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Abstract:
A unique vertical bar among horizontal bars is salient and pops out perceptually. Physiological data have sug-

gested that mechanisms in the primary visual cortex (V1) contribute to the high saliency of such a unique basic feature,

but indicated little regarding whether V1 plays an essential or peripheral role in input-driven or bottom-up saliency.

Meanwhile, a biologically based V1 model has suggested thatV1 mechanisms can also explain bottom-up saliencies

beyond the pop-out of basic features, such as the low saliency of a unique conjunction feature like a red-vertical bar

among red-horizontal and green-vertical bars, under the hypothesis that the bottom-up saliency at any location is sig-

naled by the activity of the most active cell responding to itregardless of the cell’s preferred features such as color and

orientation. The model can account for phenomena such as thedifficulties in conjunction feature search, asymmetries

in visual search, and how background irregularities affectease of search. In this paper, we report non-trivial predic-

tions from the V1 saliency hypothesis, and their psychophysical tests and confirmations. The prediction that most

clearly distinguishes the V1 saliency hypothesis from other models is that task irrelevant features could interfere in

visual search or segmentation tasks which rely significantly on bottom-up saliency. For instance, irrelevant colors can

interfere in an orientation based task, and the presence of horizontal and vertical bars can impair performance in a task

based on oblique bars. Furthermore, properties of the intra-cortical interactions and neural selectivities in V1 predict

specific emergent phenomena associated with visual grouping. Our findings support the idea that a bottom-up saliency

map can be at a lower visual area than traditionally expected, with implications for top-down selection mechanisms.
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Non-technical summary
Only a fraction of visual input can be selected for attentional scrutiny, often by focusing on a limited extent

of the visual space. The selected location is often determined by the bottom-up visual inputs rather than the top-

down intentions. For example, a red dot among green ones automatically attracts attention and is said to be salient.

Physiological data have suggested that the primary visual cortex (V1) in the brain contributes to creating such bottom-

up saliencies from visual inputs, but indicated little on whether V1 plays an essential or peripheral role in creating a

saliency map of the input space to guide attention. Traditional psychological frameworks, based mainly on behavioral

data, have implicated higher-level brain areas for the saliency map. Recently, it has been hypothesized that V1 creates

this saliency map, such that the image location whose visualinput evokes the highest response among all V1 output

neurons is most likely selected from a visual scene for attentional processing. This paper derives non-trivial predictions

from this hypothesis and presents their psychophysical tests and confirmations. Our findings suggest that bottom-up

saliency is computed at a lower brain area than previously expected, and have implications on top-down attentional

mechanisms.

Abbreviated Title: Psychophysical tests of the V1 saliency map

1 Introduction

Visual selection of inputs for detailed, attentive, processing often occurs in a bottom-up or stimulus driven manner,

particularly in selections immediately or very soon after visual stimulus onset ([1, 2, 3]). For instance, a vertical bar

among horizontal ones or a red dot among green ones perceptually pops out automatically to attract attention ([4, 5]),

and is said to be highly salient pre-attentively. Physiologically, a neuron in the primary visual cortex (V1) gives a

higher response to its preferred feature, e.g., a specific orientation, color, or motion direction, within its receptive

field (RF) when this feature is unique within the display, rather than when it is one of the elements in a homogenous

background ([6, 7, 8, 9, 10, 11, 12]). This is the case even when the animal is under anesthesia[9], suggesting bottom-

up mechanisms. This occurs because the neuron’s response toits preferred feature is often suppressed when this

stimulus is surrounded by stimuli of the same or similar features. Such contextual influences, termed iso-feature

suppression, and iso-orientation suppression in particular, are mediated by intra-cortical connections between nearby

V1 neurons ([13, 14, 15]). The same mechanisms also make V1 cells respond more vigorously to an oriented bar when

it is at the border, rather than the middle, of a homogeneous orientation texture, as physiologically observed[10]),

since the bar has fewer iso-orientation neighbors at the border. These observations have prompted suggestions that V1

mechanisms contribute to bottom-up saliency for pop-out features like the unique orientation singleton or the bar at an

orientation texture border (e.g., [6, 7, 8, 9, 10]). This is consistent with observations that highly salient inputs canbias

responses in extrastriate areas receiving inputs from V1 ([16, 17]).

Behavioral studies have examined bottom-up saliencies extensively in visual search and segmentation tasks ([4,
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18, 19]), showing more complex, subtle, and general situations beyond basic feature pop-outs. For instance, a unique

feature conjunction, e.g., a red-vertical bar as a color-orientation conjunction, is typically less salient and requires

longer search times; ease of searches can change with target-distractor swaps; and target salience decreases with

background irregularities. However, few physiological recordings in V1 have used stimuli of comparable complexity,

leaving it open as to how generally V1 mechanisms contributeto bottom-up saliency.

Meanwhile, a model of contextual influences in V1 ([20, 21, 22, 23]), including iso-feature suppression and

co-linear facilitation ([24, 25]), has demonstrated that V1 mechanisms can plausibly explain these complex behaviors

mentioned above, assuming that the V1 cell with the highest response to a target determines its salience and thus

the ease of a task. Accordingly, V1 has been proposed to create a bottom-up saliency map, such that the receptive

field (RF) location of the most active V1 cell is most likely selected for further detailed processing[20, 23]). We call

this proposal the V1 saliency hypothesis. This hypothesis is consistent with the observation that micro-stimulation

of a V1 cell can drive saccades, via superior colliculus, to the corresponding RF location ([26]), and that higher V1

responses correlate with shorter reaction times to saccades to the corresponding receptive fields ([27]). It can be

clearly expressed algebraically. Let(O1, O2, ..., OM ) denote outputs or responses from V1 output cells indexed by

i = 1, 2, ...M , and let the RFs of these cells cover locations(x1, x2, ..., xM ), respectively, then the location selected by

bottom-up mechanisms iŝx = xî wherêi is the index of the most responsive V1 cell (mathematically,î = argmaxiOi).

It is then clear that (1) the saliency SMAP(x) at a visual locationx increases with the response level of the most active

V1 cell responding to it,

SMAP(x) increases with maxxi=xOi, given an input scene (1)

and the less activated cells responding to the same locationdo not contribute, regardless of the feature preferences of

the cells; and (2) the highest response to a particular location is compared with the highest responses to other locations

to determine the saliency of this location, since only the RFlocation of the most activated V1 cell is the most likely se-

lected (mathematically, the selected location isx̂ = argmaxxSMAP(x)). As salience merely serves to order the priority

of inputs to be selected for further processing, only the order of the salience is relevant([23]). However, for conve-

nience we could write equation (1) as SMAP(x) = [ maxxi=xOi]/[maxjOj ], or simply SMAP(x) = maxxi=xOi.

Note that the interpretation ofxi = x is that the receptive field of celli covers locationx or is centered nearx.

In a recent physiological experiment, Hegde and Felleman ([28]) used visual stimuli composed of colored and

oriented bars resembling those used in experiments on visual search. In some stimuli the target popped out easily (e.g.

the target had a different color or orientation from all the background elements), whereas in others, the target was more

difficult to detect, and did not pop out (e.g. a color-orientation conjunction search, where the target is defined by a

specific combination of orientation and color). They found that the responses of the V1 cells, which are tuned to both

orientation and color to some degree, to the pop-out targetswere not necessarily higher than responses to non-pop-out

targets, and thus raising doubts regarding whether bottom-up saliency is generated in V1. However, these doubts do

not disprove the V1 saliency hypothesis since the hypothesis does not predict that the responses to pop-out targets in

some particular input images would be higher than the responses to non-pop-out targets in other input images. For

a target to pop out, the response to the target should be substantially higher than the responses to all the background

elements. The absolute level of the response to the target isirrelevant: what matters is the relative activations evoked by

the target and background. Since Hegde and Felleman[28] didnot measure the responses to the background elements,
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their findings do not tell us whether V1 activities contribute to saliency. It is likely that the responses to the background

elements were higher for the conjunction search stimuli, because each background element differed greatly from many

of its neighbors and, as for the target, there would have beenweak iso-feature suppression on neurons responding to

the background elements. On the other hand, each backgroundelement in the pop-out stimuli always had at least

one feature (color or orientation) the same as all of its neighbors, so iso-feature suppression would have reduced the

responses to the background elements, making them substantially lower than the response to the target. Meanwhile,

it remains difficult to test the V1 saliency hypothesis physiologically when the input stimuli are more complex than

those of the singleton pop-out conditions.

Psychophysical experiments provide an alternative means to ascertain V1’s role in bottom-up salience. While

previous works ([20, 21, 22, 23]) have shown that the V1 mechanisms can plausibly explain the commonly known

behavioral data on visual search and segmentation, it is important to generate from the V1 saliency hypothesis behav-

ioral predictions which are hitherto unknown experimentally so as to test the hypothesis behaviorally. This hypothesis

testing is very feasible for the following reasons. There are few free parameters in the V1 saliency hypothesis since

(1) most of the relevant physiological mechanisms in V1 are established experimental facts which can be modeled

but not arbitrarily distorted, and (2) the only theoreticalinput is the hypothesis that the receptive field location of the

most responsive V1 cell to a scene is the most likely selected. Consequently, the predictions from this hypothesis can

be made precise, making the hypothesis falsifiable. One suchpsychophysical test confirming a prediction has been

reported recently ([29]). The current work aims to test the hypothesis more systematically, by providing non-trivial

predictions that are more indicative of the particular nature of the V1 saliency hypothesis and the V1 mechanisms.

For our purpose, we first review the relevant V1 mechanisms inthe rest of the Introduction section. The Re-

sults section reports the derivations and tests of the predictions. The Discussion section will discuss related issues

and implications of our findings, discuss possible alternative explanations for the data, and compare the V1 saliency

hypothesis with traditional saliency models ([18, 19, 30, 31]) that were motivated more by the behavioral data ([4, 5])

than by their physiological basis.

The relevant V1 mechanisms for the saliency hypothesis are the receptive fields and contextual influences. Each

V1 cell ([32]) responds only to a stimulus within its classical receptive field (CRF). Input at one locationx evokes

responses(Oi, Oj , ...) from multiple V1 cellsi, j, ... having overlapping receptive fields coveringx. Each cell is tuned

to one or more particular features including orientation, color, motion direction, size, and depth, and increases its

response monotonically with the input strength and resemblance of the stimulus to its preferred feature. We call cells

tuned to more than one feature dimension conjunctive cells[23], e.g., a vertical-rightward conjunctive cell is simul-

taneously tuned to rightward motion and vertical orientation ([32]), a red-horizontal cell to red color and horizontal

orientation ([33]). Hence, for instance, a red-vertical bar could evoke responses from a vertical-tuned cell, a red-tuned

cell, a red-vertical conjunctive cell, and another cell preferring orientation two degrees from vertical but having an

orientation tuning width of15o, etc. The V1 saliency hypothesis states that the saliency ofa visual location is dictated

by the response of the most active cell responding to it ([20,23, 34]), SMAP(x) ∝ maxxi=xOi, rather than the sum

of the responses
∑

xi=x Oi to this location. This makes the selection easy and fast, since it can be done by a single

operation to find the most active V1 cell (î = argmaxiOi) responding to any location and any feature(s). We will refer

to saliency by the maximum response, SMAP(x) ∝ maxxi=xOi as the MAX rule, to saliency by the summed response
∑

xi=x Oi as the SUM rule. It will be clear later that the SUM rule is not supported, or is less supported by data, nor
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is it favored by computational considerations (see Discussion).

Meanwhile, intra-cortical interactions between neurons make a V1 cell’s response context dependent, a neces-

sary condition for signaling saliency, since, e.g., a red item is salient in a green but not in a red context. The dominant

contextual influence is the iso-feature suppression mentioned earlier, so that a cell responding to its preferred feature

will be suppressed when there are surrounding inputs of the same or similar feature. Given that each input location will

evoke responses from many V1 cells, and that responses are context dependent, the highest response to each location

to determine saliency will also be context dependent. For example, the saliency of a red-vertical bar could be signaled

by the vertical-tuned cell when it is surrounded by red horizontal bars, since the red-tuned cell is suppressed through

iso-color suppression by other red-tuned cells respondingto the context. However, when the context contains green

vertical bars, its saliency will be signaled by the red-tuned cells. In another context, the red-vertical conjunctive cell

could be signaling the saliency. This is natural since saliency is meant to be context dependent.

Additional contextual influences, weaker than the iso-feature suppression, are also induced by the intra-cortical

interactions in V1. One is the co-linear facilitation to a cell’s response to an optimally oriented bar when a contextual

bar is aligned to this bar as if they are both segments of a smooth contour ([24, 25]). Hence, iso-orientation interaction,

including both iso-orientation suppression and co-linearfacilitation, is not isotropic. Another contextual influence is

the general, feature-unspecific, surround suppression to acell’s response by activities in nearby cells regardless of

their feature preferences ([6, 7]). This causes reduced responses by contextual inputs of any features, and interactions

between nearby V1 cells tuned to different features.

The most immediate and indicative prediction from the hypothesis is that task irrelevant features can interfere

in tasks that rely significantly on saliency. This is becauseat each location, only the response of the most activated

V1 cell determines the saliency. In particular, if cells responding to task irrelevant features dictate saliencies at some

spatial locations, the task relevant features become “invisible” for saliency at these locations. Consequently, visual

attention is misled to task irrelevant locations, causing delay in task completion. Secondly, different V1 processes for

different feature dimensions are predicted to lead to asymmetric interactions between features for saliency. Thirdly,

the spatial or global phenomena often associated with visual grouping are predicted. This is because the intra-cortical

interactions depend on the relative spatial relationship between input features, particularly in a non-isotropic manner

for orientation features, making saliency sensitive to spatial configurations, in addition to the densities, of inputs.

These broad categories of predictions will be elaborated inthe next section in various specific predictions, together

with their psychophysical tests.

2 Results

For visual tasks in which saliency plays a dominant or significant role, the transform from visual input to behavioral

response, particularly in terms of the reaction time (RT) inperforming a task, via V1 and other neural mechanisms can

be simplistically and phenomenologically modeled as follows for clarity of presentation.

V1 responsesO = (O1, O2, ..., OM ) = fv1(visual inputI;ααα = (α1, α2, ...)) (2)

The saliency map SMAP(x) ∝ maxxi=xOi (3)

The reaction time RT = fresponse(SMAP;βββ = (β1, β2, ...)) (4)
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wherefv1(.) models the transform from visual inputI to V1 responsesO via neural mechanisms parameterized by

ααα describing V1’s receptive fields and intra-cortical interactions, whilefresponse(.) models the transform from the

saliency map SMAP to RT via the processes parameterized byβββ modeling decision making, motor responses and

other factors beyond bottom-up saliency. Without quantitative knowledge ofβββ, it is sufficient for our purpose to

assume a monotonic transformfresponse(.) that gives a shorter RT to a higher saliency value at the task relevant

location, since more salient locations are more quickly selected. This is of course assuming that the reaction time

is dominated by the time for visual selection by saliency, orthat the additional time taken after visual selection and

before the task response, say, indicated by button press, isa roughly constant quantity that does not vary sufficiently

with the different stimuli being compared in any particularexperiment. For our goal to test the saliency hypothesis,

we will select stimuli such that this assumption is practically valid (see Discussion). Hence, all our predictions are

qualitative, i.e., we predict a longer reaction time (RT) inone visual search task than that in another rather than the

quantitative differences in these RTs. This does not mean that our predictions will be vague or inadequate for testing

the V1 saliency hypothesis, since the predictions will be very precise by explicitly stating which tasks should require

longer RTs than which other tasks, making them indicative ofV1 mechanisms. Meanwhile, the qualitativeness makes

the predictions robust and insensitive to variations in quantitative details parameterized byααα of the underlying V1

mechanisms, such as the quantitative strengths of the lateral connections, provided that the qualitative facts of the V1

neural mechanisms are fixed or determined. Therefore, as will be clear below, our predictions can be derived and

comprehensible merely from our qualitative knowledge of a few facts about V1, e.g., that neurons are tuned to their

preferred features, that iso-feature suppression is the dominant form of contextual influences, that V1 cells tuned to

color have larger receptive fields than cells tuned to orientation, etc, without resorting to quantitative model analysis

or simulations which would only affect the quantitative butnot the qualitative outcomes. Meanwhile, although one

could quantitatively fit the model to behavioral RTs by tuning the parametersααα andβββ (within the qualitative range), it

adds no value since model fitting is typically possible givenenough parameters, nor is it within the scope of this paper

to construct a detailed simulation model that, for this purpose, would have to be more complex than the available V1

model for contextual influences ([20, 21, 22, 23]). Hence, wedo not include quantitative model simulations in this

study which is only aimed at deriving and testing our qualitative predictions.

2.1 Interference by task irrelevant features

Consider stimuli having two different features at each location, one task relevant and the other task irrelevant. For

convenience, we call the V1 responses to the task relevant and irrelevant stimuli, relevant and irrelevant responses,

respectively, and from the relevant and irrelevant neuronsrespectively. If the irrelevant response(s) is stronger than the

relevant response(s) at a particular location, this location’s salience is dictated by the irrelevant response(s) according

to the V1 saliency hypothesis, and the task relevant features become “invisible” for saliency. In visual search and

segmentation tasks which rely significantly on saliency to attract attention to the target or texture border, the task

irrelevant features are predicted to interfere with the task by directing attention irrelevantly or ineffectively.

Fig (1) shows the texture patternsA, B, C to illustrate this prediction. PatternA has a salient border between

two iso-orientation textures of left-oblique and right-oblique bars respectively, activating two populations of neurons

each for one of the two orientations. PatternB is a uniform texture of alternating horizontal and verticalbars, evoking

responses from another two groups of neurons for horizontaland vertical orientations respectively. When all bars are of
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the same contrast, the neural response from the corresponding neurons to each bar would be the same (ignoring neural

noise) if there were no intra-cortical interactions givingrise to contextual influences. With iso-orientation suppression,

neurons responding to the texture border bars in patternA are more active than neurons responding to other bars in

patternA; this is because they receive iso-orientation suppressionfrom fewer active neighboring neurons, since there

are fewer neighboring bars of the same orientation. For easeof explanation, let us say, the highest neural responses

to a border bar and a background bar are10 and5 spikes/second respectively. This V1 response pattern makes the

border more salient, so it pops out in a texture segmentationtask. Each bar in patternB has the same number of

iso-orientation neighbors as a texture border bar in pattern A, so it evokes a comparable level of (highest) V1 response,

i.e., 10 spikes/second, to that evoked by a border bar in patternA. If patternsA andB are superimposed, to give

patternC, the composite pattern will activate all neurons responding to patternsA andB, each neuron responding

approximately as it does toA or B alone (for simplicity, we omitted the general suppression between neurons tuned

to different orientations, without changing our conclusion, see below). According to the V1 saliency hypothesis, the

saliency at each texture element location is dictated by themost activated neuron there. Since the (relevant) response

to each element of patternA is lower than or equal to the (irrelevant) response to the corresponding element of pattern

B, the saliency at each element location in patternC is the same as forB, so there is no texture border highlight in

such a composite stimulus, making texture segmentation difficult.

For simplicity in our explanation, our analysis above included only the dominant form of contextual influence,

the iso-feature suppression, but not the less dominant formof the contextual influence, the general surround suppres-

sion and co-linear facilitation. Including the weaker forms of contextual influences, as in the real V1 or our model

simulations ([21, 22, 23]), does not change our prediction here. So for instance, general surround suppression between

local neurons tuned to different orientations should reduce each neuron’s response to patternC from that to patternA
or B alone. Hence, the (highest) responses to the task relevant bars in patternC may be, say, 8 and 4 spikes/second

respectively at the border and background. Meanwhile, the responses to the task irrelevant bars in patternC should

be, say, roughly 8 spikes/second everywhere, leading to thesame prediction of interference. In the rest of this paper,

for ease of explanation without loss of generality or changeof conclusions, we include only the dominant iso-feature

suppression in our description of the contextual influences, and ignore the weaker or less dominant co-linear facili-

tation and general surround suppression unless their inclusion makes a qualitative or relevant difference (as we will

see in section (2.4)). For the same reason, our arguments do not detail the much weaker responses from cells not as

responsive to the stimuli concerned, such as responses frommotion direction selective cells to a non-moving stimulus,

or the response from a cell tuned to22.5o to a texture element in patternC composed of two intersecting bars oriented

at 0o and45o respectively. (Jointly, the two bars resemble a single bar oriented at22.5o only at a scale much larger

or coarser than their own. Thus the most activated cell tunedto 22.5o would have a larger RF, much of which would

contain no (contrast or luminance) stimulus, leading to a response weaker than cells preferringboth the scale and the

orientation of the individual bars). This is because these additional but non-dominant responses at each location are

“invisible” to saliency by the V1 saliency hypothesis and thus do not affect our conclusions.

Fig. (1D) shows that segmenting the composite textureC indeed takes much longer than segmenting the task

relevant component textureA, confirming the prediction. The reaction times were taken ina task when subjects had

to report the location of the texture border, as to the left orright of display center, as quickly as possible. (The actual

stimuli used are larger, see Methods.) In patternC, the task irrelevant horizontal and vertical features fromcomponent
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patternB interfere with segmentation by relevant orientations frompatternA. Since patternB has spatially uniform

saliency values, the interference is not due to the noisy saliencies of the background ([19, 35]).

One may wonder whether each composite texture element in Fig. (1C) may be perceived by its average orien-

tation at each location, see Fig (2F), thereby making the relevant orientation feature noisy toimpair performance. Fig

2E demonstrates by our control experiment that this would not have caused as much impairment, RT for this stimulus

is at least 37% shorter than that for the composite stimulus.

If one makes the visual search analog of the texture segmentation tasks in Fig. (1), by changing stimulus Fig.

(1A) (and consequently stimulus Fig. (1C)) such that only one target of left- (or right- ) tilted bar isin a background

of right- (or left-) tilted bars, qualitatively the same result (Fig. (1E)) is obtained. Note that the visual search task may

be viewed as the extreme case of the texture segmentation task when one texture region has only one texture element.

Note that, if saliency were computed by the SUM rule SMAP(x) ∝
∑

xi=x Oi (rather than the MAX rule)

to sum the responsesOi from cells preferring different orientations at a visual locationx, interference would not

be predicted since the summed responses at the border would be greater than those in the background, preserving

the border highlight. Here, the texture border highlightHborder (for visual selection) is measured by the difference

Hborder = Rborder − Rground between the (summed or maxed) responseRborder to the texture border and the

responseRground to the background (where responseRx at locationx meansRx =
∑

xi=x Oi or Rx = maxxi=xOi,

under the SUM or MAX rule, respectively). This is justified bythe assumption that the visual selection is by the

winner-take-all of the responsesRx in visual spacex, hence the priority of selecting the texture border is measured

by how much this response difference is compared to the levelof noises in the responses. Consequently, the SUM

rule applied to our example of response values gives the sameborder highlightHborder = 5 spikes/second with or

without the task irrelevant bars, while the MAX rule givesHborder = 0 and5 spikes/second respectively. If the border

highlight is measured more conservatively by the ratioHborder = Rborder/Rground (when a ratioHborder = 1 means

no border highlight), then the SUM rule predicts, in our particular example,Hborder = (10 + 10)/(5 + 10) = 4/3

with the irrelevant bars, andHborder = 10/5 = 2 without, and thus some degree of interference. However, we argue

below that even this measure ofHborder by the response ratio makes the SUM rule less plausible. Behavioral and

physiological data suggest that, as long as the saliency highlight is above the just-noticable-difference (JND, [36]), a

reduction inHborder should not increase RT as dramatically as observed in our data. In particular, previous findings

([37, 36]) and our data (in Fig. 2E) suggest that the ease of detecting an orientation contrast(assessed using RT) does

not reduce by more than a small fraction when the orientationcontrast is reduced, say, from90o to 20o as in Fig. 2A
and Fig. 2D ([37, 36]), even though physiological V1 responses ([38]) to these orientation contrasts suggest that a

90o orientation contrast would give a highlight ofH90o ∼ 2.25 and a20o contrast would giveH20o ∼ 1.25 using

the ratio measurement for highlights. (Jones et al[38] illustrated that the V1 response to a90o and20o orientation

contrast, respectively, can be 45 and 25 spikes/second respectively, over a background response of 20 spikes/second.)

Hence, the very long RT in our texture segmentation with interference implies that the border should have a highlight

Hborder ≈ 1 or below the JND, while a very easy segmentation without interference implies that the border should

haveHborder ≫ 1. If Oborder andOground are the relevant responses to the border and background barsrespectively

for our stimulus, and sinceOborder also approximates the irrelevant response, then applying the SUM rule gives

border highlightHborder = 2Oborder/(Oborder + Oground) andOborder/Oground, with and without interference,

respectively. Our RT data thus require thatOborder/Oground ≫ 1 and2Oborder/(Oborder + Oground) ≈ 1 should

8



be satisfied simultaneously — this is difficult sinceOborder/Oground > 2 means2Oborder/(Oborder + Oground) >

4/3, and a largerOborder/Oground would give a larger2Oborder/(Oborder + Oground), making the SUM rule less

plausible. Meanwhile, the MAX rule gives a border highlightHborder = Oborder/Oborder = 1 with interference and

Hborder = Oborder/Oground > 1 without. These observations strongly favor the MAX over theSUM rule, and we

will show more data to differentiate the two rules later.

From our analysis above, we can see that the V1 saliency hypothesis also predicts a decrease of the interference

if the irrelevant feature contrast is reduced, as demonstrated when comparing Fig. (2GHI ) with Fig. (2ABC), and

confirmed in our data (Fig. 2E). The neighboring irrelevant bars in Fig. 2I are more similarly oriented, inducing

stronger iso-feature suppression between them, and decreasing their evoked responses, say, from 10 to 7 spike/second.

(Although co-linear facilitation is increased by this stimulus change, since iso-orientation suppression dominatesco-

linear facilitation physiologically, the net effect is decreased responses to all the task irrelevant bars.) Consequently,

the relevant texture border highlights are no longer submerged by the irrelevant responses. The degree of interference

would be much weaker, though still non-zero since the irrelevant responses (of 7 spikes/second) still dominate the

relevant responses (of 5 spikes/second) in the background,reducing the relative degree of border highlight from 5 to

3 spikes/second. Analogously, interference can be increased by decreasing task relevant contrast, as demonstrated by

comparing Fig. (2JKL ) and Fig. (2GHI ), and confirmed in our data (Fig. 2E). Reducing the relevant contrast makes

the relevant responses to the texture border weaker, say from 10 to 7 spikes/second, making these responses more

vulnerable to being submerged by the irrelevant responses.Consequently, interference is stronger in Fig. (2L ) than

Fig. (2I ). Essentially, the existence and strength of the interference depend on the relative response levels to the task

relevant and irrelevant features, and these response levels depend on the corresponding feature contrasts and direct

input strengths. When the relevant responses dictate saliency everywhere and their response values or overall response

pattern are little affected by the existence or absence of the irrelevant stimuli, there should be little interference.

Conversely, when the irrelevant responses dictate saliency everywhere, interference for visual selection is strongest.

When the relevant responses dictate the saliency value at the location of the texture border or visual search target but

not in the background of our stimuli, the degree of interference is intermediate. In both Fig. (2C) and Fig. (2L ),

the irrelevant responses (approximately) dictate the saliency everywhere, so the texture borders are predicted to be

equally non-salient. This is confirmed across subjects in our data (Fig. 2E), although there is a large variation between

subjects, perhaps because the bottom-up saliency is so weakin these two stimuli that subject specific top-down factors

contribute significantly to the RTs.

2.2 The color-orientation asymmetry in interference

Can task irrelevant features from another feature dimension interfere? Fig (3A) illustrates orientation segmentation

with irrelevant color contrasts. As in Fig. (1), the irrelevant color contrast increases the responses to the color features

since the iso-color suppression is reduced. At each location, the response to color could then compete with the response

to the relevant orientation feature to dictate the saliency. In Fig. (1C), the task irrelevant features interfere because they

evoke higher responses than the relevant features, as made clear by demonstrations in Fig. (2). Hence, whether color

can interfere with orientation or vice versa depends on the relative levels of V1 responses to these two feature types.

Color and orientation are processed differently by V1 in twoaspects. First, cells tuned to color, more than cells tuned

to orientation, are usually in V1’s cytochrome oxidase stained blobs which are associated with higher metabolic and
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neural activities[39]. Second, cells tuned to color have larger receptive fields[33, 40], hence they are activated more

by larger patches of color. In contrast, larger texture patches of oriented bars can activate more orientation tuned cells,

but do not make individual orientation tuned cells more active. Meanwhile, in the stimulus for color segmentation

(e.g., Fig. (3B)), each color texture region is large so that color tuned cells are most effectively activated, making

their responses easily the dominant ones. Consequently, the V1 saliency hypothesis predicts: (1) task irrelevant colors

are more likely to interfere with orientation than the reverse; (2) irrelevant color contrast from larger color patches

can disrupt an orientation based task more effectively thanthat from smaller color patches; and (3) the degree of

interference by irrelevant orientation in color based taskwill not vary with the patch size of the orientation texture.

These predictions are apparent when viewing Fig (3AB). They are confirmed by RT data for our texture seg-

mentation task, shown in Fig. (3C-J). Irrelevant color contrast can indeed raise RT in orientation segmentation, but

is effective only for sufficiently large color patches. In contrast, irrelevant orientation contrast does not increaseRT in

color segmentation regardless of the sizes of the orientation patches. In Fig. (3C-E), the irrelevant color patches are

small, activating the color tuned cells less effectively. However, interference occurs under small orientation contrast

which reduces responses to relevant features (as demonstrated in Fig. (2)). Larger color patches can enable inter-

ference even to a90o orientation contrast at the texture border, as apparent in Fig (3A), and has been observed by

Snowden[41]. In Snowden’s design, the texture bars were randomly rather than regularly assigned one of two iso-

luminant, task irrelevant, colors, giving randomly small and larger sizes of the color patches. The larger color patches

made task irrelevant locations salient to interfere with the orientation segmentation task. Previously, the V1 saliency

hypothesis predicted that Snowden’s interference should become stronger when there are more irrelevant color cate-

gories, e.g., each bar could assume one of three rather than two different colors. This is because more color categories

further reduce the number of iso-color neighbors for each colored bar and thus the iso-color suppression, increasing

responses to irrelevant color. This prediction was subsequently confirmed[29].

In Fig (3 G-I ), the relevant color contrast was made small to facilitate interference by irrelevant orientation,

though unsuccessfully. Our additional data showed that orientation does not significantly interfere with color based

segmentation even when the color contrast was reduced further. The patch sizes, of 1x1 and 2x2, of the irrelevant

orientation textures ensure that each bar in these patches evoke the same levels of responses, since each has the same

number of iso-orientation neighbours (this would not hold when the patch size is 3x3 or larger). Such an irrelevant

stimulus pattern evokes a spatially uniform level of irrelevant responses, thus ensuring that interference cannot possibly

arises from non-uniform or noisy response levels to the background[19, 35]. Patch sizes for irrelevant colors in Fig (3

C-E) were made to match those of irrelevant orientations in Fig.(3 G-I ), so as to compare saliency effects by color

and orientation features. Note that, as discussed in section 2.1, the SUM rule would predict the same interference

only if saliency highlightHborder is measured by the ratio between responses to the border and background. With this

measure ofHborder, our data in this subsection, showing that the interferenceonly increases RT by a small fraction,

can not sufficiently differentiate the MAX from the SUM rule.

2.3 Advantage for color-orientation double feature but notorientation-orientation double
feature.

A visual location can be salient due to two simultaneous feature contrasts. For instance, at the texture border between

a texture of green, right-tilted, bars and another texture of pink, left-tilted, bars, in Fig. (4C), both the colorand
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orientation contrast could make the border salient. We say that the texture border has a color-orientation double

feature contrast. Analogously, a texture border of an orientation-orientation double contrast, and the corresponding

borders of single orientation contrasts, can be made as in Fig. (4EFG). We can ask whether the saliency of a texture

border with a double feature contrast can be higher than bothof those of the corresponding single-feature-contrast

texture borders. We show below that the V1 saliency hypothesis predicts a likely “yes” for color-orientation double

feature but a definite “no” for orientation-orientation double feature.

V1 has color-orientation conjunctive cells which are tunedto both color and orientation, though their tuning to

either feature is typically not as sharp as that of the singlefeature tuned cells[33]. Hence, a colored bar can activate

a color tuned cell, an orientation tuned cell, and a color-orientation conjunctive cell, with cell outputsOc, Oo, and

Oco respectively. The highest response max(Oc, Oo, Oco) from these cells should dictate the saliency of the bar’s

location. Let the triplet of response be[Oo
c , Oo

o , Oo
co] at an orientation texture border,[Oc

c, O
c
o, O

c
co] at a color border,

and[Oco
c , Oco

o , Oco
co] at a color-orientation double feature border. Due to iso-feature suppression, responses of a single

feature cell is higher with than without its feature contrast, i.e., Oo
c < Oc

c andOc
o < Oo

o . The single feature cells

also have comparable responses with or without feature contrasts in other dimensions, i.e.,Oc
c ≈ Oco

c andOo
o ≈ Oco

o .

Meanwhile, the conjunctive cell should have a higher response at a double than single feature border, i.e.,Oco
co > Oo

co

andOco
co > Oc

co, since it has fewer neighboring conjunctive cells responding to the same colorand same orientation.

The maximum max(Oco
c , Oco

o , Oco
co) could beOco

c , Oco
o , or Oco

co to dictate the saliency of the double feature border.

Without detailed knowledge, we expect that it is likely that, in at least some non-zero percentage of many trials,Oco
co

is the dictating response, and when this happens,Oco
co is larger than all responses from all cells to both single feature

contrasts. Consequently, averaged over trials, the doublefeature border is likely more salient than both of the single

feature borders and thus should require a shorter RT to detect. In contrast, there are no V1 cells tuned conjunctively to

two different orientations, hence, a double orientation-orientation border definitely cannot be more salient than both

of the two single orientation borders.

The above considerations have omitted the general suppression between cells tuned to different features. When

this is taken into account, the single feature tuned cells should respond less vigorously to a double feature than to

the corresponding effective single feature contrast. Thismeans, for instance,Oco
o . Oo

o andOco
c . Oc

c . This is

because general suppression grows with the overall level oflocal neural activities. This level is higher with double

feature stimuli which activate some neurons more, e.g., when Oco
c > Oo

c , andOco
o > Oc

o (at the texture border). In the

color-orientation double feature case,Oco
o . Oo

o andOco
c . Oc

c mean thatOco
co > max(Oco

c , Oco
o ) could not guarantee

that Oco
co must be larger than all neural responses to both of the singlefeature borders. This consideration could

somewhat weaken or compromise the double feature advantagefor the color-orientation case, and should make the

double orientation contrast less salient than the more salient one of the two single orientation contrast conditions. In

any case, the double feature advantage in the color-orientation condition should be stronger than that of the orientation-

orientation condition.

These predictions are indeed confirmed in the RT data. As shown in Fig. (4DH), the RT to locate a color-

orientation double contrast border Fig. (4C) is shorter than both RTs to locate the two single feature borders Fig. (4A)

and Fig. (4B). Meanwhile, the RT to locate a double orientation contrast of Fig. (4G) is no shorter than the shorter

one of the two RTs to locate the two single orientation contrast borders Fig. (4E) and Fig. (4F). The same conclusion

is reached (data not shown) if the irrelevant bars in Fig. (4E) or Fig. (4F), respectively, have the same orientation as
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one of the relevant bars in Fig. (4F) or Fig. (4E), respectively. Note that, to manifest the double feature advantage,

the RTs for the single feature tasks should not be too short, since RT cannot be shorter than a certain limit for each

subject. To avoid this RT floor effect, we have chosen sufficiently small feature contrasts to make RTs for the single

feature conditions longer than 450 ms for experienced subjects and even longer for inexperienced subjects.

Nothdurft[42] also showed saliency advantage of the doublefeature contrast in color-orientation. The shortening

of RT by feature doubling can be viewed phenomenologically as a violation of a race model which models the task’s

RT as the outcome of a race between two response decision making processes by color and orientation features respec-

tively. This violation has been used to account for the double feature advantage in RT also observed in visual search

tasks when the search target differs in both color and orientation from uniform distractors observed previously[43],

and in our own data (Table 1A). In our framework, we could interpret the RT for color-orientation double feature as a

result from a race between three neural groups — the color tuned, the orientation tuned, and the conjunctive cells.

It is notable that the findings in Fig. (4H) can not be predicted from the SUM rule. With single or double

orientation contrast, the (summed) responses to the background bars are approximately unchanged, since the iso-

orientation suppression between various bars is roughly unchanged. Meanwhile, the total (summed) response to the

border is larger when the border has double orientation contrast (even considering the general, feature unspecific,

suppression between neurons). Hence, the SUM rule would predict that the double orientation contrast border is more

salient than the single contrast one, regardless of whetherone measures the border highlightHborder by the difference

or ratio between the summed response to the texture border and that to the background.

2.4 Emergent grouping of orientation features by spatial configurations

Combining iso-orientation suppression and co-linear facilitation, contextual influences between oriented bars depend

non-isotropically on spatial relationships between the bars. Thus, spatial configurations of the bars can influence

saliency in ways that cannot be simply determined by densities of the bars, and properties often associated with

grouping can emerge. PatternsA-G in Fig. (5) are examples of these, and the RT to segment each texture will be

denoted as RTA, RTB, ..., RTG. PatternsA and B both have a90o orientation contrast between two orientation

textures. However, the texture border inB seems more salient. PatternsC andD are both made by adding, toA and

B respectively, task irrelevant bars±45o relative to the task relevant bars and containing a90o irrelevant orientation

contrast. However, the interference is stronger inC than inD. PatternsE andG differ fromC by having zero orientation

contrast among the irrelevant bars, patternF differs fromD analogously. As demonstrated in Fig. (2), the interference

in E andG should thus be much weaker than that inC, and that inF much weaker than that inD. The irrelevant bars are

horizontal inE and vertical inG, on the same original patternA containing only the±45o oblique bars. Nevertheless,

segmentation seems easier inE than inG. These peculiar observations all seem to relate to what is often called visual

“grouping” of elements by their spatial configurations, andcan in fact be predicted from the V1 saliency hypothesis

when considering that the contextual influences between oriented bars are non-isotropic. To see this, we need to

abandon the simplification used so far to approximate contextual influences by only the dominant component — iso-

feature suppression. Specifically, we now include in the contextual influences the subtler components: (1) facilitation

between neurons responding to co-linear neighboring bars and (2) general feature-unspecific surround suppression

between nearby neurons tuned to any features.

Due to co-linear facilitation, a vertical border bars in patternB is salient not only because a neuron responding
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to it experiences weaker iso-orientation suppression, butalso because it additionally enjoys full co-linear facilitation

due to the co-linear contextual bars, whereas a horizontal border bar inB, or an oblique border bar inA, has only half

as many co-linear neighbors. Hence, in an orientation texture, the vertical border bars inB, and in general co-linear

border bars parallel to a texture border, are more salient than border bars not parallel to the border given the same

orientation contrast at the border. Hence, if the highest response to each border bar inA is 10 spikes/second, then the

highest response to each border bar inB could be, say, 15 spikes/second. Indeed, RTB <RTA, as shown in Fig. (5H).

(Wolfson and Landy[44] observed a related phenomenon, moredetails in Li[22]). Furthermore, the highly salient

vertical border bars make segmentation less susceptible tointerference by task irrelevant features, since their evoked

responses are more likely dominating to dictate salience. Hence, interference inD is much weaker than inC, even

though the task-irrelevant orientation contrast is90o in bothC andD. Indeed, RTD <RTC ( Fig. (5H)), although RTD
is still significantly longer than RTB without interference. All these are not due to any special status of the vertical

orientation of the border bars inB andD, for rotating the whole stimulus patterns would not eliminate the effects.

Similarly, when the task irrelevant bars are uniformly oriented, as in patternsE andG (for A) andF (for B), the border

in F is more salient than those inE andG, as confirmed by RTF <RTE and RTG.

The “protruding through” of the vertical border bars inD likely triggers the sensation of the (task irrelevant)

oblique bars as grouped or belonging to a separate (transparent) surface. This sensation arises more readily when

viewing the stimulus in a leisurely manner rather than in thehurried manner of a RT task. Based on the arguments that

one usually perceives the “what” after perceiving the “where” of visual inputs[45, 46], we believe that this grouping

arises from processes subsequent to the V1 saliency processing. Specifically, the highly salient vertical border bars are

likely to define a boundary of a surface. Since the oblique bars are neither confined within the boundary nor occluded

by the surface, they have to be inferred as belonging to another, overlaying (transparent), surface.

Given no orientation contrast between the task irrelevant bars inE-G, the iso-orientation suppression among the

irrelevant bars is much stronger than that inC andD, and is in fact comparable in strength to that among the task

relevant bars sufficiently away from the texture border. Hence, the responses to the task relevant and irrelevant bars

are comparable in the background, and no interference wouldbe predicted if we ignored general surround suppression

between the relevant and irrelevant bars (detailed below).Indeed, RTE, RTG ≪ RTC, and RTF < RTD.

However, the existence of general surround suppression introduces a small degree of interference, making RTE,

RTG > RTA, and RTF > RTB. ConsiderE for example, let us say that, without considering the general surround sup-

pression, the relevant responses are 10 spikes/second and 5spikes/second at the border and background respectively,

and the irrelevant responses are 5 spikes/second everywhere. The general surround suppression enables nearby neu-

rons to suppress each other regardless of their feature preferences. Hence, spatial variations in the relevant responses

cause complementary spatial variations in the irrelevant responses (even though the irrelevant inputs are spatially ho-

mogeneous), see Fig (5I ) for a schematic illustration. For convenience, denote therelevant and irrelevant responses at

the border asOborder(r) andOborder(ir) respectively, and asOnear(r) andOnear(ir) respectively at locations near

but somewhat away from the border. The strongest general suppression is fromOborder(r) to Oborder(ir), reducing

Oborder(ir) to, say, 4 spikes/second. This reduction in turn causes a reduction of iso-orientation suppression on the

irrelevant responsesOnear(ir), thus increasingOnear(ir) to, say, 6 spikes/second. The increase inOnear(ir) is also

partly due to a weaker general suppression fromOnear(r) (which is weaker than the relevant responses sufficiently

away from the border because of the extra strong iso-orientation suppression from the very strong border responses
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Oborder(r)[47]). Mutual (iso-orientation) suppression between the irrelevant neurons is a positive feedback process

that amplifies any response difference. Hence, the difference betweenOborder(ir) andOnear(ir) is amplified so that,

say,Oborder(ir) = 3 andOnear(ir) = 7 spikes/seconds respectively. Therefore,Onear(ir) dominatesOnear(r)

somewhat away from the border, dictating and increasing thelocal saliency. As a result, the relative saliency of the

border is reduced and some degree of interference arises, causing RTE > RTA. The same argument leads similarly to

conclusions RTG > RTA and RTF > RTB, as seen in our data (Fig. (5H)). If co-linear facilitation is not considered,

the degree of interference inE andG should be identical, predicting RTE = RTG. As explained below, considering

co-linear facilitation additionally will predict RTE <RTG, as seen in our data for three out of four four subjects (Fig.

(5H)). Stimuli E andG differ in the direction of the co-linear facilitation between the irrelevant bars. The direc-

tion is across the border inE but along the border inG, and, unlike iso-orientation suppression, facilitation tends to

equalize responsesOnear(ir) andOborder(ir) to the co-linear bars. This reduces the spatial variation ofthe irrelevant

responses across the border inE such that, say,Oborder(ir) = 4 andOnear(ir) = 6 spikes/second, thus reducing the

interference.

The SUM rule (over V1’s neural responses) would predict qualitatively the same directions of RT variations

between conditions in this section only when the texture border highlightHborder is measured by the ratio rather than

the difference between the (summed) response to the border and that to the background. However, using the same

argument as in Section 2.1, our quantitative data would makethe SUM rule even more implausible than it is in Section

2.1 (since, using the notations in Section 2.1, we note thatOground approximates the irrelevant responses inE and

G, whose weak interference would require a constraint ofHborder = (Oborder + Oground)/2Oground > 1 + δ with

δ ≫ 0, in addition to the other stringent contraints in section 2.1 that made the SUM rule less plausible).

We also carried out experiments in visual search tasks analogous to those in Fig. (3 - 5), as we did in Fig (1E)

analogous to Fig (1D). Qualitatively the same results as those in Fig. (3-4) werefound, see Table 1. For visual search

conditions corresponding to those in Fig. (5), however, since there were no elongated texture borders in the stimuli,

grouping effects arising from the co-linear border, or as the result of the elongated texture border, are not predicted,

and indeed, not reflected in the data, see Table 2. This confirmed additionally that saliency is sensitive to spatial

configurations of input items in the manner prescribed by V1 mechanisms.

3 Discussion

In summary, we tested and confirmed several predictions fromthe hypothesis of a bottom-up saliency map in V1. All

these predictions are explicit since they rely on the known V1 mechanisms and an explicit assumption of a MAX rule,

SMAP(x) ∝ maxxi=xOi, i.e., among all responsesOi to a locationx, only the most active V1 cell responding to

this location determines its saliency. In particular, the predicted interference by task irrelevant features and the lack

of saliency advantage for orientation-orientation doublefeatures are specific to this hypothesis since they arise from

the MAX rule. The predictions of color-orientation asymmetry in interference, the violation (in the RT for color-

orientation double feature) of a race model between color and orientation features, the increased interference by larger

color patches, and the grouping by spatial configurations, stem one way or another from specific V1 mechanisms.

Hence, our experiments provided direct behavioral test andsupport of the hypothesis.
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As mentioned in section 2.1, the predicted and observed interference by irrelevant features, particularly those in

Fig. 1 and 2, cannot be explained by any background “noise” introduced by the irrelevant features[19, 35], since the

irrelevant features in our stimuli have a spatially regularconfiguration and thus would by themselves evoke a spatially

uniform or non-noisy response.

The V1 saliency hypothesis does not specify which cortical areas read out the saliency map. A likely candidate

is the superior colliculus which receives input from V1 and directs eye movements[48]. Indeed, microstimulation of

V1 makes monkeys saccade to the receptive field location of the stimulated cell[26] and such saccades are believed to

be mediated by the superior colliculus.

While our experiments support the V1 saliency hypothesis, the hypothesis itself does not exclude the possibility

that other visual areas contribute additionally to the computation of bottom-up saliency. Indeed, the superior colliculus

receives inputs also from other visual areas[48]. For instance, Lee et al[49] showed that pop-out of an item due to its

unique lighting direction is associated more with higher neural activities in V2 than those in V1. It is not inconceivable

that V1’s contribution to bottom-up saliency is mainly for the time duration immediately after exposure to the visual

inputs. With a longer latency, especially for inputs when V1signals alone are too equivocal to select the salient winner

within that time duration, it is likely that the contribution from higher visual areas will increase. This is a question

that can be answered empirically through additional experiments (e.g.,[50]) beyond the scope of this paper. These

contributions from higher visual areas to bottom-up saliency are in addition to the top-down selection mechanisms

that further involve mostly higher visual areas[51, 52, 53]. The feature-blind nature of the bottom-up V1 selection also

does not prevent top-down selection and attentional processing from being feature selective[18, 54, 55]), so that, for

example, the texture border in Fig. (1C) could be located through feature scrutiny or recognition rather than saliency.

It is notable that while we assume that our RT data are adequate to test bottom-up saliency mechanisms, our

stimuli remained displayed until the subjects responded bybutton press, i.e., for a duration longer than the time

necessary for neural signals to propagate to higher level brain areas and feedback to V1. Although physiological

observations[56] indicate that preparation for motor responses contribute a long latency and variations in RTs, our work

needs to be followed up in the future to further validate our hopeful assumption that our RT data sufficiently manifest

bottom-up saliency to be adequate for our purpose. We argue that to probe the bottom-up processing behaviorally,

requiring subjects to respond to a visual stimulus (which stays on before the response) as soon as possible is one of

the most suitable methods. We believe that this method should be more suitable than an alternative method to present

stimulus briefly, with or, especially, without requiring the subjects to respond as soon as possible. After all, turningoff

the visual display does not prevent the neural signals evoked by the turned-off display from being propagated to and

processed by higher visual areas[57], and if anything, it reduces the weight of stimulus-driven or bottom-up activities

relative to the internal brain activities. Indeed, it is notuncommon for subjects to experience in reaction time tasks

that they could not cancel their erroreous responses in timeeven though the error was realized way before the response

completion and at the initiation of the response according to EEG data[58], suggesting that the commands for the

responses were issued considerably before the completion of the responses.

Traditionally, there have been other frameworks for visualsaliency[30, 18, 19], mainly motivated by and de-

veloped from behavioral data[4, 5] when there was less knowledge of their physiological basis. Focusing on their

bottom-up aspect, these frameworks can be paraphrased as follows. Visual inputs are analyzed by separate feature

maps, e.g., red feature map, green feature map, vertical, horizontal, left tilt, and right tilt feature maps, etc., in sev-
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eral basic feature dimensions like orientation, color, andmotion direction. The activation of each input feature in its

feature map decreases roughly with the number of the neighboring input items sharing the same feature. Hence, in

an image of a vertical bar among horizontal bars, the vertical bar evokes a higher activation in the vertical feature

map than that by each of the many horizontal bars in the horizontal map. The activations in separate feature maps are

summed to produce a master saliency map. Accordingly, the vertical bar produces the highest activation at its location

in this master map and attracts visual selection. The traditional theories have been subsequently made more explicit

and implemented by computer algorithms[31]. When applied to the stimulus in Fig. (1C), it becomes clear that the

traditional theories correspond to the SUM rule
∑

xi=x Oi for saliency determination when different responsesOi

to different orientations at the same locationx represent responses from different feature maps. As argued, our data

in Sections 2.1, 2.2, and 2.4 on interference by task irrelevant features are incompatible with or unfavorable for the

SUM rule, and our data in Section 2.3 on the lack of advantage for the double orientation contrast are contrary to

the SUM rule. Many of our predictions from the V1 saliency hypothesis, such as the color-orientation asymmetry in

section 2.2-2.3, and the emergent grouping phenomenon in section 2.4, arise specifically from V1 mechanisms, and

could not be predicted by traditional frameworks without adding additional mechanisms or parameters. The traditional

framework also contrasted with the V1 saliency hypothesis by implying that the saliency map should be in higher level

cortical areas where neurons are un-tuned to features, motivating physiological experiments searching for saliency cor-

relates in areas like lateral intra-parietal area[59, 60],which, downstream from V1, could reflect bottom-up saliences

in its neural activities. Nevertheless, the traditional frameworks have provided an overall characterization of previous

behavioral data on bottom-up saliency. These behavioral data provided part of the basis on which the V1 theory of

saliency was previously developed and tested by computational modeling[20, 21, 22, 23].

One may seek alternative explanations for our observationspredicted by the V1 saliency hypothesis. For in-

stance, to explain interference in Fig. (1C), one may assign a new feature type to “two bars crossing eachother

at 45o”, so that each texture element has a feature value (orientation) of this new feature type. Then, each texture

region in Fig. (1C) is a checkerboard pattern of two different feature values of this feature type. So the segmen-

tation could be more difficult in Fig. (1C), just like it could be more difficult to segment a texture of ’ABABAB’

from another of ’CDCDCD’ in a stimulus pattern ’ABABABABABCDCDCDCDCD’ than to segment ’AAA’ from

’CCC’ in ’AAAAAACCCCCC’. This approach of creating new feature types to explain hitherto unexplained data

could of course be extended to accommodate other new data. Sofor instance, new stimuli can easily be made such that

new feature types may have to include other double feature conjunctions (e.g., color-orientation conjunction), triple,

quadruple, and other multiple feature conjunctions, or even complex stimuli like faces, and it is not clear how long this

list of new feature types needs to be. Meanwhile, the V1 saliency hypothesis is a more parsimonious account since it

is sufficient to explain all the data in our experiments without evoking additional free parameters or mechanisms. It

was also used to explain visual searches for, e.g., a cross among bars or an ellipse among circles without any detectors

for crosses or circles/ellipses[20, 23]. Hence, we aim to explain the most data by the fewest necessary assumptions

or parameters. Additionally, the V1 saliency hypothesis isa neurally based account. When additional data reveal the

limitation of V1 for bottom-up saliency, searches for additional mechanisms for bottom-up saliency can be guided by

following the neural basis suggested by the visual pathwaysand the cortical circuit in the brain[48].

Computationally, bottom-up visual saliency serves to guide visual selection or attention to a spatial location to

give further processing of the input at that location. Therefore, by nature of its definition, bottom-up visual saliencyis
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computed before the input objects are identified, recognized, or decoded from the population of (V1) neural responses

to various primitive features and their combinations. Moreexplicitly, recognition or decoding from (V1) responses

requires knowingboth the response levelsand the preferred features of the responding neurons, while saliency compu-

tation requires only the former. Hence, saliency computation is less sophisticated than object identification, it can thus

be achieved more quickly (this is consistent with previous observations and arguments that segmenting or knowing

“where is the input” is before or faster than classifying “what is the input”[45, 46], as well as more easily impaired

or susceptible to noise. On the one hand, the noise susceptibility can be seen as a weakness or a price paid for a

faster computation; on the other, a more complete computation at the bottom-up selection level would render the sub-

sequent, attentive, processing more redundant. This is particularly relevant when considering whether the MAX rule

or the SUM rule, or some other rule (such as a response power summation rule) in between these two extremes, is

more suitable for saliency computation. The MAX rule to guide selection can be easily implemented in a fast and

feature blind manner, in which a saliency map read-out area (e.g., the superior colliculus) can simply treat the neural

responses in V1 as values in a universal currency bidding forvisual selection, to select (stochastically or determin-

istically) the receptive field location of the highest bidding neuron[34]. The SUM rule, or for the same reason the

intermediate rule, is much more complicated to implement. The receptive fields of many (V1) neurons covering a

given location are typically non-identically shaped and/or sized, and many are only partially overlapping. It would be

non-trivial to compute how to sum the responses from these neurons, whether to sum them linearly or non-linearly, and

whether to sum them with equal or non-equal weights of which values. More importantly, we should realize that these

responses should not be assumed as evoked by the same visual object — imagine an image location around a green

leaf floating on a golden pond above an underlying dark fish — deciding whether and how to sum the response of a

green-tuned cell and that of a vertical-tuned cell (which could be responding to the water ripple, the leaf, or the fish)

would likely require assigning the green feature and the vertical feature to their respective owner objects, i.e., to solve

the feature binding problem. A good solution to this assignment or summation problem would be close to solving

the object identification problem, making the subsequent attentive processing, after selection by saliency, redundant.

These computational considerations against the SUM rule are also in line with the finding that statistical properties

of natural scenes also favor the MAX rule[61]. While our psychophysical data also favor the MAX over the SUM

rule, it is currently difficult to test conclusively whetherour data could be better explained by an intermediate rule.

This is because, with the saliency map SMAP, reaction times RT = f(SMAP,βββ) (see equation (4)) depend on decision

making and motor response processes parameterized byβββ. Let us say that, given V1 responsesO, the saliency map is,

generalizing from equation (3), SMAP= SMAP(O, γ), whereγ is a parameter indicating whether SMAP is made by

the MAX rule or its softer version as an intermediate betweenMAX and SUM. Then, without precise (quantitative)

details ofO andβββ, γ cannot be quantitatively determined. Nevertheless, our data in Fig. 4H favor a MAX rather

than an intermediate rule for the following reasons. The response level to each background texture bar in Fig. 4EFG

is roughly the same among the three stimulus conditions, regardless of whether the bar is relevant or irrelevant, since

each bar experiences roughly the same level of iso-orientation suppression. Meanwhile, let the relevant and irrelevant

responses to the border bars beOE(r) andOE(ir) respectively for Fig. 4E, andOF (r) andOF (ir) respectively for

Fig. 4F. Then the responses to the two sets of border bars in Fig. 4G are approximatelyOE(r) andOF (r), ignoring,

as an approximation, the effect of increased level of general surround suppression due to an increased level of local

neural activities. Since bothOE(r) andOF (r) are larger than bothOE(r) andOF (r), an intermediate rule (unlike
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the MAX rule) combining the responses to two border bars would yield a higher saliency for the border in Fig. 4G

than for those in Fig. 4E and Fig. 4F, contrary to our data. This argument however can not conclusively reject the

intermediate rule, especially one that closely resembles the MAX rule, since our approximation to omit the effect of

the change in general surround suppression may not hold.

Due to the difference between the computation for saliency and that for discrimination, it is not possible to

predict discrimination performance from visual saliency.In particular, visual saliency computation could not predict

subjects’ sensitivities, e.g., their d prime values, to discriminate between two texture regions (or to discriminate the

texture border from the background). In our stimuli, the differences between texture elements in different texture

regions are far above the discrimination threshold with or without task irrelevant features. Thus, if instead of a reaction

time task, subjects performed texture discrimination without time pressure in their responses, their performance will

not be sensitive to the presence of the irrelevant features (even for briefly presented stimuli) since the task essentially

probes the visual process for discrimination rather than saliency. Therefore, our experiments to measure reaction time

in a visual segmentation or search task, requiring subjectsto respond quickly regarding “where” rather than “what”

about the visual input by pressing a button located congruently with “where”, using trivially discriminable stimuli, are

designed to probe bottom-up saliency rather than the subsequent object recognition (identification) or discrimination

performance. This design assumes that a higher saliency of the texture border or the search target makes its selection

easier and thus faster, manifesting in a shorter RT. This is why our findings in RTs cannot be explained by models

of texture discrimination (e.g., [62]), which are based ondiscriminating or identifying texture features, i.e., based on

visual processing after visual selection by saliency. While our subjects gave different RTs to different stimuli, their

response error rates are typically very small (< 5%) to all stimuli — as our reaction time task is not to measure

discrimination sensitivities (or d prime values). For the same reason, if one were to explain the interference in Fig. 1C

by the noise added by the task irrelevant features, this feature noise would not be strong enough to sufficiently affect

the error rate, since the feature differences (between those of the irrelevant and relevant features) are many times larger

than the just-noticable feature difference for feature discrimination. Of course, some visual search tasks, especially

those using hardly discriminable stimuli, rely more on the recognition and/or less on bottom-up saliency computation.

These tasks, while interesting to study for other purposes,would not be suitable for testing hypotheses on the bottom-

up saliency, and we expect that cortical areas beyond V1 would be more involved for them and would have to read out

from V1 the preferred features (labeled lines)and activities of moreand less active neurons (i.e., beyond reading out

the SMAP).

Our observations are related to Gestalt principles of perceptual organization and many previous observations

of visual grouping and emergent properties[63, 64]. This suggests that V1 mechanisms could be the neural basis for

many grouping phenomena, as has been shown in some examples[65, 47]. For instance, the main Gestalt principle

of grouping by similarity is related to iso-feature suppression in V1, since iso-feature suppression, responsible for

feature singleton pop-out, also makes a region of items of similar features less salient apart from the region border,

which bounds, and induces the perception of, the region as a whole. Similarly, the principle of grouping by prox-

imity is related to the finite length of the intra-cortical connections in V1 for contextual influences, and the principle

of grouping by good continuation is related to the co-linearfacilitation in V1. Pomerantz[63] showed that certain

features, particularly ones involving spatial propertiessuch as orientation, interact in complex ways to produce emer-

gent perceptual configurations that are not simply the sum ofparts. One of his notable examples of what is termed
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“configuration superiority effect” is shown in Fig. (6). Onestimulus of a left tilted bar among three right tilted bars

becomes a composite stimulus of a triangle among three arrows, when a non-informative stimulus of four identical

’L’ shaped items is added. As a result, the triangle is easierto detect among the arrows than the left-tilted bar among

right-tilt ones in the original stimulus, as if the triangleis an emergent new feature. This superiority effect by spatial

configurations of bars, the opposite of interference by irrelevant features in our data, could be accounted for by the

following mechanism beyond V1. The added irrelevant ‘L’s made the target triangle shape unique, while the original

target bar was a rotated version of the bar distractors. It was recently shown[66] that, when the bottom-up saliency is

not sufficiently high (as manifested in the longer than 1000 ms RTs in Pomerantz’s data, likely due to a small set size),

object rotational invariance between target and distractors could introduce object-to-feature interference to drastically

prolong RT. This interference is because the original target, identically shaped as distractors, is confused as a distractor

object. Whereas Gestalt principles and many psychologicalstudies of emergent phenomena have provided excellent

summaries and descriptions of a wealth of data, the V1 mechanisms provideexplanations behind at least some of

these data.

Meanwhile, the psychological data in the literature, including the vast wealth of data on visual grouping, can

in turn predict the physiology and anatomy of V1 through the V1 saliency hypothesis, thus providing opportunities

to further test the hypothesis through physiological/anatomical experiments. Such tests should help to explore the

potentials and the limitations of the V1 mechanisms to explain the bottom-up selection factors. For example, knowing

that color-orientation conjunctive search is difficult(e.g.[37], searching for a red-vertical target among red-horizontal

and green-vertical distractors) and that color-orientation double feature is advantageous allow us to predict that, in V1,

intra-cortical (di-synaptic) suppressive connections should link conjunctive cells with other cells preferringeither the

same colorand/or the same orientation. Data by Hegde and Felleman[28] are consistent with this prediction, although

more direct and systematic tests of the prediction are desirable. Similarly, the ease to search for a unique motion-

orientation (or motion-form) conjunction predicts[23] that V1 cells tuned to motion-orientation conjunctions tend to

connect to other cells preferring both the same orientationand the same motion direction.

The V1 mechanisms for bottom-up saliency also have implications for mechanisms of top-down attention.

Firstly, if V1 creates a bottom-up saliency map for visual selection, then it would not be surprising that subsequent

cortical areas/stages receiving input from V1 should manifest much interaction between bottom-up and top-down se-

lectional and attentional factors. Secondly, by the V1 saliency hypothesis, the most active V1 cell attracts attention

automatically to its receptive field location. This cell maybe tuned to one or a few feature dimensions. Its response

does not provide information about other feature dimensions to which it is un-tuned. Thus, such a bottom-up selec-

tion does not bind different features at the same location, and the top-down attention may have to bind the features

subsequently[4]. Meanwhile, the conjunctive cells in V1 bind two (or more) features at the same location into a single

cell by default (which may or may not be veridical). This suggests that top-down attentional mechanisms are required

to determine, from the responses of the conjunctive and non-conjunctive cells, not only the relative strengths of the

two features, but also whether the two features belong to thesame objects or whether the two features need to be un-

bound. Our findings reported here should motivate new directions for research into the mechanisms and frameworks of

bottom-up and top-down attentional selection, and post-selectional processes for problems including feature binding.
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4 Materials and Methods

Stimuli: In all our experiments, each stimulus pattern had 22 rows× 30 columns of items (of single or double bars)

on a regular grid with unit distance1.6o of visual angle. Each bar was a white (CIE illuminant C), 1.2× 0.12

degree rectangle (for experiments in orientation feature dimensions only), or a colored 1.2× 0.24 degree rectangle

(for experiments involving color and orientation features). All bars had a luminance of 14 cd/m2 unless otherwise

stated, and the background was black. The colored bars were green or pink specified by their CIE 1976 coordinates

(u′, v′), with hue angleshuv = 130o or 310o respectively, wheretan(huv) = (v′ − v′n)/(u′ − u′

n), and(u′

n, v′n)

are the coordinates of CIE illuminant C (0.201, 0.461). All bars within a stimulus had the same saturationsuv =

13
√

[(u′ − u′

n)2 + (v′ − v′n)2]. For segmentation experiments, the vertical texture border between two texture regions

was located randomly left or right, at 7, 9, or 11 inter-element distances laterally from the display centre. Stimuli in

search tasks were made analogously to those in texture segmentation tasks, by reducing one of the two texture regions

into a single target item. In each trial, the target was positioned randomly in one of the middle 14 rows; given the

target’s row number, its column number was such that the target was positioned randomly left or right, as close as

possible to 16.8 degrees of visual angle from the display centre. The non-coloured bars are oriented either as specified

in captions of the figures and tables presented, or are oriented horizontally, vertically, or±45o from vertical. The color

and orientation of the target or left texture region in each trial were randomly green or pink (for colored stimuli) and

left or right tilted (or horizontal or vertical) in the relevant orientations.

Subjects: Subjects are adults with normal or corrected to normal vision, and they are identified by letters, such

as ’LZ’, in the figures and tables. Most subjects are naive to the purpose of the study, except for ’LZ’ (one of the

authors), ’LJ’, and ’ASL’. Some subjects are more experienced at reaction time tasks than others. ’AP’, ’FE’, ’LZ’,

’NG’, and ’ASL’ participated in more experiments than others (such as ’KC’, ’DY’, and ’EW’) who only participated

in one or a few experiments.

Procedure and data analysis: Subjects were instructed to fixate centrally until stimulusonset, to freely move

their eyes afterwards, and to press a left or right key (located to their left or right hand side) using their left or right

hand, respectively, quickly and accurately to indicate whether the target or texture border (present in each trial) was

in the left or right half of the display. The stimulus patternstayed after onset till the subject’s response. There were

96 trials per subject per stimulus conditions shown. Average RTs were calculated (and shown in the figures and

tables) excluding trials that were erroneous or had an RT outside 3 standard deviations from the mean. The number

of such excluded trials was usually less than5% of the total for each subject and condition, and our results did not

change qualitatively even when we included all trials in calculating RTs or considered the speed-accuracy trade-off in

performances. The error bars shown are standard errors. Theexperiments were carried out in a dark room. Within each

figure plot, and each part (A, B, C, etc) of Table 1, or Table 2, all the stimulus conditions were randomly interleaved

within an experimental session such that the subjects couldnot predict before each trial which stimulus condition

would appear. For texture segmentation, the subjects were told to locate the border between two textures regardless of

the difference (e.g., whether in color or orientation or both) between the two textures. For visual search, the subjects

were told to locate the target which had a unique feature (such as orientation, color, or both, regardless of which

orientation(s) and/or which color), i.e., the odd one out, within the display. The subjects were shown examples of

the relevant stimulus conditions to understand the task before the data taking. Experiments (e.g., the one for Fig. 5)
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requiring more than 300-400 trials in total were broken downto multiple data taking sessions such that each session

typically takes 10-20 minutes.

AcknowledgementWork supported in part by the Gatsby Charitable Foundation and by a grant GR/R87642/01

from the UK Research Council. We thank colleagues such as Neil Burgess, Peter Dayan, Michael Eisele, Nathalie

Guyader, Michael Herzog, Alex Lewis, JingLing Li, Christoph Nothdurft, and Jeremy Wolfe for reading the draft

versions of the manuscript and/or very helpful comments. Wealso thank the three anonymous reviewers for very

helpful comments, and Stewart Shipp for help on references.

References

[1] Jonides J. (1981) Voluntary versus automatic control over the mind’s eye’s movement In J. B. Long & A. D.

Baddeley (Eds.)Attention and Performance IX (pp. 187-203). Hillsdale, NJ: Lawrence Erlbaum AssociatesInc.

[2] Nakayama, K. & Mackeben M. (1989) Sustained and transient components of focal visual attention.Visual

Research 29: 1631-1647.

[3] Yantis S. Control of visual attention. inAttention, p. 223-256. Ed. H. Pashler, Psychology Press 1998.

[4] Treisman A. M., Gelade G. A feature-integration theory of attention.Cognit Psychol. 12(1), 97-136, (1980).

[5] Julesz B. (1981) Textons, the elements of texture perception, and their interactions.Nature 290: 91-97.

[6] Allman J, Miezin F, McGuinness E. Stimulus specific responses from beyond the classical receptive field: neuro-

physiological mechanisms for local-global comparisons invisual neurons.Annu Rev. Neurosci. 8:407-30 (1985).

[7] Knierim JJ., Van Essen DC, Neuronal responses to static texture patterns in area V1 of the alert macaque monkey.

J. Neurophysiol. 67(4): 961-80 (1992)

[8] Sillito AM, Grieve KL, Jones HE, Cudeiro J, Davis J. Visual cortical mechanisms detecting focal orientation

discontinuities.Nature 378, 492-496 (1995).

[9] Nothdurft HC, Gallant JL, Van Essen DC. Response modulation by texture surround in primate area V1: corre-

lates of ”popout” under anesthesia.Vis. Neurosci. 16, 15-34 (1999).

[10] Nothdurft HC, Gallant JL, Van Essen DC. (2000) Responseprofiles to texture border patterns in area V1.Vis.

Neurosci. 17(3):421-36.

[11] Jones HE, Grieve KL, Wang W, Sillito AM. (2001). Surround suppression in primate V1.J. Neurophysiol.

86(4):2011-28.

[12] Wachtler T., Sejnowski TJ., Albright TD. Representation of color stimuli in awake macaque primary visual

cortex.Neuron, 37(4):681-91, (2003).

[13] Gilbert C.D., Wiesel T.N., Clustered intrinsic connections in cat visual cortex.J. Neurosci. 3(5):1116-33 (1983)

21



[14] Rockland KS., Lund JS., Intrinsic laminar lattice connections in primate visual cortex.J. Comp. Neurol.

216(3):303-18 (1983).

[15] Hirsch JA, Gilbert CD. (1991) Synaptic physiology of horizontal connections in the cat’s visual cortex.J. Neu-

rosci. 11(6):1800-9.

[16] Reynolds JH, Desimone R. (2003) Interacting roles of attention and visual salience in V4.Neuron 37(5):853-63.

[17] Beck DM, Kastner S. Stimulus context modulates competition in human extra-striate cortex.Nature Neuro-

science 8(8):1110-6. (2005)

[18] Wolfe J.M., Cave K.R., Franzel S. L. Guided search: an alternative to the feature integration model for visual

search.J. Experimental Psychol. 15, 419-433, (1989).

[19] Duncan J., Humphreys G.W. (1989) Visual search and stimulus similarityPsychological Rev. 96, 1-26.

[20] Li Z. (1999a) Contextual influences in V1 as a basis for pop out and asymmetry in visual search.Proc. Natl Acad.

Sci USA, 96(18):10530-5.

[21] Li Z. (1999b) Visual segmentation by contextual influences via intracortical interactions in primary visual cortex.

Network: Computation in Neural Systems 10(2):187-212

[22] Li Z, Pre-attentive segmentation in the primary visualcortex.Spatial Vision, 13(1) 25-50. (2000)

[23] Li Z. A saliency map in primary visual cortex.Trends Cogn. Sci. 6(1):9-16. (2002).

[24] Nelson J.I, Frost B.J. (1985) Intracortical facilitation among co-oriented,co-axially aligned simple cells in cat

striate cortex.Experimental Brain Research 61(1):54-61.

[25] Kapadia MK, Ito M, Gilbert CD, Westheimer G. Improvement in visual sensitivity by changes in local context:

parallel studies in human observers and in V1 of alert monkeys.Neuron 15(4):843-56 (1995).

[26] Tehovnik EJ, Slocum WM, Schiller PH. Saccadic eye movements evoked by microstimulation of striate cortex.

Eur J. Neurosci. 17(4):870-8 (2003).

[27] Super H, Spekreijse H, Lamme VA. (2003) Figure-ground activity in primary visual cortex (V1) of the monkey

matches the speed of behavioral response.Neurosci Lett. 344(2):75-8

[28] Hegde J. Felleman DJ How selective are V1 cells for pop-out stimuli?J. Neurosci. 23(31):9968-80. (2003).

[29] Zhaoping L. and Snowden RJ (2006) A theory of a salency map in primary visual cortex (V1) tested by psy-

chophysics of color-orientation interference in texture segmentation.Visual Cognition 14(4/5/6/7/8):911-933.

[30] Koch C., Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry.Hum. Neurobiol.

4(4): 219-27 (1985).

22



[31] Itti L., Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention.Vision Res.

40(10-12):1489-506, (2000).

[32] Hubel DH Wiesel TN Receptive fields and functional architecture of monkey striate cortex.J Physiol.

195(1):215-43. (1968).

[33] Livingstone MS, Hubel DH.Anatomy and physiology of a color system in the primate visual cortex.J. Neurosci.

4(1):309-56 (1984).

[34] Zhaoping L. (2005) The primary visual cortex creates a bottom-up saliency map. InNeurobiology of Attention p.

570-575. Eds. Itti L., Rees G., and Tsotsos J.K. Elsevier 2005.

[35] Rubenstein B.S., Sagi D., Spatial variability as a limiting factor in texture-discrimination tasks: implications for

performance asymmetries.J Opt Soc Am A.;7(9):1632-43, (1990)

[36] Foster DH and Ward PA (1991) Asymmetries in oriented-line detection indicate two orthogonal in early vision”

Proceedings of Royal Society:Biological Sciences Vol. 243(1306):75-81.

[37] Wolfe J.M. (1998) Visual Search, a review. inAttention p. 13-74. H. Pashler (Editor), Hove, East Sussex, UK,

Psychology Press Ltd.

[38] Jones HE, Wang W, Sillito AM. (2002) Spatial organization and magnitude of orientation contrast interactions

in primate V1.J Neurophysiol. 88(5):2796-808.

[39] Deyoe EA, Trusk TC, Wong-Riley MT. (1995) Activity correlates of cytochrome oxidase-defined compartments

ingranular and supergranular layers of primary visual cortex of the macaque monkey.Vis. Neurosci. 12(4):629-

39.

[40] Li.Z and Atick J. Towards a theory of striate cortexNeural Computation 6, 127-146 (1994).

[41] Snowden RJ, Texture segregation and visual search: a comparison of the effects of random variations along

irrelevant dimensions.J. Experimental Psychol.: Human Perception And Performance, 24, 1354-1367 (1998).

[42] Nothdurft H.C. Salience from feature contrast: additivity across dimensions.Vision Research 40:1183-1201

(2000).

[43] Krummenacher J., Muller H.J., Heller D., Visual searchfor dimensionally redundant pop-out targets: evidence

for parallel-coactive processing of dimensions.Percept Psychophys. 63(5):901-17, (2001).

[44] Wolfson SS, Landy MS. Discrimination of orientation-defined texture edges.Vision Res. 35(20):2863-77 (1995).

[45] Sagi D and Julesz B (1985) “Where” and “what” in vision.Science 228(4704):1217-1219.

[46] Li Z. (1998) Visual segmentation without classification: A proposed function for primary visual cortex.Percep-

tion 27, ECVP Abstract Supplement. (In Proceedings of the European Conference on Visual Perception; 2428

August 1998; Oxford, United Kingdom.) http://www.perceptionweb.com/abstract.cgi?id=v980337

23



[47] Zhaoping L. V1 mechanisms and some figure-ground and border effects (2003).Journal of Physiology, Paris

97:503-515.

[48] Shipp S. The brain circuitry of attention (2004).Trends Cogn. Sci. 8(5):223-30.

[49] Lee TS, Yang CF, Romero RD, Mumford D. Neural activity inearly visual cortex reflects behavioral experience

and higher-order perceptual saliency. (2002).Nat. Neurosci. 5(6): 589-97.

[50] Guyader N., JingLing L., Lewis AS, Zhaoping L. (2005) Investigation of the relative contribution of 3-D and 2-D

image cues in texture segmentation. (ECVP 2005 Abstract.) Perception 34:55-55 Suppl. S, 2005.

[51] Tsotsos, J.K. (1990) Analyzing Vision at the Complexity Level.Behavioral and Brain Sciences 13-3:423 - 445.

[52] Desimone R., Duncan J. Neural mechanisms of selective visual attention.Ann. Rev. Neuroscience. 18:193-222

(1995).

[53] Yantis S, Serences JT. (2003) Cortical mechanisms of space-based and object-based attentional control.Curr

Opin Neurobiol. 13(2):187-93.

[54] Treue S. and Martinez-Trujillo JC, Feature-based attention influences motion processing gain in macaque visual

cortexNature 399: 575-79 (1999).

[55] Chelazzi L, Miller EK, Duncan J, Desimone R. A neural basis for visual search in inferior temporal cortex.

Nature 363(6427):345-7 (1993).

[56] Thompson KG, Hanes DP, Bichot NP, Schall JD. (1996) Perceptual and motor processing stages identified in the

activity of macaque frontal eye field neurons during visual search.J Neurophysiol. 76(6):4040-55.

[57] Smithson, H. E. & Mollon, J. D. 2006. Do masks terminate the icon?Quarterly Journal of Experimental Psy-

chology 59(1): 150-160.

[58] Gehring WJ, Goss B, Coles MGH, Meyer DE, and Donchin E. (1993) A neural system for error detection and

compensation.Psychological Science 4(6) 385-390.

[59] Gottlieb JP, Kusunoki M, Goldberg ME. The representation of visual salience in monkey parietal cortex.Nature

391(6666):481-4, (1998)

[60] Bisley JW and Goldberg ME. Neuronal activity in the lateral intraparietal area and spatial attention.Science

299(5603):81-6. (2003).

[61] Lewis A. and Zhaoping L. Saliency from natural scene statistics. Program No. 821.11, 2005 Abstract

Viewer/Itineary planner. Washington, DC: Society for Neuroscience, 2005. Online.

[62] Landy MS, and Bergen JR (1991) Texture segregation and orientation gradient.Vision Research 31(4):679:91.

[63] Pomerantz J.R. (1981) Perceptual organization in information processing. In M. Kubovy and J. Pomerantz (eds.).

Perceptual organization (pp. 141-180). Hillsdale NJ. Erlbaum.

24



[64] Herzog MH, Fahle M. Effects of grouping in contextual modulation.Nature 415:433-436 (2002)

[65] Herzog M.H. Ernst U, Etzold A., Eurich C. Local interactions in neural networks explain global effects in the

masking of visual stimuli. (2003)Neural Computation 15(9):2091-2113.

[66] Zhaoping L. and Guyader N. (2007) Interference with bottom-up feature detection by higher-level object recog-

nition in Current Biology, 17:26-31.

25



Table 1: RTs (ms) in visual search for unique color and/or orientation, corresponding to those in Figs. 3-4.
Each data entry is: RT± its standard error (percentage error rate). InA, orientation of background bars:±45o

from vertical, orientation contrast:±18o, suv = 1.5; In B, stimuli are the visual search versions of Fig. 4E-G. InA
and B, the normalized RT (normalized as in Fig. 4) for the double feature contrast is significantly (p < 0.05) longer
in A than that in B; In C, luminance of bars= 1cd/m2, suv = 1.5, bar orientation:±20o from vertical or horizontal,
irrelevant orientation contrast is90o. No significant difference (p = 0.36) between RTs with and without irrelevant
feature contrasts; In D, orientation of background/targetbars:±/ ∓ 81o from vertical,suv = 1.5, RTs for stimuli
with irrelevant color contrast (of either condition) are significantly longer (p < 0.034) than those for stimuli without
irrelevant color contrasts.

A: Single or double color/orientation contrast search, analogous to Fig. (4A-D)
Subjects color orientation color and orientation

AP
FE
LZ
NG

512 ± 8(1)
529 ± 12(1)
494 ± 11(3)
592 ± 29(2)

1378± 71(1)
1509 ± 103(3)
846 ± 37(4)
808 ± 34(4)

496 ± 7(1)
497 ± 12(0)
471 ± 7(0)
540 ± 19(0)

B: Single or double orientation contrast search, analogous toFig. (4E-H)
Subjects single contrast 1, as Fig. 4Esingle contrast 2, as Fig. 4Fdouble contrast, as Fig. 4G

LZ
EW

732 ± 23(1)
688 ± 15(0)

689 ± 18(3)
786 ± 20(1)

731 ± 22(1)
671 ± 18(2)

C: Irrelevant Orientation in Color Search, analogous to Fig. (3G-J)
Subjects

AP
FE
LZ
NG

No Irrelevant Contrast
804 ± 30(0)
506 ± 12(5)
805 ± 26(1)
644 ± 33(1)

1x1 Orientation Blocks
771 ± 29(0)
526 ± 12(0)
893 ± 35(5)
677 ± 34(3)

D: Irrelevant Color in Orientation Search, analogous to Fig. (3C-F)
Subjects No Irrelevant Contrast 1x1 Color Blocks 2x2 Color Blocks

AP
FE
LZ
NG

811 ± 30(0)
1048 ± 37(0)
557 ± 13(1)
681 ± 22(1)

854 ± 38(0)
1111± 34(0)
625 ± 22(1)
746 ± 27(3)

872 ± 29(0)
1249± 45(2)
632 ± 21(1)
734 ± 31(1)
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Table 2: RTs(ms) for visual search for unique orientation, corresponding to data in Fig. 5H.
Stimulus conditionsA-G are respectively the visual search versions of the stimulusconditionsA-G in Fig. 5.

For each subject, no significant difference between RTA and RTB (p > 0.05); Irrelevant bars inC-G increase RT
significantly (p < 0.01). All subjects as a group, no significant difference betweenRTE and RTG (p = 0.38); RTC >

RTD significantly (p < 0.02); RTC , RTD > RTE , RTF , RTG significantly (p < 0.01). Each data entry is: RT± its
standard error (percentage error rate).

Subjects
Conditions AP FE LZ NG ASL

A
B
C
D
E
F
G

485± 8(0.00)
479± 9(0.00)

3179 ± 199(6.25)
1295 ± 71(1.04)
623± 20(0.00)
642± 20(0.00)
610± 21(0.00)

478± 6(0.00)
462± 6(0.00)

2755 ± 280(5.21)
1090 ± 53(5.21)
707 ± 19(0.00)
743 ± 21(0.00)
680 ± 23(0.00)

363± 2(0.00)
360± 2(0.00)
988± 50(3.12)
889± 31(3.12)
437± 9(1.04)
481± 12(3.12)
443± 10(2.08)

366 ± 3(1.04)
364 ± 3(0.00)

1209 ± 62(2.08)
665 ± 22(2.08)
432 ± 7(1.04)
456 ± 9(2.08)
459 ± 12(2.08)

621± 19(0.00)
592± 16(1.04)

2238± 136(11.46)
1410 ± 74(4.17)
838± 35(0.00)
959± 40(1.04)
1042 ± 48(3.12)
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Figure Captions
Fig. 1 Prediction of interference by task irrelevant features, and its psychophysical test.A, B, C are schematics

of texture stimuli (extending continuously in all directions beyond the portions shown), each followed by schematic
illustrations of its V1 responses, in which the orientationand thickness of a bar denote the preferred orientation and
response level, respectively, of the activated neuron. Each V1 response pattern is followed below by a saliency map,
in which the size of a disk, denoting saliency, corresponds to the response of the most activated neuron at the texture
element location. The orientation contrasts at the textureborder inA and everywhere inB lead to less suppressed
responses to the stimulus bars since these bars have fewer iso-orientation neighbours to evoke iso-orientation sup-
pression. The composite stimulusC, made by superposingA andB, is predicted to be difficult to segment, since the
task irrelevant features fromB interfere with the task relevant features fromA, giving no saliency highlights to the
texture border.D, E: reaction times (differently colored data points denote different subjects) for texture segmentation
and visual search tasks testing the prediction. For each subject, RT for the composite condition is significantly higher
(p < 0.001). In all experiments in this paper, stimuli consist of 22 rows× 30 columns of items (of single or double
bars) on a regular grid with unit distance1.6o of visual angle.

Fig. 2 Further illustrations to understand interference bytask irrelevant features. A, B, and C, are as in Fig.
1, the schematics of texture stimuli of various feature contrasts in task relevant and irrelevant features. D is like A,
except that each bar is10o from vertical, reducing orientation contrast to20o. F is derived from C by replacing each
texture element of two intersecting bars by one bar whose orientation is the average of the original two intersecting
bars. G, H, and I are derived from A, B, and C by reducing the orientation contrast (to20o) in the interfering bars,
each is10o from horizontal. J, K, and L are derived from G, H, and I by reducing the task relevant contrast to20o.
E plots the normalized reaction times for three subjects, DY, EW, and TT, on stimuli A, D, F, C, I, and L randomly
interleaved within a session. Each normalized RT is obtained by dividing the actual RT by the RT (which are 471, 490,
and 528 ms respectively for subjects DY, EW, and TT) of the same subject for stimulus A. For each subject, RT for
C is significantly (p < 0.001) higher than that for A, D, F, and I by, at least, 95%, 56%, 59%,and 29%, respectively.
Matched sample t-test across subjects shows no significant difference (p = 0.99) between RTs for stimuli C and L.

Fig.3 Interference between orientation and color, with schematic illustrations (top,A,B) and stimuli/data (bot-
tom,C-J). A: Orientation segmentation with irrelevant color.B: Color segmentation with irrelevant orientation. Larger
patch sizes of irrelevant color gives stronger interference, but larger patch sizes of irrelevant orientation does notmake
interference stronger.C, D, E: small portions of the actual experimental stimuli for orientation segmentation, without
color contrast (C) or with irrelevant color contrast in 1x1 (D) or 2x2 (E) blocks. All bars had color saturationsuv = 1,
and were±5o from horizontal.F: Normalized RTs forC, D, E for four subjects (different colors indicate different
subjects). The ‘no’, ‘1x1’, ’2x2’ on the horizontal axis mark stimulus conditions forC, D, E. , i.e., with no or ‘nxn’
blocks of irrelevant features. The RT for condition ’2x2’ issignificantly longer (p < 0.05) than that for ’no’ in all
subjects, and than that of ’1x1’ in 3 out of 4 subjects. By matched sample t-test across subjects, mean RTs are signif-
icantly longer in ’2x2’ than that in ’no’ (p = 0.008) and than that in ’1x1’ (p = 0.042). Each RT is normalized by
dividing by the subject’s mean RT for the ’no’ condition, which for the four subjects (AP, FE, LZ, NG) are 1170, 975,
539, 1107 milliseconds (ms).G-J are for color segmentation, analogous toC-F, with stimulus bars oriented±45o

and of color saturationsuv = 0.5. Matched sample t-test across subjects showed no significant difference between
RTs in different conditions. Only 2 out of 4 subjects had their RT significantly higher (p < 0.05) in interfering than
no interfering conditions. The un-normalized mean RTs of the four subjects (ASL, FE, LZ, NG) in ’no’ condition are:
650, 432, 430, 446 (ms).

Fig. 4 Small portions of actual stimuli and data in the test ofthe predictions of saliency advantage in color-
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orientation double feature (left, A-D) and the lack of it in orientation-orientation double feature (right).A-C the
texture segmentation stimuli by color contrast, or orientation contrast, or by double color-orientation contrast.D:
Normalized RTs for the stimulus conditions A-C. Normalization for each subject is by whichever is the shorter mean
RT (which for the subjects (AL, AB, RK, ZS) are, respectively, 651, 888, 821, and 634 ms) of the two single feature
contrast conditions. All stimulus bars had color saturation suv = 0.2, and were±7.5o from horizontal. All subjects
had their RT for the double feature condition significantly shorter (p < 0.001) than those of both single feature
conditions.E-G the texture segmentation stimuli by single or double orientation contrast, each oblique bar is±20o

from vertical inE and±20o from horizontal inF, andG is made by superposing the task relevant bars inE andF. H:
Normalized RTs for the stimulus conditions E-G (analogous to D). The shorter mean RT among the two single feature
conditions are, for four subjects (LZ, EW, LJ, KC), 493, 688,549, 998 (ms) respectively. None of the subjects had
RT for G lower than the minimum of the RT for E and F. Averaged over the subjects, the mean normalized RT for the
double orientation feature in G is significantly longer (p < 0.01) than that for the color orientation double feature in
C.

Fig. 5 Demonstration and testing the predictions on spatialgrouping. A-G: portions of different stimulus
patterns used in the segmentation experiments. Each row starts with an original stimulus (left) without task irrelevant
bars, followed by stimuli when various task irrelevant barsare superposed on the original.H: RT data when different
stimulus conditions are randomly interleaved in experimental sessions. The un-normalized mean RT for four subjects
(AP, FE, LZ, NG) in conditionA are: 493, 465, 363, 351 (ms). For each subject, it is statistically significant that
RTC >RTA (p < 0.0005), RTD >RTB (p < 0.02), RTA >RTB (p < 0.05), RTA <RTE, RTG (p < 0.0005),
RTD >RTF, RTC > RTE, RTG (p < 0.02). In 3 out of 4 subjects, RTE <RTG (p < 0.01), and 2 out of 4 subjects,
RTB < RTF (p < 0.0005). Meanwhile, by matched sample t-tests across subjects, the mean RT values between
any two conditions are significantly different (p smaller than values ranging from 0.0001 to 0.04).I: schmatics
of responses from relevant (red) and irrelevant (blue) neurons, with (solid curves) and without (dot-dashed curves)
considering general suppressions, for situations inE-G. Interference from the irrelevant features arise from the spatial
peaks in their responses away from the texture border.

Fig. 6 Illustration of Pomerantz’s configuration superiority effect. The triangle is easier to detect among the
three arrow shapes in the composite stimulus, than the left tilted bar among the right tilted bars in the original stimulus.
Identical shape of the target and distractor bars in the original stimulus could lead to confusion and longer RT.
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Figure 1: Prediction of interference by task irrelevant features, and its psychophysical test.A, B, C are schematics
of texture stimuli (extending continuously in all directions beyond the portions shown), each followed by schematic
illustrations of its V1 responses, in which the orientationand thickness of a bar denote the preferred orientation and
response level, respectively, of the activated neuron. Each V1 response pattern is followed below by a saliency map,
in which the size of a disk, denoting saliency, corresponds to the response of the most activated neuron at the texture
element location. The orientation contrasts at the textureborder inA and everywhere inB lead to less suppressed
responses to the stimulus bars since these bars have fewer iso-orientation neighbours to evoke iso-orientation sup-
pression. The composite stimulusC, made by superposingA andB, is predicted to be difficult to segment, since the
task irrelevant features fromB interfere with the task relevant features fromA, giving no saliency highlights to the
texture border.D, E: reaction times (differently colored data points denote different subjects) for texture segmentation
and visual search tasks testing the prediction. For each subject, RT for the composite condition is significantly higher
(p < 0.001). In all experiments in this paper, stimuli consist of 22 rows× 30 columns of items (of single or double
bars) on a regular grid with unit distance1.6o of visual angle.
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Figure 2: Further illustrations to understand interference by task irrelevant features. A, B, and C, are as in Fig. 1, the
schematics of texture stimuli of various feature contrastsin task relevant and irrelevant features. D is like A, except
that each bar is10o from vertical, reducing orientation contrast to20o. F is derived from C by replacing each texture
element of two intersecting bars by one bar whose orientation is the average of the original two intersecting bars. G,
H, and I are derived from A, B, and C by reducing the orientation contrast (to20o) in the interfering bars, each is10o

from horizontal. J, K, and L are derived from G, H, and I by reducing the task relevant contrast to20o. E plots the
normalized reaction times for three subjects, DY, EW, and TT, on stimuli A, D, F, C, I, and L randomly interleaved
within a session. Each normalized RT is obtained by dividingthe actual RT by the RT (which are 471, 490, and
528 ms respectively for subjects DY, EW, and TT) of the same subject for stimulus A. For each subject, RT for C
is significantly (p < 0.001) higher than that for A, D, F, and I by, at least, 95%, 56%, 59%,and 29%, respectively.
Matched sample t-test across subjects shows no significant difference (p = 0.99) between RTs for stimuli C and L.
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Figure 3: Interference between orientation and color, with schematic illustrations (top,A,B) and stimuli/data (bottom,C-J). A: Orientation seg-
mentation with irrelevant color.B: Color segmentation with irrelevant orientation. Larger patch sizes of irrelevant color gives stronger interference,
but larger patch sizes of irrelevant orientation does not make interference stronger.C, D, E: small portions of the actual experimental stimuli for
orientation segmentation, without color contrast (C) or with irrelevant color contrast in 1x1 (D) or 2x2 (E) blocks. All bars had color saturation
suv = 1, and were±5

o from horizontal.F: Normalized RTs forC, D, E for four subjects (different colors indicate different subjects). The ‘no’,
‘1x1’, ’2x2’ on the horizontal axis mark stimulus conditions for C, D, E. , i.e., with no or ‘nxn’ blocks of irrelevant features. The RT for condition
’2x2’ is significantly longer (p < 0.05) than that for ’no’ in all subjects, and than that of ’1x1’ in 3out of 4 subjects. By matched sample t-test
across subjects, mean RTs are significantly longer in ’2x2’ than that in ’no’ (p = 0.008) and than that in ’1x1’ (p = 0.042). Each RT is normalized
by dividing by the subject’s mean RT for the ’no’ condition, which for the four subjects (AP, FE, LZ, NG) are 1170, 975, 539,1107 milliseconds
(ms). G-J are for color segmentation, analogous toC-F, with stimulus bars oriented±45

o and of color saturationsuv = 0.5. Matched sample
t-test across subjects showed no significant difference between RTs in different conditions. Only 2 out of 4 subjects hadtheir RT significantly higher
(p < 0.05) in interfering than no interfering conditions. The un-normalized mean RTs of the four subjects (ASL, FE, LZ, NG) in ’no’condition
are: 650, 432, 430, 446 (ms).
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Figure 4: Small portions of actual stimuli and data in the test of the predictions of saliency advantage in color-
orientation double feature (left, A-D) and the lack of it in orientation-orientation double feature (right).A-C the
texture segmentation stimuli by color contrast, or orientation contrast, or by double color-orientation contrast.D:
Normalized RTs for the stimulus conditions A-C. Normalization for each subject is by whichever is the shorter mean
RT (which for the subjects (AL, AB, RK, ZS) are, respectively, 651, 888, 821, and 634 ms) of the two single feature
contrast conditions. All stimulus bars had color saturation suv = 0.2, and were±7.5o from horizontal. All subjects
had their RT for the double feature condition significantly shorter (p < 0.001) than those of both single feature
conditions.E-G the texture segmentation stimuli by single or double orientation contrast, each oblique bar is±20o

from vertical inE and±20o from horizontal inF, andG is made by superposing the task relevant bars inE andF. H:
Normalized RTs for the stimulus conditions E-G (analogous to D). The shorter mean RT among the two single feature
conditions are, for four subjects (LZ, EW, LJ, KC), 493, 688,549, 998 (ms) respectively. None of the subjects had
RT for G lower than the minimum of the RT for E and F. Averaged over the subjects, the mean normalized RT for the
double orientation feature in G is significantly longer (p < 0.01) than that for the color orientation double feature in
C.
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Figure 5: Demonstration and testing the predictions on spatial grouping.A-G: portions of different stimulus patterns
used in the segmentation experiments. Each row starts with an original stimulus (left) without task irrelevant bars,
followed by stimuli when various task irrelevant bars are superposed on the original.H: RT data when different
stimulus conditions are randomly interleaved in experimental sessions. The un-normalized mean RT for four subjects
(AP, FE, LZ, NG) in conditionA are: 493, 465, 363, 351 (ms). For each subject, it is statistically significant that
RTC >RTA (p < 0.0005), RTD >RTB (p < 0.02), RTA >RTB (p < 0.05), RTA <RTE, RTG (p < 0.0005),
RTD >RTF, RTC > RTE, RTG (p < 0.02). In 3 out of 4 subjects, RTE <RTG (p < 0.01), and 2 out of 4 subjects,
RTB < RTF (p < 0.0005). Meanwhile, by matched sample t-tests across subjects, the mean RT values between
any two conditions are significantly different (p smaller than values ranging from 0.0001 to 0.04).I: schmatics
of responses from relevant (red) and irrelevant (blue) neurons, with (solid curves) and without (dot-dashed curves)
considering general suppressions, for situations inE-G. Interference from the irrelevant features arise from the spatial
peaks in their responses away from the texture border.
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Figure 6: Illustration of Pomerantz’s configuration superiority effect. The triangle is easier to detect among the three
arrow shapes in the composite stimulus, than the left tiltedbar among the right tilted bars in the original stimulus.
Identical shape of the target and distractor bars in the original stimulus could lead to confusion and longer RT.
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