating and recording electrodes are likely in
between pre- and postsynaptic cells, and thus the la-
tencies obtained should be shorter than the actual con-
duction latencies between the pre- and postsynaptic
cells. (2) The longer latencies obtained by Girard et al.
(2001) may possibly arise from polysynaptic activation.
Since longer axons seem to conduct faster, it is not
unreasonable to assume that the intracortical connec-
tions have the property that the conduction latencies
are about the same regardless of the distances be-
tween linked cells, such that integration of all context-
ual information is roughly synchronous. It is under all
these considerations that the model uses a random
conduction latency between 0.8 and 1.0 membrane
time constants, corresponding to 8–10 ms for a mem-
brane time constant of 10 ms, between pre- and postsyn-

aptic cells regardless of separation between the cells.
While the model does confirm that the latencies of
the BOWN signals are roughly invariant with sizes of
simple surfaces like squares, it suggests that this in-
variance may be limited to a finite range of sizes.
Longer latencies (in addition to weaker BOWN tuning)
are observed in the model when figure sizes are larger
than those shown in Figure 3. This could practically
mean that individual neurons are tuned to BOWN only
in a limited range of figure sizes, as seen in some neu-
rons (see Figure 9 of Zhou et al., 2000, and compare
the numbers of V2 cells in Figures 16 and 19 of the
same paper). Of course, different cells in the visual cor-
tex have different sizes of receptive fields. If intracorti-
cal connections also have some degree of scale invari-
ance such that longer connections link cells of larger
receptive fields, size invariance of the BOWN signals
could hold in the real visual cortex better than in the
currently single-scale model. The model also shows de-
terioration of size invariance in the BOWN latency as
the input strength of the border segments decreases.
In particular, shorter BOWN latencies are observed for
smaller figures when input is weaker. Weaker inputs
also cause the BOWN latency to be shorter at the ends
than that in the middle of the sides of squares. Future
experimental data on how BOWN latency and sensitiv-
ity vary with a wider range of figure sizes and with input
strength should hopefully guide further development
and revision of the computational model.

To explain the existing physiological data (using stim-
uli as summarized in Figures 1B–1I) about BOWN tun-
ing, it seems that a minimal model without surface fea-
ture information (such as luminance) suffices. This does
not prevent surface feature information from playing
any role in surface perception (Metelli, 1974; He and
Ooi, 1998). For instance, the bistable perception of vase
versus faces in Figure 1A seems to be heavily influ-
enced by the difference between the luminance value
of the vase and face regions. Indeed, V1 does provide
surface (e.g., luminance) information to V2, and this in-
formation should contribute to perception of the sur-
face. There are even some cells in V2 whose responses
to borders are influenced more or less significantly by
the underlying surface luminance or the contrast polar-
ity at the border (Zhou et al., 2000).

The observations (Zhou et al., 2000; F.T. Qiu et al.,
2001, Soc. Neurosci., abstract; R. von der Heydt et al.,
2003, J. Vis., abstract) that border ownership tuning in
individual V2 cells is consistent under different stimulus
cues, such as luminance contrast, depth, and motion,
suggest that the model will generalize to cases in which
additional surface information is integrated. A simple
implementation would be to make model cells be tuned
additionally to the feature (e.g., luminance) contrast po-
larity of the borders. So each cell in the original model
is now replaced by two cells preferring the same
BOWN, orientation, and CRF, but opposite contrast
polarities. Hence, a border of a given contrast polar-
ity would provide input (from V1) to cells preferring
this polarity, again regardless of the cells’ preferred
BOWNs. Intracortical connections between cells would
in turn be modulated by the preferred contrast polari-
ties of the linked cells, such that mutual facilitation (or
suppression) between cells tuned to consistent (or in-
consistent) BOWNs, as in Figures 2Ba and 2Bb (or Fig-

ures 2Bd and 2Be), would be somewhat weaker when
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the two connected cells prefer opposite (or same) con- s
mtrast polarities.

As expected, this augmented model, including the t
ssurface features, helps to enhance the BOWN signals

in some cases, such as the BOWN signals in Figures g
a1D and 1H. Figure 5 demonstrates the behavior of this

augmented model in more interesting cases when sur- B
bface (luminance) feature information is overridden by

contour information or affects the resulting perception. d
nConsistent with perception, Figure 5A shows that the

gray surface continues to be perceived by the model as [
5the occluding figure, even though the contrast polarity

changes along its border as it occludes two surfaces m
aof different luminances. Figure 5B demonstrates that

the perception of a white transparent rectangle occlud- a
qing a black one can be changed to the perception of

four white figures when the luminance of the two black c
Figure 5. Modeling Contributions of Surface
Features and Top-Down Control in BOWN
Processing

The model is augmented by replacing each
original neuron by two neurons preferring the
same BOWN but opposite contrast polari-
ties. A border segment of a given contrast
polarity gives equal input to two neurons
preferring the opposite BOWNs and corre-
sponding contrast polarities, e.g., a vertical
border between left-black and right-white
provides equal input to a cell preferring a
lighter figure to the right of the border and
another cell preferring a darker figure to the
left of the border. For visualization, a red fin
indicates that the cell prefers a contrast po-
larity such that the preferred figure side has
higher luminance (or value of whatever other
feature types) than the nonpreferred figure
side, and a blue fin indicates otherwise. The
neural connections are the same as before
except that facilitatory/suppressive connec-
tions of the type shown in Figures 2Ba, 2Bb,
2Bd, and 2Be, are reduced to 45% of the
original strength if the two linked cells prefer
the opposite/same contrast polarities. The
strengths of the connection types shown in
Figures 2Bc and 2Bf stay the same regard-
less of preferred contrast polarities of the
cells. Everything else about the model is the
same as before. (A) BOWN processing sur-
vives changes of contrast polarity along the
border of the gray figure. At the T junctions,
where the contrast polarity of the tops of the
junction is ambiguous, inputs are provided
with half strength to all four cells preferring
each of the four possible combinations of
the preferred BOWNs and polarities. (B)
When surface luminance and attention do
matter. Changing the black squares in (Ba) to
white squares in (Bb) makes different model
responses consistent with perception. Note
that, in (Bb), the borders at the intersecting
corners of the squares have ambiguous po-
larities, hence, inputs are halved and pro-
vided to all cell types preferring any BOWN
and polarity. In the bottom of (Bb), attention
is modeled by providing 20% additional in-
puts to neurons preferring the gray central
square as the figure. All model outputs are
plotted in the same format as in Figures 3B–
3D, except for the color of the fins.
urfaces is changed to white, again consistent with hu-
an perception. Figure 5Bb additionally demonstrates

hat a central gray square flanked by the four white
quares can be perceived as figure rather than back-
round by an attentional bias, speculatively modeled
s a 20% additional input to cells tuned to the biased
OWN along the border of this gray square (this is
ased on physiological observations that attentional
ifferences lead to sensitivity differences in cortical
eurons to their inputs in cortical areas V2, MT, etc.

Motter, 1993; Treue and Maunsell, 1999]). While Figure
demonstrates the possible additional powers of the
odel with additional mechanisms, these mechanisms

re only coarsely and speculatively modeled here and
re not within the main purpose of this paper. They re-
uire further study, especially when they are more pre-
isely pinned down through physiological experiments.
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The main goal in this paper is to answer the feasibility
question of whether V2 mechanisms suffice for generat-
ing BOWN tuning. For the same reason, the model is a
minimal network using only the essential elements rele-
vant for our question: intracortical connections for con-
textual influences and a simple neuron model, without ex-
traneous details such as neural spikes and ion channels.

Ours is the first model to generate BOWN tuning in
such a minimal manner. Previous models of border
ownership utilize additional external signals such as T
junctions (Finkel and Sajda, 1994) and L junctions (cor-
ners) (Kikuchi and Akashi, 2001) or use higher-level
neural units representing global figures (E. Craft et al.,
2004, J. Vis., abstract). These additional external mech-
anisms essentially answer the BOWN question by
themselves. Hence, these models do not indicate
whether or not V2 mechanisms alone can determine
BOWN. Interestingly, cells for the global figures used in
Craft et al. (E. Craft et al., 2004, J. Vis., abstract),
termed grouping cells, are multiscale, and if they exist
as predicted by the authors, within or beyond V2 for
the BOWN processing by reciprocal connections with
the BOWN tuned cells, they would enable size invari-
ance of the BOWN latency over a wider range of figure
sizes. A recent model (Nishimura and Sakai, 2004) has
generated limited BOWN tuning, using surround sup-
pression and facilitation for contextual influences using
luminance cues. It can account for some (Figures 1B–
1D, 1F, and 1H) but not others (Figures 1E, 1G, and 1I)
of the physiologically tested cases of BOWN tuning.
Relying heavily on luminance cues, it would be difficult
for it to generalize to contour images, or explain the
persistence of BOWN in the face of inconsistent border
contrast polarities (Figure 5A), or to generate dramatic
changes in perceptual border ownership on the basis
of small changes to an input stimulus, as observed in
Figures 4C–4F. There are also models (e.g., Li, 1998)
of contour integration or enhancement by intracortical
mechanisms in V1, and a V2 model (Zhaoping, 2002) of
grouping and segmentation of surfaces by depth, but
these also do not generate BOWN tuning. Grossberg
(1994) has suggested a number of interesting models
of border and surface processing, though these also do
not address BOWN tuning.

Although this model is simple and minimal, it makes
nontrivial and directly testable predictions. In addition
to the prediction on how BOWN latency could vary with
a wider range of figure sizes and with input strength,
there are the following predictions. In particular, BOWN
latency is predicted to be longer for the border seg-
ments whose multiple contextual regions provide op-
posite or conflicting ownership biases, such as the seg-
ments marked in Figure 4B, and for border segments
near the insections of several surfaces, such as in Fig-
ures 4C–4F. These longer latencies for the borders
indicated in Figures 4B–4F suggest that local or global
surface complexity slows down the cooperative com-
putation of border ownerships.

Experimental Procedures

We present full technical details and quantitative model parameters
in this section. (General understanding of this paper does not re-
quire following most of the technical details here.) For each (dis-
crete) CRF location i (evenly spaced on a 2D Manhattan grid with
wrap around boundary conditions) and preferred border direction θ
[24 possible values evenly spaced within (0,2π)], there is a principal
pyramidal cell with a state variable xiθ modeling membrane poten-
tial, and activation or firing rate gx( xiθ), which is a sigmoid-like func-
tion of xiθ. This pyramidal cell is paired with an inhibitory interneu-
ron that has membrane potential yiθ and a firing rate gy( yiθ),
receives excitatory drive gx( xiθ) from the principal cell, and gives
inhibitory feedback gy( yiθ) in return (Figure 6). Monosynaptic excita-
tion from one pyramidal cell ( j,θ#) to another (i,θ) is Jiθ, jθ#gx(xjθ#) where
Jiθ, jθ# models the synaptic connection strength. Similarly, interneu-
ron (i,θ) receives excitation Wiθ, jθ#gx( xjθ#) from pyramidal cell ( j,θ#),
mediating disynaptic inhibition from pyramidal cell ( j,θ#) to (i,θ).
Each model neuron models a local group of cells with similar prop-
erties and feature preferences (Amari, 1972). A model cell’s output,
i.e., gx(xiθ), may be seen as modeling the total firing rate (within a
scale factor) of spikes generated from all cells in this local cell
group. The model outputs as plotted in the figures are from the
pyramidal cells, i.e., Oiθ = gx(xiθ).

The visual input from V1 for a contour segment at discrete loca-
tion i and orientation 0 % θ < π is Iiθ. It models the total outputs of
a local group of V1 cells having similar tuning properties, with a
graded value ranging from zero to a maximum evoking, corre-
spondingly, null to saturating responses of the principal cell for a
single isolated contour segment. It is received by two principal (py-
ramidal, excitatory) neurons that share CRF location i but prefer
directions θ and θ + π, respectively. For notational convenience,
inputs are treated as also directional, spanning 0 to 2π, with the
constraint Iiθ = Ii,θ + π for all (i,θ) unless otherwise stated. Due to the
finite orientation tuning width of the cells, a directed edge (i,θ) in
an input image such as Figure 3A provides input Iiq# = Îe−|q# − q|/(π/8)

to cells (iθ#) preferring θ# z θ. All simulation examples shown in
this paper use Î = 3.5, corresponding to medium-high contrast in-
put, though other values could also be used.

Given population inputs Iiθ, the neural activities at time t evolve
according to the equations:

ẋiq(t) = − axxiq(t) − gy(yi,q(t)) − ∑
�q≠0

j(�q)gy(yi,q+�q(t)) (1)

+ ∑
j≠i,q′

Jiq, jq′gx(xjq′(t− tiq, jq′
J ))+Iiq(t)+Io+Niq

x (t)+I iq
normalization(t)

ẏiq(t) = − ayyiq(t) + gx(xiq(t)) + ∑
j≠i,q′

Wiq, jq′gx(xjq′(t− tiq, jq′
W ))+Ic+N iq

y (t)

(2)
In these equations, a x and a y model the decay to resting
Figure 6. Model Neural Circuit

An excitatory pyramidal (principal) cell codes for one specific CRF
location and preferred orientation/BOWN. The lateral connections
J and W mediate monosynaptic excitation (J) or disynaptic inhibi-
tion (W) between the principal cells. Identical V1 inputs are always
directed to two principal cells of the same CRF location and pre-
ferred orientation but opposite preferred BOWNs (such as in Fig-
ures 2Ab and 2Ac). Lateral interactions in the model cause different
output strengths (e.g., Figure 2Ad) from these two cells.
x iθ y iθ



Neuron
152
potentials, implying membrane time constants of 1/ax and 1/ay for w
the pyramidal and the interneuron, respectively. For the interneu- d
rons, ayyiθ could also include the effect of mutual inhibition be- r
tween the local interneurons that constitute a model interneuron; c
j(�θ) % 1 is the spread of inhibition within a hypercolumn (cells of t
the same i but different θ); Io and Ic are static background inputs, t
Niq

x and Niq
y model fluctuating neural noises, I iq

normalization models sup- v
pressive inputs due to the normalization of local activities [Heeger, q
1992]), and tiq, jq′

J and tiq, jq′
W model axonal conduction delays be- i

tween linked cells.
The model parameters used in the equations are as follows.
ax = ay = 1, hence all time here is in the unit of the membrane

wtime constant
t
0
bgx(x) ={ 0 if x < xth = 1

(x− xth) if xth ≤ x ≤ xsat = 2
(xsat− xth) if x > xsat. t

A
q
eNote that the maximum response level is 1.
t
j
r

o

j(q) ={0.8 if |q| = p /12
0.1 if |q| = p /6
0 otherwise 0

The background static inputs are (Io, Ic) = (0.1,1.0); Niq
x and Niq

y are
zero mean noises independent between neurons, fluctuating with

Han average amplitude of 0.2 and a temporal correlation length
nroughly 10% of the membrane time constant; and Iiq

normalization

= −(âi)2/128 depends on the sum âi of pyramidal activities (outputs)
in the vicinity of i, defined as all spatial locations displaced from i
by no more than 2 grid units horizontally and vertically. This normal-
ization input provides increasing suppression to a pyramidal’s ac- T
tivity as the overall pyramidal activities in the vicinity increases,
and thus helps to ensure stability of the network. Each axonal con- s
duction latency tiq, jq′

J,W is a random number within the range (0.8,1)/ I
ax and, for simplicity, does not change with the postsynaptic cell. s

To describe the synaptic weights, we need some notation. Let β be m
the direction of the spatial displacement j − i (spatial distance is in t
the unit of the grid) from one cell iθ to another jθ#, d = |i − j|, and 0 % a
θ,θ# < 2π. Let θ1 = f(θ,β) and θ2 = f(β,θ#), where f(x,y) = x − y, or x − L
y + 2π, or x − y − 2π for −π < x − y % π, or x − y % −π, or x − y > π, d
respectively. Denoting sign(x) = 1 for x > 0 and sign(x) = −1 otherwise, a
define (q#1,q#2) = (sign(q1)|π − |q1||, sign(q2)|π − |q2||). Then a

t
p(qa,qb) ≡ {(q1,q2) if |q1| + |q2| ≤ |q1

′ |+|q′2|
(q′1,q′2) otherwise p

t
Now θa and θb describe the directional angle between the two bor- c
der segments (i,θ) and (jθ#) and the spatial displacement j − i. The f
directional angles are positive or negative if a right or left turn of a
no more than half a cycle brings the border segments aligned with o
j − i or i − j. Define q#± h qa ± qb, let q± = q#±, or 2π − q#±, or −2π − t
q#±, for −π % q#± % π, or q#± > π, or q#± < −π, respectively. (

i
a
a
v
e
n
c
a

S
T
c
c

here f1(d) = e−(d/9)
2
, f2(d) = e−d/5, and f1(d) = f2(d) = 0 for d > 10 and

= 0. This, though cumbersome, is no more than a piecewise pa-
ameterization of the lateral connections with changes in spatial
onfiguration between the underlying border segments, as qualita-
ively described in Figures 2Ba, 2Bb, 2Bd, and 2Be. Additionally,
he connection strength decays with distance between linked cells,
anishes for distance larger than 10, and is a translation invariant
uantity depending only on θ, θ#, and the relative displacement j −

. Meanwhile, the connections onto the interneurons are

Wiq, jq′ = c(Ji(q+p)%(2p), jq′ + Jiq, j(q′+p)%(2p)) /Ji,0,i+1x,0

here x%(2π) = x if x < 2π and x%(2π) = x − 2π otherwise, i + 1x is
he grid position one unit displaced from i horizontally, and c =
.02646 usually, except when (θa,θb) as defined above for the two
order segments (iθ) and (j(θ# + π)%(2π)) satisfy |qa|,|qb| % π/11 (i.e.,

hese two segments are roughly aligned), in which case c = 0.0147.
ll of these synaptic weights describe only the connection types
ualitatively indicated in Figures 2Ba, 2Bb, 2Bd, and 2Be. If, how-
ver, the two border segments for the two cells are close enough
o each other and are near perpendicular to each other like a T
unction, the synaptic weights take different values. Such a spatial
elationship is judged by if the two segments satisfy either

0 < d ≤ 2, |qad| < 0.5, and p /3.1 < |qb| < 2p /3.1 (3)

r

0 < d ≤ 2, |qbd| < 0.5, and p /3.1 < |qa| < 2p /3.1 (4)

When condition 3 is satisfied, the connections are zero unless qb <
, then

Jiq, jq′ = fT(d)e−2|qad|,
Wiq, j(q′+p)%(2p) = 0.0588fT(d)e−2|qad|e−20|p/2+qb|/p /Ji,0,i+1x,0.

ere, fT(d) = (11/90)e−d/6. While if condition 4 is satisfied, the con-
ections are zero unless θa < 0, then

Jiq, jq′ = 3fT(d)e−2|qbd|,
Wi(q+p)%(2p), jq′ = 0.0588fT(d)e−2|qbd|e−20|p/2+qa|/p /Ji,0,i +1x,0.

hese connections are schematically shown in Figures 2Bc and 2Bf.
The quantitative values for the lateral connections are designed

uch that the desired contextual influences for BOWN are achieved.
n particular, this requires achieving BOWN tuning for a simple
quare figure and for one surface occluding another. Some mathe-
atical analysis for stability of the recurrent networks is necessary

o ensure that the network is well behaved, analogous to those for
recurrent model of primary visual cortex (Li and Dayan, 1999;

i, 2001). However, due to the known mathematical difficulties in
ifferential equations with time delays, the analysis is approximate
nd has to be supported by simulations. While the technical details
re not important for the aim of this paper, it is suffices to mention
hat the model parameters are roughly robust once a desirable
arameter region is reached, since insignificant changes of the
arameters do not destroy the overall model behavior in simula-

ions. For instance, the model behavior is not too sensitive to small
hanges in how the synaptic weights decay with distance, given a
ixed value of the total synaptic weight integrated over distance
nd the longest length of the connections. This robustness is dem-
nstrated by the fact that the same model parameters are used in
he simulations of all the stimulus examples shown in this paper
with additional parameters described in the Figure 5 legend when
ncluding additional model features such as surface luminance and
ttentional influences), and random dynamic noise (as described
bove) in neural inputs does not destroy the desired network beha-
ior. Further analysis of this model network is expected to be
xtensive, given the dynamic complexities involved in recurrent
etworks of such type. However, future physiological and anatomi-
al data should hopefully help to constrain the network parameters
nd thus reduce the difficulties.

upplemental Data
he Supplemental Data include seven supplemental figures and
an be found with this article online at http://www.neuron.org/cgi/
ontent/full/47/1/143/DC1/.
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