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Abstract:

A unique vertical bar among horizontal bars is salient angspmut perceptually. Physiological data have sug-
gested that mechanisms in the primary visual cortex (V1jrdmrte to the high saliency of such a unique basic feature,
but indicated little regarding whether V1 plays an esséotigeripheral role in input-driven or bottom-up saliency.
Meanwhile, a biologically based V1 model has suggestedthahechanisms can also explain bottom-up saliencies
beyond the pop-out of basic features, such as the low sgliefn® unique conjunction feature like a red-vertical bar
among red-horizontal and green-vertical bars, under tipethesis that the bottom-up saliency at any location is sig-
naled by the activity of the most active cell responding teg@ardless of the cell’s preferred features such as cobbr an
orientation. The model can account for phenomena such afffioailties in conjunction feature search, asymmetries
in visual search, and how background irregularities affaste of search. In this paper, we report non-trivial predic-
tions from the V1 saliency hypothesis, and their psychojglay$ests and confirmations. The prediction that most
clearly distinguishes the V1 saliency hypothesis from pthedels is that task irrelevant features could interfere in
visual search or segmentation tasks which rely signifigaoibottom-up saliency. For instance, irrelevant colors ca
interfere in an orientation based task, and the presencerizidmtal and vertical bars can impair performance in a task
based on oblique bars. Furthermore, properties of the-adrécal interactions and neural selectivities in V1 pegd
specific emergent phenomena associated with visual grgu@iar findings support the idea that a bottom-up saliency
map can be at a lower visual area than traditionally expeetigl implications for top-down selection mechanisms.



Non-technical summary

Only a fraction of visual input can be selected for atterdiostrutiny, often by focusing on a limited extent
of the visual space. The selected location is often detexthby the bottom-up visual inputs rather than the top-
down intentions. For example, a red dot among green onesatitrally attracts attention and is said to be salient.
Physiological data have suggested that the primary visugdx (V1) in the brain contributes to creating such bottom-
up saliencies from visual inputs, but indicated little onetifer V1 plays an essential or peripheral role in creating a
saliency map of the input space to guide attention. Trauiipsychological frameworks, based mainly on behavioral
data, have implicated higher-level brain areas for thesali map. Recently, it has been hypothesized that V1 creates
this saliency map, such that the image location whose vispak evokes the highest response among all V1 output
neurons is most likely selected from a visual scene for titteal processing. This paper derives non-trivial predicd
from this hypothesis and presents their psychophysict saxl confirmations. Our findings suggest that bottom-up
saliency is computed at a lower brain area than previoughgebed, and have implications on top-down attentional
mechanisms.

Abbreviated Title: Psychophysical tests of the V1 saliency map

1 Introduction

Visual selection of inputs for detailed, attentive, praieg often occurs in a bottom-up or stimulus driven manner,
particularly in selections immediately or very soon afteual stimulus onset ([1, 2, 3]). For instance, a vertical ba
among horizontal ones or a red dot among green ones pertigops out automatically to attract attention ([4, 5]),
and is said to be highly salient pre-attentively. Physiaally, a neuron in the primary visual cortex (V1) gives a
higher response to its preferred feature, e.g., a specifintation, color, or motion direction, within its receptiv
field (RF) when this feature is unique within the displayhetthan when it is one of the elements in a homogenous
background ([6, 7, 8, 9, 10, 11, 12]). This is the case evemuie animal is under anesthesia[9], suggesting bottom-
up mechanisms. This occurs because the neuron’s respoitsepreferred feature is often suppressed when this
stimulus is surrounded by stimuli of the same or similar deag. Such contextual influences, termed iso-feature
suppression, and iso-orientation suppression in pasticate mediated by intra-cortical connections betweenbyea
V1 neurons ([13, 14, 15]). The same mechanisms also makeN&lrespond more vigorously to an oriented bar when
it is at the border, rather than the middle, of a homogeneoestation texture, as physiologically observed[10]),
since the bar has fewer iso-orientation neighbors at thédsomhese observations have prompted suggestions that V1
mechanisms contribute to bottom-up saliency for pop-aattfes like the unique orientation singleton or the bar at an
orientation texture border (e.g., [6, 7, 8, 9, 10]). Thisassistent with observations that highly salient inputsloias
responses in extrastriate areas receiving inputs from 14, [ 7]).

Behavioral studies have examined bottom-up salienciensktely in visual search and segmentation tasks ([4,



18, 19]), showing more complex, subtle, and general sitnatbeyond basic feature pop-outs. For instance, a unique
feature conjunction, e.g., a red-vertical bar as a col@ndation conjunction, is typically less salient and regsi
longer search times; ease of searches can change with-thsgector swaps; and target salience decreases with
background irregularities. However, few physiologicalardings in V1 have used stimuli of comparable complexity,
leaving it open as to how generally V1 mechanisms contritubmttom-up saliency.

Meanwhile, a model of contextual influences in V1 ([20, 21, 23]), including iso-feature suppression and
co-linear facilitation ([24, 25]), has demonstrated thatiechanisms can plausibly explain these complex behaviors
mentioned above, assuming that the V1 cell with the highespanse to a target determines its salience and thus
the ease of a task. Accordingly, V1 has been proposed toeceebbttom-up saliency map, such that the receptive
field (RF) location of the most active V1 cell is most likelyleseted for further detailed processing[20, 23]). We call
this proposal the V1 saliency hypothesis. This hypothesnsistent with the observation that micro-stimulation
of a V1 cell can drive saccades, via superior colliculush® ¢orresponding RF location ([26]), and that higher V1
responses correlate with shorter reaction times to sasdadthe corresponding receptive fields ([27]). It can be
clearly expressed algebraically. L&D, O, ...,Oy) denote outputs or responses from V1 output cells indexed by
i=1,2,...M, and let the RFs of these cells cover locations xo, ..., x s ), respectively, then the location selected by
bottom-up mechanismsis= z; wherei is the index of the most responsive V1 cell (mathematicéH*y,argmagOi).

Itis then clear that (1) the saliency SMAB at a visual location: increases with the response level of the most active
V1 cell responding to it,

SMAP(z) increases with max_.O;, given an input scene (1)

and the less activated cells responding to the same locddiomt contribute, regardless of the feature preferences of
the cells; and (2) the highest response to a particularitmté compared with the highest responses to other locaition
to determine the saliency of this location, since only thdd®fation of the most activated V1 cell is the most likely se-
lected (mathematically, the selected locatiof is argmax SMAP(z)). As salience merely serves to order the priority
of inputs to be selected for further processing, only theepaf the salience is relevant([23]). However, for conve-
nience we could write equation (1) as SMAR = [ max,,=,O;]/[max;O;], or simply SMARz) = max,,=,O;.
Note that the interpretation af, = « is that the receptive field of cellcovers locatiorx or is centered neat.

In a recent physiological experiment, Hegde and Fellem28])jused visual stimuli composed of colored and
oriented bars resembling those used in experiments onl@saech. In some stimuli the target popped out easily (e.g.
the target had a different color or orientation from all tiekground elements), whereas in others, the target was more
difficult to detect, and did not pop out (e.g. a color-oridiota conjunction search, where the target is defined by a
specific combination of orientation and color). They fouhnattthe responses of the V1 cells, which are tuned to both
orientation and color to some degree, to the pop-out tavgets not necessarily higher than responses to non-pop-out
targets, and thus raising doubts regarding whether bottprsaliency is generated in V1. However, these doubts do
not disprove the V1 saliency hypothesis since the hypathirses not predict that the responses to pop-out targets in
some particular input images would be higher than the resgmto non-pop-out targets in other input images. For
a target to pop out, the response to the target should beasuibadlly higher than the responses to all the background
elements. The absolute level of the response to the tangetles/ant: what matters is the relative activations ewbig
the target and background. Since Hegde and Felleman[28jadicheasure the responses to the background elements,



their findings do not tell us whether V1 activities contribta saliency. It is likely that the responses to the backgdou
elements were higher for the conjunction search stimutiabee each background element differed greatly from many
of its neighbors and, as for the target, there would have bexak iso-feature suppression on neurons responding to
the background elements. On the other hand, each backgsdement in the pop-out stimuli always had at least
one feature (color or orientation) the same as all of its meags, so iso-feature suppression would have reduced the
responses to the background elements, making them sub#jalatver than the response to the target. Meanwhile,
it remains difficult to test the V1 saliency hypothesis pbiajically when the input stimuli are more complex than
those of the singleton pop-out conditions.

Psychophysical experiments provide an alternative memasdertain V1's role in bottom-up salience. While
previous works ([20, 21, 22, 23]) have shown that the V1 meidmas can plausibly explain the commonly known
behavioral data on visual search and segmentation, it isritapt to generate from the V1 saliency hypothesis behav-
ioral predictions which are hitherto unknown experimdmgtsd as to test the hypothesis behaviorally. This hypothesi
testing is very feasible for the following reasons. Themfaw free parameters in the V1 saliency hypothesis since
(1) most of the relevant physiological mechanisms in V1 ataldished experimental facts which can be modeled
but not arbitrarily distorted, and (2) the only theoreticgdut is the hypothesis that the receptive field locatiorhef t
most responsive V1 cell to a scene is the most likely selec@edsequently, the predictions from this hypothesis can
be made precise, making the hypothesis falsifiable. One gsypthophysical test confirming a prediction has been
reported recently ([29]). The current work aims to test tipdthesis more systematically, by providing non-trivial
predictions that are more indicative of the particular natf the V1 saliency hypothesis and the V1 mechanisms.

For our purpose, we first review the relevant V1 mechanisntkérrest of the Introduction section. The Re-
sults section reports the derivations and tests of the gieds. The Discussion section will discuss related issues
and implications of our findings, discuss possible altéveagxplanations for the data, and compare the V1 saliency
hypothesis with traditional saliency models ([18, 19, 30J) 3hat were motivated more by the behavioral data ([4, 5])
than by their physiological basis.

The relevant V1 mechanisms for the saliency hypothesidaresceptive fields and contextual influences. Each
V1 cell ([32]) responds only to a stimulus within its clasgiceceptive field (CRF). Input at one locatienevokes
responsefO;, Oj, ...) from multiple V1 cellsi, j, ... having overlapping receptive fields coveringEach cell is tuned
to one or more particular features including orientatiomlp; motion direction, size, and depth, and increases its
response monotonically with the input strength and resandd of the stimulus to its preferred feature. We call cells
tuned to more than one feature dimension conjunctive @8]sle.g., a vertical-rightward conjunctive cell is simul-
taneously tuned to rightward motion and vertical orieotai{[32]), a red-horizontal cell to red color and horizontal
orientation ([33]). Hence, for instance, a red-verticalauld evoke responses from a vertical-tuned cell, a regdu
cell, a red-vertical conjunctive cell, and another cellfereng orientation two degrees from vertical but having an
orientation tuning width of5°, etc. The V1 saliency hypothesis states that the salienayigual location is dictated
by the response of the most active cell responding to it @3034]), SMARz) « max,,—,O;, rather than the sum
of the response} . _, O; to this location. This makes the selection easy and fastesircan be done by a single
operation to find the most active V1 cell£ argmaxO;) responding to any location and any feature(s). We willrefe
to saliency by the maximum response, SMAPx max,,—, O, as the MAX rule, to saliency by the summed response
> e, Oi as the SUM rule. It will be clear later that the SUM rule is napgorted, or is less supported by data, nor



is it favored by computational considerations (see Dison3s

Meanwhile, intra-cortical interactions between neurordkena V1 cell's response context dependent, a neces-
sary condition for signaling saliency, since, e.g., a rethits salient in a green but not in a red context. The dominant
contextual influence is the iso-feature suppression meati@arlier, so that a cell responding to its preferred featu
will be suppressed when there are surrounding inputs oftireor similar feature. Given that each input location will
evoke responses from many V1 cells, and that responses r@extdependent, the highest response to each location
to determine saliency will also be context dependent. Fangte, the saliency of a red-vertical bar could be signaled
by the vertical-tuned cell when it is surrounded by red hawtal bars, since the red-tuned cell is suppressed through
iso-color suppression by other red-tuned cells responidinige context. However, when the context contains green
vertical bars, its saliency will be signaled by the red-tlinells. In another context, the red-vertical conjunctigé c
could be signaling the saliency. This is natural since saliés meant to be context dependent.

Additional contextual influences, weaker than the isotffeasuppression, are also induced by the intra-cortical
interactions in V1. One is the co-linear facilitation to dl'seesponse to an optimally oriented bar when a contextual
bar is aligned to this bar as if they are both segments of a gnoomtour ([24, 25]). Hence, iso-orientation interaction
including both iso-orientation suppression and co-lirfaailitation, is not isotropic. Another contextual influenis
the general, feature-unspecific, surround suppressiorctdl’a response by activities in nearby cells regardless of
their feature preferences ([6, 7]). This causes reducgubrsgs by contextual inputs of any features, and interagtio
between nearby V1 cells tuned to different features.

The most immediate and indicative prediction from the hiapsis is that task irrelevant features can interfere
in tasks that rely significantly on saliency. This is becaaiseach location, only the response of the most activated
V1 cell determines the saliency. In particular, if cellspaisding to task irrelevant features dictate salienciesiaites
spatial locations, the task relevant features becomesiiol” for saliency at these locations. Consequently, alisu
attention is misled to task irrelevant locations, causielgin task completion. Secondly, different V1 processes f
different feature dimensions are predicted to lead to asgtriminteractions between features for saliency. Thirdly
the spatial or global phenomena often associated with Migoaping are predicted. This is because the intra-cdrtica
interactions depend on the relative spatial relationsbkivben input features, particularly in a non-isotropic mem
for orientation features, making saliency sensitive tatigbaonfigurations, in addition to the densities, of inputs
These broad categories of predictions will be elaboratetiémext section in various specific predictions, together
with their psychophysical tests.

2 Results

For visual tasks in which saliency plays a dominant or sigaift role, the transform from visual input to behavioral
response, particularly in terms of the reaction time (RTpenforming a task, via V1 and other neural mechanisms can
be simplistically and phenomenologically modeled as feidor clarity of presentation.

Viresponse® = (01,0a3,...,0p) = fyi(visualinputl;a = (a1, aq,...)) (2)
The saliency map SMAR) o« max,,—,0; 3)
Thereactiontime RT = frcsponse (SMAP; 8 = (61, (2, ...)) 4)



where f,1(.) models the transform from visual inplito V1 response® via neural mechanisms parameterized by
a describing V1's receptive fields and intra-cortical intgians, while fyesponse () models the transform from the
saliency map SMAP to RT via the processes parameterize@l impdeling decision making, motor responses and
other factors beyond bottom-up saliency. Without quatigaknowledge ofg, it is sufficient for our purpose to
assume a monotonic transforfi.sponse (-) that gives a shorter RT to a higher saliency value at the telsvant
location, since more salient locations are more quicklgaed. This is of course assuming that the reaction time
is dominated by the time for visual selection by saliencythat the additional time taken after visual selection and
before the task response, say, indicated by button preasoigghly constant quantity that does not vary sufficiently
with the different stimuli being compared in any particidaperiment. For our goal to test the saliency hypothesis,
we will select stimuli such that this assumption is pradljcaalid (see Discussion). Hence, all our predictions are
qualitative, i.e., we predict a longer reaction time (RTpime visual search task than that in another rather than the
quantitative differences in these RTs. This does not meainotlr predictions will be vague or inadequate for testing
the V1 saliency hypothesis, since the predictions will by ygecise by explicitly stating which tasks should require
longer RTs than which other tasks, making them indicativé bmechanisms. Meanwhile, the qualitativeness makes
the predictions robust and insensitive to variations inntjtetive details parameterized lay of the underlying V1
mechanisms, such as the quantitative strengths of thala@mnections, provided that the qualitative facts of thie V
neural mechanisms are fixed or determined. Therefore, dbeavitlear below, our predictions can be derived and
comprehensible merely from our qualitative knowledge ofw facts about V1, e.g., that neurons are tuned to their
preferred features, that iso-feature suppression is th@rdmt form of contextual influences, that V1 cells tuned to
color have larger receptive fields than cells tuned to oaigm, etc, without resorting to quantitative model analys
or simulations which would only affect the quantitative ngtt the qualitative outcomes. Meanwhile, although one
could quantitatively fit the model to behavioral RTs by tunihe parameteks andg (within the qualitative range), it
adds no value since model fitting is typically possible gigaough parameters, nor is it within the scope of this paper
to construct a detailed simulation model that, for this jmsgy would have to be more complex than the available V1
model for contextual influences ([20, 21, 22, 23]). Hence,deeot include quantitative model simulations in this
study which is only aimed at deriving and testing our qualitapredictions.

2.1 Interference by task irrelevant features

Consider stimuli having two different features at each fimra one task relevant and the other task irrelevant. For
convenience, we call the V1 responses to the task relevahiraatevant stimuli, relevant and irrelevant responses,
respectively, and from the relevant and irrelevant neuresgectively. If the irrelevant response(s) is strongan tine
relevant response(s) at a particular location, this looaisalience is dictated by the irrelevant response(rdatg

to the V1 saliency hypothesis, and the task relevant featbeeome “invisible” for saliency. In visual search and
segmentation tasks which rely significantly on saliencyttoaat attention to the target or texture border, the task
irrelevant features are predicted to interfere with th& tasdirecting attention irrelevantly or ineffectively.

Fig (1) shows the texture patterAs B, C to illustrate this prediction. Patterh has a salient border between
two iso-orientation textures of left-oblique and rightlighe bars respectively, activating two populations of nogs
each for one of the two orientations. Patt&is a uniform texture of alternating horizontal and vertioats, evoking
responses from another two groups of neurons for horizantalertical orientations respectively. When all bars ére o



the same contrast, the neural response from the corresgpnelirons to each bar would be the same (ignoring neural
noise) if there were no intra-cortical interactions givimgg to contextual influences. With iso-orientation sugpi@an,
neurons responding to the texture border bars in pafieane more active than neurons responding to other bars in
patternA; this is because they receive iso-orientation suppre$siom fewer active neighboring neurons, since there
are fewer neighboring bars of the same orientation. For ebegplanation, let us say, the highest neural responses
to a border bar and a background bar #eand5 spikes/second respectively. This V1 response pattern srthke
border more salient, so it pops out in a texture segmentstiska Each bar in pattef® has the same number of
iso-orientation neighbors as a texture border bar in pateso it evokes a comparable level of (highest) V1 response,
i.e., 10 spikes/second, to that evoked by a border bar in paterti patternsA andB are superimposed, to give
patternC, the composite pattern will activate all neurons respogdinpatternsA andB, each neuron responding
approximately as it does & or B alone (for simplicity, we omitted the general suppressietwieen neurons tuned

to different orientations, without changing our conclusieee below). According to the V1 saliency hypothesis, the
saliency at each texture element location is dictated byrtbst activated neuron there. Since the (relevant) response
to each element of pattefis lower than or equal to the (irrelevant) response to theesponding element of pattern

B, the saliency at each element location in pat@ris the same as fdB, so there is no texture border highlight in
such a composite stimulus, making texture segmentatidioudit

For simplicity in our explanation, our analysis above imgd only the dominant form of contextual influence,
the iso-feature suppression, but not the less dominant édiime contextual influence, the general surround suppres-
sion and co-linear facilitation. Including the weaker ferof contextual influences, as in the real V1 or our model
simulations ([21, 22, 23]), does not change our predictirehSo for instance, general surround suppression between
local neurons tuned to different orientations should redeach neuron’s response to patt€rfrom that to patterm
or B alone. Hence, the (highest) responses to the task releganirbpatterrC may be, say, 8 and 4 spikes/second
respectively at the border and background. Meanwhile, égpanses to the task irrelevant bars in pat@should
be, say, roughly 8 spikes/second everywhere, leading tedime prediction of interference. In the rest of this paper,
for ease of explanation without loss of generality or chasfggonclusions, we include only the dominant iso-feature
suppression in our description of the contextual influepaad ignore the weaker or less dominant co-linear facili-
tation and general surround suppression unless theirsiociumakes a qualitative or relevant difference (as we will
see in section (2.4)). For the same reason, our argumentstdietail the much weaker responses from cells not as
responsive to the stimuli concerned, such as responsesiation direction selective cells to a non-moving stimulus,
or the response from a cell tuned2®.5° to a texture element in patte@xcomposed of two intersecting bars oriented
at0° and45° respectively. (Jointly, the two bars resemble a single b@nted at22.5° only at a scale much larger
or coarser than their own. Thus the most activated cell ttm@d.5° would have a larger RF, much of which would
contain no (contrast or luminance) stimulus, leading tospoase weaker than cells preferringih the scale and the
orientation of the individual bars). This is because these additionahba-dominant responses at each location are
“invisible” to saliency by the V1 saliency hypothesis andgtdo not affect our conclusions.

Fig. (1D) shows that segmenting the composite textirmdeed takes much longer than segmenting the task
relevant component textudg, confirming the prediction. The reaction times were takea task when subjects had
to report the location of the texture border, as to the lefigit of display center, as quickly as possible. (The actual
stimuli used are larger, see Methods.) In patt@rthe task irrelevant horizontal and vertical features frmmponent



patternB interfere with segmentation by relevant orientations frmatternA. Since patterm8 has spatially uniform
saliency values, the interference is not due to the noisgreaes of the background ([19, 35]).

One may wonder whether each composite texture element in(ER) may be perceived by its average orien-
tation at each location, see FigHR thereby making the relevant orientation feature noisynpair performance. Fig
2E demonstrates by our control experiment that this would ageltaused as much impairment, RT for this stimulus
is at least 37% shorter than that for the composite stimulus.

If one makes the visual search analog of the texture segtmntasks in Fig. (1), by changing stimulus Fig.
(1A) (and consequently stimulus Fig.G}) such that only one target of left- (or right- ) tilted barimsa background
of right- (or left-) tilted bars, qualitatively the same uéigFig. (1E)) is obtained. Note that the visual search task may
be viewed as the extreme case of the texture segmentatiowkesn one texture region has only one texture element.

Note that, if saliency were computed by the SUM rule SMAPx > _ O; (rather than the MAX rule)
to sum the response&s; from cells preferring different orientations at a visuatdtion z, interference would not
be predicted since the summed responses at the border wegdehter than those in the background, preserving
the border highlight. Here, the texture border highlight,...,- (for visual selection) is measured by the difference
Hyorder = Rborder — Rground bDetween the (summed or maxed) respofisg.q.. to the texture border and the
response? . ounq to the background (where resporfeg at locationz meansRk,, = Zmi:w O; or R, = max,,—,0;,
under the SUM or MAX rule, respectively). This is justified the assumption that the visual selection is by the
winner-take-all of the responség, in visual spacer, hence the priority of selecting the texture border is messu
by how much this response difference is compared to the Evebises in the responses. Consequently, the SUM
rule applied to our example of response values gives the samker highlightHy,,.q.- = 5 spikes/second with or
without the task irrelevant bars, while the MAX rule givEs,..q..- = 0 and5 spikes/second respectively. If the border
highlight is measured more conservatively by the r&fig,4er = Rborder/Rground (When araticHporder = 1 means
no border highlight), then the SUM rule predicts, in our atar example Hyorder = (10 + 10)/(5 + 10) = 4/3
with the irrelevant bars, anH},-4.- = 10/5 = 2 without, and thus some degree of interference. However,rgieea
below that even this measure &f,,-4.- by the response ratio makes the SUM rule less plausible. vi@iaa and
physiological data suggest that, as long as the salienc¢yigig is above the just-noticable-difference (JND, [36])
reduction inHy,-qc- Should not increase RT as dramatically as observed in oar diaparticular, previous findings
([37, 36]) and our data (in Fig.E) suggest that the ease of detecting an orientation corfrsstssed using RT) does
not reduce by more than a small fraction when the orientatdirast is reduced, say, frod° to 20° as in Fig. A
and Fig. D ([37, 36]), even though physiological V1 responses ([38]jiese orientation contrasts suggest that a
90° orientation contrast would give a highlight éfgo. ~ 2.25 and a20° contrast would givef{sg. ~ 1.25 using
the ratio measurement for highlights. (Jones et al[38kitlated that the V1 response t®@ and20° orientation
contrast, respectively, can be 45 and 25 spikes/secondatdsgly, over a background response of 20 spikes/second.)
Hence, the very long RT in our texture segmentation withrfetence implies that the border should have a highlight
Hyorqer = 1 or below the JND, while a very easy segmentation withoutrfatence implies that the border should
haveHyorder > 1. If Oporder aNdOgr0unq are the relevant responses to the border and backgrounceispesctively
for our stimulus, and sinc®,-4.. also approximates the irrelevant response, then applyiadstUM rule gives
border highlightHyorger = 20sorder/(Oborder + Oground) @and Oporder / Oground, With and without interference,
respectively. Our RT data thus require tha,qer /Oground > 1 and20order/ (Oborder + Ogrouna) =~ 1 should



be satisfied simultaneously — this is difficult SiNOgurder/Oground > 2 MeaNLO0porder/ (Oporder + Oground) >
4/3, and a largeOyporder /O ground Would give a largeROporder/ (Ovorder + Oground), Making the SUM rule less
plausible. Meanwhile, the MAX rule gives a border highlidf,,der = Oporder/Ovorder = 1 With interference and
Hyorder = Oporder/Ogrouna > 1 Without. These observations strongly favor the MAX over 8éM rule, and we
will show more data to differentiate the two rules later.

From our analysis above, we can see that the V1 saliency hgpistalso predicts a decrease of the interference
if the irrelevant feature contrast is reduced, as demaestrahen comparing Fig. @HI) with Fig. (2ABC), and
confirmed in our data (Fig. B). The neighboring irrelevant bars in Figl are more similarly oriented, inducing
stronger iso-feature suppression between them, and daogaheir evoked responses, say, from 10 to 7 spike/second.
(Although co-linear facilitation is increased by this stilms change, since iso-orientation suppression domicates
linear facilitation physiologically, the net effect is deased responses to all the task irrelevant bars.) Constiygue
the relevant texture border highlights are no longer sugegkby the irrelevant responses. The degree of interference
would be much weaker, though still non-zero since the ivaé responses (of 7 spikes/second) still dominate the
relevant responses (of 5 spikes/second) in the backgroeddcing the relative degree of border highlight from 5 to
3 spikes/second. Analogously, interference can be inedelag decreasing task relevant contrast, as demonstrated by
comparing Fig. (2KL) and Fig. (Z3HI), and confirmed in our data (FigE2. Reducing the relevant contrast makes
the relevant responses to the texture border weaker, say ¥fbto 7 spikes/second, making these responses more
vulnerable to being submerged by the irrelevant respor@essequently, interference is stronger in FiglL XZhan
Fig. (2). Essentially, the existence and strength of the inteniegelepend on the relative response levels to the task
relevant and irrelevant features, and these responses ldepend on the corresponding feature contrasts and direct
input strengths. When the relevant responses dictatasgleserywhere and their response values or overall respons
pattern are little affected by the existence or absence @frtielevant stimuli, there should be little interference.
Conversely, when the irrelevant responses dictate sglienerywhere, interference for visual selection is strahge
When the relevant responses dictate the saliency value &dhtion of the texture border or visual search target but
not in the background of our stimuli, the degree of intenfeeis intermediate. In both Fig. @ and Fig. (),
the irrelevant responses (approximately) dictate theseayi everywhere, so the texture borders are predicted to be
equally non-salient. This is confirmed across subjects irdata (Fig. &), although there is a large variation between
subjects, perhaps because the bottom-up saliency is soimtadse two stimuli that subject specific top-down factors
contribute significantly to the RTs.

2.2 The color-orientation asymmetry in interference

Can task irrelevant features from another feature dimensiterfere? Fig (8) illustrates orientation segmentation
with irrelevant color contrasts. As in Fig. (1), the irredex color contrast increases the responses to the colorésat
since the iso-color suppression is reduced. At each latatie response to color could then compete with the response
to the relevant orientation feature to dictate the saliehckig. (1C), the task irrelevant features interfere because they
evoke higher responses than the relevant features, as neaddyyg demonstrations in Fig. (2). Hence, whether color
can interfere with orientation or vice versa depends on éfative levels of V1 responses to these two feature types.
Color and orientation are processed differently by V1 in apects. First, cells tuned to color, more than cells tuned
to orientation, are usually in V1's cytochrome oxidasersdiblobs which are associated with higher metabolic and



neural activities[39]. Second, cells tuned to color havgdareceptive fields[33, 40], hence they are activated more
by larger patches of color. In contrast, larger texturelpegof oriented bars can activate more orientation tundsi cel
but do not make individual orientation tuned cells morew&ctiMeanwhile, in the stimulus for color segmentation
(e.g., Fig. (B)), each color texture region is large so that color tunets @ge most effectively activated, making
their responses easily the dominant ones. Consequemly,tlsaliency hypothesis predicts: (1) task irrelevantilo
are more likely to interfere with orientation than the reseer(2) irrelevant color contrast from larger color patches
can disrupt an orientation based task more effectively thah from smaller color patches; and (3) the degree of
interference by irrelevant orientation in color based tagknot vary with the patch size of the orientation texture.

These predictions are apparent when viewing FI§BR They are confirmed by RT data for our texture seg-
mentation task, shown in Fig. @3-J). Irrelevant color contrast can indeed raise RT in oriéatesegmentation, but
is effective only for sufficiently large color patches. Imt@st, irrelevant orientation contrast does not incré&sa
color segmentation regardless of the sizes of the oriemattches. In Fig. (8-E), the irrelevant color patches are
small, activating the color tuned cells less effectivelypwéver, interference occurs under small orientation estr
which reduces responses to relevant features (as demewsinaFig. (2)). Larger color patches can enable inter-
ference even to 80° orientation contrast at the texture border, as apparenigirf3A), and has been observed by
Snowden[41]. In Snowden’s design, the texture bars werdamaty rather than regularly assigned one of two iso-
luminant, task irrelevant, colors, giving randomly smaltldarger sizes of the color patches. The larger color patche
made task irrelevant locations salient to interfere with dhientation segmentation task. Previously, the V1 sajien
hypothesis predicted that Snowden’s interference shoeddine stronger when there are more irrelevant color cate-
gories, e.g., each bar could assume one of three rathentloadifferent colors. This is because more color categories
further reduce the number of iso-color neighbors for eadbred bar and thus the iso-color suppression, increasing
responses to irrelevant color. This prediction was subseityiconfirmed[29].

In Fig (3 G-I), the relevant color contrast was made small to facilitaterference by irrelevant orientation,
though unsuccessfully. Our additional data showed thantation does not significantly interfere with color based
segmentation even when the color contrast was reducecefurithe patch sizes, of 1x1 and 2x2, of the irrelevant
orientation textures ensure that each bar in these patobke the same levels of responses, since each has the same
number of iso-orientation neighbours (this would not holdew the patch size is 3x3 or larger). Such an irrelevant
stimulus pattern evokes a spatially uniform level of irvalet responses, thus ensuring that interference cannsibbos
arises from non-uniform or noisy response levels to the gramknd[19, 35]. Patch sizes for irrelevant colors in Fig (3
C-E) were made to match those of irrelevant orientations in B3gs-1), so as to compare saliency effects by color
and orientation features. Note that, as discussed in se2tih the SUM rule would predict the same interference
only if saliency highlightHy,.-4..- is measured by the ratio between responses to the bordeaakgrbund. With this
measure of,,.4., OUr data in this subsection, showing that the interferemtg increases RT by a small fraction,
can not sufficiently differentiate the MAX from the SUM rule.

2.3 Advantage for color-orientation double feature but notorientation-orientation double
feature.

A visual location can be salient due to two simultaneousifeatontrasts. For instance, at the texture border between
a texture of green, right-tilted, bars and another textdrpink, left-tilted, bars, in Fig. (4C), both the coland
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orientation contrast could make the border salient. We bay the texture border has a color-orientation double
feature contrast. Analogously, a texture border of an teit@n-orientation double contrast, and the correspandin
borders of single orientation contrasts, can be made agjin(BEFG). We can ask whether the saliency of a texture
border with a double feature contrast can be higher than dothose of the corresponding single-feature-contrast
texture borders. We show below that the V1 saliency hypdgheedicts a likely “yes” for color-orientation double
feature but a definite “no” for orientation-orientation ddeifeature.

V1 has color-orientation conjunctive cells which are tut@toth color and orientation, though their tuning to
either feature is typically not as sharp as that of the sifegéure tuned cells[33]. Hence, a colored bar can activate
a color tuned cell, an orientation tuned cell, and a col@rgation conjunctive cell, with cell outputs., O,, and
O., respectively. The highest response f@x O,, O.,) from these cells should dictate the saliency of the bar’s
location. Let the triplet of response b@2, 02, 09,] at an orientation texture bordé€)¢, O, O¢ ] at a color border,
and[0¢°, 0%, 0<°] at a color-orientation double feature border. Due to isaitfee suppression, responses of a single
feature cell is higher with than without its feature contrae., 02 < O¢ andOS < Of. The single feature cells
also have comparable responses with or without featureasistin other dimensions, i.€¢ ~ O andO? ~ O%°.
Meanwhile, the conjunctive cell should have a higher respat a double than single feature border, (9, > 02,
andO$e > O¢,, since it has fewer neighboring conjunctive cells respogdo the same coland same orientation.
The maximum mag0s°, 05°, 0<2) could beO<°, O, or O to dictate the saliency of the double feature border.
Without detailed knowledge, we expect that it is likely thatat least some non-zero percentage of many tria{s,
is the dictating response, and when this happéxig,is larger than all responses from all cells to both singléuiea
contrasts. Consequently, averaged over trials, the ddebtare border is likely more salient than both of the single
feature borders and thus should require a shorter RT totdéterontrast, there are no V1 cells tuned conjunctively to
two different orientations, hence, a double orientatioesgation border definitely cannot be more salient thar bot
of the two single orientation borders.

The above considerations have omitted the general sujqndsstween cells tuned to different features. When
this is taken into account, the single feature tuned cellmighrespond less vigorously to a double feature than to
the corresponding effective single feature contrast. Téans, for instance)s® < 0% andOg° < OS. This is
because general suppression grows with the overall levielcaf neural activities. This level is higher with double
feature stimuli which activate some neurons more, e.g. W@ > 02, andO%° > O¢ (at the texture border). In the
color-orientation double feature cag&’ < O9 andO$° < OS mean thaD<$? > max 05, 0<°) could not guarantee
that O must be larger than all neural responses to both of the sfiegkeire borders. This consideration could
somewhat weaken or compromise the double feature advafaagee color-orientation case, and should make the
double orientation contrast less salient than the morersadine of the two single orientation contrast conditioms. |
any case, the double feature advantage in the color-otientzaondition should be stronger than that of the orieotati
orientation condition.

These predictions are indeed confirmed in the RT data. Asshiowig. (4DH), the RT to locate a color-
orientation double contrast border Fig. (4C) is shortenthath RTs to locate the two single feature borders Fig. (4A)
and Fig. (4B). Meanwhile, the RT to locate a double orientationtrast of Fig. (4G) is no shorter than the shorter
one of the two RTs to locate the two single orientation cattbarders Fig. (4E) and Fig. (4F). The same conclusion
is reached (data not shown) if the irrelevant bars in Fig.) @&-ig. (4F), respectively, have the same orientation as
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one of the relevant bars in Fig. (4F) or Fig. (4E), respettiviote that, to manifest the double feature advantage,
the RTs for the single feature tasks should not be too shiade RT cannot be shorter than a certain limit for each
subject. To avoid this RT floor effect, we have chosen sufiityesmall feature contrasts to make RTs for the single
feature conditions longer than 450 ms for experienced stb@nd even longer for inexperienced subjects.

Nothdurft[42] also showed saliency advantage of the dofgaleire contrast in color-orientation. The shortening
of RT by feature doubling can be viewed phenomenologicallg aiolation of a race model which models the task’s
RT as the outcome of a race between two response decisiongakicesses by color and orientation features respec-
tively. This violation has been used to account for the dedéature advantage in RT also observed in visual search
tasks when the search target differs in both color and atemt from uniform distractors observed previously[43],
and in our own data (TableA). In our framework, we could interpret the RT for color-ariation double feature as a
result from a race between three neural groups — the colediuthe orientation tuned, and the conjunctive cells.

It is notable that the findings in Fig. (4H) can not be predidi®m the SUM rule. With single or double
orientation contrast, the (summed) responses to the bagkdrbars are approximately unchanged, since the iso-
orientation suppression between various bars is roughthamged. Meanwhile, the total (summed) response to the
border is larger when the border has double orientationrasnfeven considering the general, feature unspecific,
suppression between neurons). Hence, the SUM rule wouttightbat the double orientation contrast border is more
salient than the single contrast one, regardless of whetiemeasures the border highlighi,-4..- by the difference
or ratio between the summed response to the texture borde¢hanto the background.

2.4 Emergent grouping of orientation features by spatial cafigurations

Combining iso-orientation suppression and co-lineatifation, contextual influences between oriented bars dépe
non-isotropically on spatial relationships between thesbarhus, spatial configurations of the bars can influence
saliency in ways that cannot be simply determined by dessioif the bars, and properties often associated with
grouping can emerge. PatterAsG in Fig. (5) are examples of these, and the RT to segment eatiraewill be
denoted as R, RTg, ..., RTg. PatternsA andB both have &0° orientation contrast between two orientation
textures. However, the texture bordeBrseems more salient. Pattet@sandD are both made by adding, fo and
B respectively, task irrelevant batsi5° relative to the task relevant bars and containiriairrelevant orientation
contrast. However, the interference is stronge® than inD. Pattern€& andG differ from C by having zero orientation
contrast among the irrelevant bars, pattemtiffers fromD analogously. As demonstrated in Fig. (2), the interference
in E andG should thus be much weaker than tha€irand that ifF much weaker than that ID. The irrelevant bars are
horizontal inE and vertical inG, on the same original patteAcontaining only thet45° oblique bars. Nevertheless,
segmentation seems easieEithan inG. These peculiar observations all seem to relate to whatés afilled visual
“grouping” of elements by their spatial configurations, aath in fact be predicted from the V1 saliency hypothesis
when considering that the contextual influences betweesntail bars are non-isotropic. To see this, we need to
abandon the simplification used so far to approximate cométinfluences by only the dominant component — iso-
feature suppression. Specifically, we now include in theexdnal influences the subtler components: (1) facilitatio
between neurons responding to co-linear neighboring badq2) general feature-unspecific surround suppression
between nearby neurons tuned to any features.

Due to co-linear facilitation, a vertical border bars intpat B is salient not only because a neuron responding
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to it experiences weaker iso-orientation suppressionalsat because it additionally enjoys full co-linear faeilibn
due to the co-linear contextual bars, whereas a horizootdds bar inB, or an oblique border bar iA, has only half
as many co-linear neighbors. Hence, in an orientation texthe vertical border bars B, and in general co-linear
border bars parallel to a texture border, are more salient Horder bars not parallel to the border given the same
orientation contrast at the border. Hence, if the highegioase to each border barAnis 10 spikes/second, then the
highest response to each border baB ioould be, say, 15 spikes/second. Indeedg RIRT 4, as shown in Fig. ().
(Wolfson and Landy[44] observed a related phenomenon, metals in Li[22]). Furthermore, the highly salient
vertical border bars make segmentation less susceptilimeeiderence by task irrelevant features, since their edok
responses are more likely dominating to dictate salienanchl, interference iB is much weaker than i€, even
though the task-irrelevant orientation contrasiig in bothC andD. Indeed, R <RT¢ ( Fig. (5H)), although R

is still significantly longer than Rg without interference. All these are not due to any specalstof the vertical
orientation of the border bars B andD, for rotating the whole stimulus patterns would not eliméthe effects.
Similarly, when the task irrelevant bars are uniformly atél, as in patterrs andG (for A) andF (for B), the border
in F is more salient than those lhandG, as confirmed by RF <RTg and R1g.

The “protruding through” of the vertical border barsinlikely triggers the sensation of the (task irrelevant)
oblique bars as grouped or belonging to a separate (trasrspaurface. This sensation arises more readily when
viewing the stimulus in a leisurely manner rather than initheied manner of a RT task. Based on the arguments that
one usually perceives the “what” after perceiving the “vetfiaf visual inputs[45, 46], we believe that this grouping
arises from processes subsequent to the V1 saliency pinogeSpecifically, the highly salient vertical border bars a
likely to define a boundary of a surface. Since the oblique bag neither confined within the boundary nor occluded
by the surface, they have to be inferred as belonging to anatkierlaying (transparent), surface.

Given no orientation contrast between the task irrelevarg mE-G, the iso-orientation suppression among the
irrelevant bars is much stronger than thatdrandD, and is in fact comparable in strength to that among the task
relevant bars sufficiently away from the texture border. ¢¢erthe responses to the task relevant and irrelevant bars
are comparable in the background, and no interference vimftedicted if we ignored general surround suppression
between the relevant and irrelevant bars (detailed belmwleed, RE, RTg < RTg, and RTr < RTp.

However, the existence of general surround suppressimduntes a small degree of interference, making RT
RTe > RTa, and RTr > RTg. ConsidelE for example, let us say that, without considering the gdseiraound sup-
pression, the relevant responses are 10 spikes/secondspikkS/second at the border and background respectively,
and the irrelevant responses are 5 spikes/second everywrhiee general surround suppression enables nearby neu-
rons to suppress each other regardless of their featurerprefes. Hence, spatial variations in the relevant regsons
cause complementary spatial variations in the irrelevasponses (even though the irrelevant inputs are spatially h
mogeneous), see Figl(gor a schematic illustration. For convenience, denote¢tevant and irrelevant responses at
the border a®porder () aNdOporder (ir) respectively, and a8,,.. (1) and O, (ir) respectively at locations near
but somewhat away from the border. The strongest generplasgion is fronOyorder (1) t0 Oporder (ir), reducing
Oborder (ir) 10, say, 4 spikes/second. This reduction in turn causesiectied of iso-orientation suppression on the
irrelevant responses,,.. (ir), thus increasing, .. (ir) to, say, 6 spikes/second. The increas®jn, (ir) is also
partly due to a weaker general suppression f@m,..(r) (which is weaker than the relevant responses sufficiently
away from the border because of the extra strong iso-otientauppression from the very strong border responses
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Ovorder(r)[47]). Mutual (iso-orientation) suppression between thelévant neurons is a positive feedback process
that amplifies any response difference. Hence, the difteréetwee®y,, 4er (i) andO,,qq- (i) is amplified so that,
say, Oporder (i) = 3 and Opeqr-(ir) = 7 spikes/seconds respectively. Therefddg,,.(ir) dominatesO,,cq (1)
somewhat away from the border, dictating and increasindotte saliency. As a result, the relative saliency of the
border is reduced and some degree of interference arisesngeRTz > RTa. The same argument leads similarly to
conclusions RE > RTa and RTr > RTg, as seen in our data (Fig. HJ). If co-linear facilitation is not considered,
the degree of interference BlandG should be identical, predicting RT= RTg. As explained below, considering
co-linear facilitation additionally will predict R <RTg, as seen in our data for three out of four four subjects (Fig.
(5H)). Stimuli E and G differ in the direction of the co-linear facilitation betes the irrelevant bars. The direc-
tion is across the border inE butalong the border inG, and, unlike iso-orientation suppression, facilitatiends to
equalize response&s,, ... (ir) andOy.r4cr (ir) to the co-linear bars. This reduces the spatial variaticgh®frrelevant
responses across the bordeEisuch that, sayQyorder (i) = 4 @andO,,.q.-(ir) = 6 spikes/second, thus reducing the
interference.

The SUM rule (over V1's neural responses) would predict itptalely the same directions of RT variations
between conditions in this section only when the texturgleohighlightH,,,.4.,- is measured by the ratio rather than
the difference between the (summed) response to the bandethat to the background. However, using the same
argumentas in Section 2.1, our quantitative data would rttek&UM rule even more implausible than it is in Section
2.1 (since, using the notations in Section 2.1, we note@hat..q approximates the irrelevant responseg&iand
G, whose weak interference would require a constraitfQf-ger = (Ovorder + Oground)/20grounda > 1 + § with
0 > 0, in addition to the other stringent contraints in sectichthat made the SUM rule less plausible).

We also carried out experiments in visual search tasks goatoto those in Fig. (3 - 5), as we did in Fige)L
analogous to Fig @). Qualitatively the same results as those in Fig. (3-4) vieued, see Table 1. For visual search
conditions corresponding to those in Fig. (5), howevereithere were no elongated texture borders in the stimuli,
grouping effects arising from the co-linear border, or asrésult of the elongated texture border, are not predicted,
and indeed, not reflected in the data, see Table 2. This cadiadditionally that saliency is sensitive to spatial
configurations of input items in the manner prescribed by \éthanisms.

3 Discussion

In summary, we tested and confirmed several predictions fhenhypothesis of a bottom-up saliency map in V1. All
these predictions are explicit since they rely on the knodméchanisms and an explicit assumption of a MAX rule,
SMAP(z) « max,,—.0;, i.e., among all responsés; to a locationz, only the most active V1 cell responding to
this location determines its saliency. In particular, thedicted interference by task irrelevant features anddbke |
of saliency advantage for orientation-orientation dodbbgures are specific to this hypothesis since they arise fro
the MAX rule. The predictions of color-orientation asymmyein interference, the violation (in the RT for color-
orientation double feature) of a race model between coldicaientation features, the increased interference btarg
color patches, and the grouping by spatial configuratiotes sosne way or another from specific V1 mechanisms.
Hence, our experiments provided direct behavioral testsapgort of the hypothesis.
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As mentioned in section 2.1, the predicted and observedé@nénce by irrelevant features, particularly those in
Fig. 1 and 2, cannot be explained by any background “noigeddluced by the irrelevant features[19, 35], since the
irrelevant features in our stimuli have a spatially regatamfiguration and thus would by themselves evoke a spatially
uniform or non-noisy response.

The V1 saliency hypothesis does not specify which cortioaha read out the saliency map. A likely candidate
is the superior colliculus which receives input from V1 anicbdts eye movements[48]. Indeed, microstimulation of
V1 makes monkeys saccade to the receptive field locatioredftimulated cell[26] and such saccades are believed to
be mediated by the superior colliculus.

While our experiments support the V1 saliency hypotheleshtypothesis itself does not exclude the possibility
that other visual areas contribute additionally to the cotafion of bottom-up saliency. Indeed, the superior collis
receives inputs also from other visual areas[48]. For imtstalee et al[49] showed that pop-out of an item due to its
unique lighting direction is associated more with highamagactivities in V2 than those in V1. Itis not inconceivabl
that V1's contribution to bottom-up saliency is mainly ftwettime duration immediately after exposure to the visual
inputs. With a longer latency, especially for inputs whensitinals alone are too equivocal to select the salient winner
within that time duration, it is likely that the contributidrom higher visual areas will increase. This is a question
that can be answered empirically through additional expenis (e.g.,[50]) beyond the scope of this paper. These
contributions from higher visual areas to bottom-up saleare in addition to the top-down selection mechanisms
that further involve mostly higher visual areas[51, 52, 53je feature-blind nature of the bottom-up V1 selectiop als
does not prevent top-down selection and attentional psing$rom being feature selective[18, 54, 55]), so that, for
example, the texture border in Fig.G)Lcould be located through feature scrutiny or recognitather than saliency.

It is notable that while we assume that our RT data are adedadest bottom-up saliency mechanisms, our
stimuli remained displayed until the subjects respondedbinyon press, i.e., for a duration longer than the time
necessary for neural signals to propagate to higher lewhlareas and feedback to V1. Although physiological
observations[56] indicate that preparation for motor o@ses contribute a long latency and variations in RTs, oukwo
needs to be followed up in the future to further validate aypéful assumption that our RT data sufficiently manifest
bottom-up saliency to be adequate for our purpose. We atmidd probe the bottom-up processing behaviorally,
requiring subjects to respond to a visual stimulus (whiglysion before the response) as soon as possible is one of
the most suitable methods. We believe that this method dhmumore suitable than an alternative method to present
stimulus briefly, with or, especially, without requiringetBubjects to respond as soon as possible. After all, tuoffng
the visual display does not prevent the neural signals el/bgehe turned-off display from being propagated to and
processed by higher visual areas[57], and if anythingditices the weight of stimulus-driven or bottom-up actisitie
relative to the internal brain activities. Indeed, it is moicommon for subjects to experience in reaction time tasks
that they could not cancel their erroreous responses ingirae though the error was realized way before the response
completion and at the initiation of the response accordin§EG data[58], suggesting that the commands for the
responses were issued considerably before the compldttbe cesponses.

Traditionally, there have been other frameworks for vissalency[30, 18, 19], mainly motivated by and de-
veloped from behavioral data[4, 5] when there was less kedgéd of their physiological basis. Focusing on their
bottom-up aspect, these frameworks can be paraphrasetlasgsfoVisual inputs are analyzed by separate feature
maps, e.g., red feature map, green feature map, verticaromal, left tilt, and right tilt feature maps, etc., invse
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eral basic feature dimensions like orientation, color, amadion direction. The activation of each input feature s it
feature map decreases roughly with the number of the neigithmput items sharing the same feature. Hence, in
an image of a vertical bar among horizontal bars, the vértiaaevokes a higher activation in the vertical feature
map than that by each of the many horizontal bars in the hot@oap. The activations in separate feature maps are
summed to produce a master saliency map. Accordingly, tiizaebar produces the highest activation at its location
in this master map and attracts visual selection. The toedit theories have been subsequently made more explicit
and implemented by computer algorithms[31]. When appliethé stimulus in Fig. (), it becomes clear that the
traditional theories correspond to the SUM rgie, _ . O; for saliency determination when different responées

to different orientations at the same locatiomepresent responses from different feature maps. As ayguediata

in Sections 2.1, 2.2, and 2.4 on interference by task ireglefeatures are incompatible with or unfavorable for the
SUM rule, and our data in Section 2.3 on the lack of advantagéhie double orientation contrast are contrary to
the SUM rule. Many of our predictions from the V1 saliency bifesis, such as the color-orientation asymmetry in
section 2.2-2.3, and the emergent grouping phenomenorciiose.4, arise specifically from V1 mechanisms, and
could not be predicted by traditional frameworks withouiag additional mechanisms or parameters. The traditional
framework also contrasted with the V1 saliency hypothegisiplying that the saliency map should be in higher level
cortical areas where neurons are un-tuned to featuresyatiatj physiological experiments searching for salieray ¢
relates in areas like lateral intra-parietal area[59, &@jich, downstream from V1, could reflect bottom-up salience
in its neural activities. Nevertheless, the traditionahfieworks have provided an overall characterization ofiptev
behavioral data on bottom-up saliency. These behaviotal gl@vided part of the basis on which the V1 theory of
saliency was previously developed and tested by computdtinodeling[20, 21, 22, 23].

One may seek alternative explanations for our observapoedicted by the V1 saliency hypothesis. For in-
stance, to explain interference in Fig. Q)i one may assign a new feature type to “two bars crossing et
at45°”, so that each texture element has a feature value (orienjatf this new feature type. Then, each texture
region in Fig. (L) is a checkerboard pattern of two different feature valuethis feature type. So the segmen-
tation could be more difficult in Fig. @), just like it could be more difficult to segment a texture ABABAB’
from another of 'CDCDCD’ in a stimulus pattern 'ABABABABABOCDCDCDCD’ than to segment 'AAA’ from
'CCC’ in "AAAAAACCCCCC'. This approach of creating new faate types to explain hitherto unexplained data
could of course be extended to accommodate other new datar stance, new stimuli can easily be made such that
new feature types may have to include other double featurpinotions (e.g., color-orientation conjunction), tepl
quadruple, and other multiple feature conjunctions, on@gmplex stimuli like faces, and it is not clear how long this
list of new feature types needs to be. Meanwhile, the V1 sajidnypothesis is a more parsimonious account since it
is sufficient to explain all the data in our experiments withevoking additional free parameters or mechanisms. It
was also used to explain visual searches for, e.g., a crossgbars or an ellipse among circles without any detectors
for crosses or circles/ellipses[20, 23]. Hence, we aim fgdar the most data by the fewest necessary assumptions
or parameters. Additionally, the V1 saliency hypothesi ieeurally based account. When additional data reveal the
limitation of V1 for bottom-up saliency, searches for adaitl mechanisms for bottom-up saliency can be guided by
following the neural basis suggested by the visual pathwagsthe cortical circuit in the brain[48].

Computationally, bottom-up visual saliency serves to guigual selection or attention to a spatial location to
give further processing of the input at that location. Thenes by nature of its definition, bottom-up visual saliefiey
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computed before the input objects are identified, recoghimedecoded from the population of (V1) neural responses
to various primitive features and their combinations. Mexelicitly, recognition or decoding from (V1) responses
requires knowindpoth the response levednd the preferred features of the responding neurons, whilergal compu-
tation requires only the former. Hence, saliency compaoités less sophisticated than object identification, it teust

be achieved more quickly (this is consistent with previobsasvations and arguments that segmenting or knowing
“where is the input” is before or faster than classifying ‘atlis the input’[45, 46], as well as more easily impaired
or susceptible to noise. On the one hand, the noise susitigpiilan be seen as a weakness or a price paid for a
faster computation; on the other, a more complete comjputatithe bottom-up selection level would render the sub-
sequent, attentive, processing more redundant. This iEplarly relevant when considering whether the MAX rule
or the SUM rule, or some other rule (such as a response powanation rule) in between these two extremes, is
more suitable for saliency computation. The MAX rule to guiklection can be easily implemented in a fast and
feature blind manner, in which a saliency map read-out aep, (the superior colliculus) can simply treat the neural
responses in V1 as values in a universal currency biddingiforal selection, to select (stochastically or determin-
istically) the receptive field location of the highest bidgineuron[34]. The SUM rule, or for the same reason the
intermediate rule, is much more complicated to implemerte Teceptive fields of many (V1) neurons covering a
given location are typically non-identically shaped amdiaed, and many are only partially overlapping. It would be
non-trivial to compute how to sum the responses from theseoms, whether to sum them linearly or non-linearly, and
whether to sum them with equal or non-equal weights of whadhes. More importantly, we should realize that these
responses should not be assumed as evoked by the same Wigehl-e- imagine an image location around a green
leaf floating on a golden pond above an underlying dark fish iditey whether and how to sum the response of a
green-tuned cell and that of a vertical-tuned cell (whichldde responding to the water ripple, the leaf, or the fish)
would likely require assigning the green feature and th&cadifeature to their respective owner objects, i.e., lueso
the feature binding problem. A good solution to this assignbor summation problem would be close to solving
the object identification problem, making the subsequeahtive processing, after selection by saliency, redundan
These computational considerations against the SUM r@l@lso in line with the finding that statistical properties
of natural scenes also favor the MAX rule[61]. While our gsyphysical data also favor the MAX over the SUM
rule, it is currently difficult to test conclusively whetheur data could be better explained by an intermediate rule.
This is because, with the saliency map SMAP, reaction tinTes R(SMAP, 3) (see equation (4)) depend on decision
making and motor response processes parameteriz@dlist us say that, given V1 respond@sthe saliency map is,
generalizing from equation (3), SMAPSMAP(O, v), wherey is a parameter indicating whether SMAP is made by
the MAX rule or its softer version as an intermediate betwgX and SUM. Then, without precise (quantitative)
details ofO and g, v cannot be quantitatively determined. Nevertheless, ota imaFig. 4H favor a MAX rather
than an intermediate rule for the following reasons. Theoase level to each background texture bar in Fig. 4EFG
is roughly the same among the three stimulus conditionsrdégss of whether the bar is relevant or irrelevant, since
each bar experiences roughly the same level of iso-orientatippression. Meanwhile, let the relevant and irrelevan
responses to the border bars®g(r) andOg(ir) respectively for Fig. 4E, an@r(r) andOp(ir) respectively for
Fig. 4F. Then the responses to the two sets of border bargirdd are approximatelz (r) andOg(r), ignoring,

as an approximation, the effect of increased level of gdsairaound suppression due to an increased level of local
neural activities. Since botPg(r) andOr(r) are larger than botg(r) andOg(r), an intermediate rule (unlike
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the MAX rule) combining the responses to two border bars dgigld a higher saliency for the border in Fig. 4G
than for those in Fig. 4E and Fig. 4F, contrary to our data.s Higument however can not conclusively reject the
intermediate rule, especially one that closely resembiledtAX rule, since our approximation to omit the effect of
the change in general surround suppression may not hold.

Due to the difference between the computation for saliemay that for discrimination, it is not possible to
predict discrimination performance from visual salienieyparticular, visual saliency computation could not potdi
subjects’ sensitivities, e.g., their d prime values, tcdminate between two texture regions (or to discriminate t
texture border from the background). In our stimuli, thefediénces between texture elements in different texture
regions are far above the discrimination threshold with ibheut task irrelevant features. Thus, if instead of a rieact
time task, subjects performed texture discrimination withtime pressure in their responses, their performande wil
not be sensitive to the presence of the irrelevant featesen(for briefly presented stimuli) since the task esséytial
probes the visual process for discrimination rather théiarszy. Therefore, our experiments to measure reactioa tim
in a visual segmentation or search task, requiring subjeatsspond quickly regarding “where” rather than “what”
about the visual input by pressing a button located congdlyesith “where”, using trivially discriminable stimuli,
designed to probe bottom-up saliency rather than the subségbject recognition (identification) or discriminatio
performance. This design assumes that a higher salientye déxture border or the search target makes its selection
easier and thus faster, manifesting in a shorter RT. Thishig eur findings in RTs cannot be explained by models
of texture discrimination (e.g., [62]), which are baseddmstriminating or identifying texture features, i.e., based on
visual processing after visual selection by saliency. Whbilr subjects gave different RTs to different stimuli, thei
response error rates are typically very small §%) to all stimuli — as our reaction time task is not to measure
discrimination sensitivities (or d prime values). For theng reason, if one were to explain the interference in Fig. 1C
by the noise added by the task irrelevant features, thisifeaioise would not be strong enough to sufficiently affect
the error rate, since the feature differences (betweemtbithe irrelevant and relevant features) are many timggtar
than the just-noticable feature difference for featurendisination. Of course, some visual search tasks, espgcial
those using hardly discriminable stimuli, rely more on teeagnition and/or less on bottom-up saliency computation.
These tasks, while interesting to study for other purposes|d not be suitable for testing hypotheses on the bottom-
up saliency, and we expect that cortical areas beyond V1dimeimore involved for them and would have to read out
from V1 the preferred features (labeled linasyl activities of moreand less active neurons (i.e., beyond reading out
the SMAP).

Our observations are related to Gestalt principles of pduzé organization and many previous observations
of visual grouping and emergent properties[63, 64]. Thiggasts that V1 mechanisms could be the neural basis for
many grouping phenomena, as has been shown in some exa®apldg]. For instance, the main Gestalt principle
of grouping by similarity is related to iso-feature supgien in V1, since iso-feature suppression, responsible for
feature singleton pop-out, also makes a region of itemsroiiai features less salient apart from the region border,
which bounds, and induces the perception of, the region akaew Similarly, the principle of grouping by prox-
imity is related to the finite length of the intra-corticalraeections in V1 for contextual influences, and the principle
of grouping by good continuation is related to the co-lintailitation in V1. Pomerantz[63] showed that certain
features, particularly ones involving spatial propersigsh as orientation, interact in complex ways to producea-eme
gent perceptual configurations that are not simply the supadf. One of his notable examples of what is termed
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“configuration superiority effect” is shown in Fig. (6). Osmulus of a left tilted bar among three right tilted bars
becomes a composite stimulus of a triangle among three aynotven a non-informative stimulus of four identical
‘L' shaped items is added. As a result, the triangle is edsidetect among the arrows than the left-tilted bar among
right-tilt ones in the original stimulus, as if the triandgéean emergent new feature. This superiority effect by apati
configurations of bars, the opposite of interference byiduant features in our data, could be accounted for by the
following mechanism beyond V1. The added irrelevant ‘L'sdadhe target triangle shape unique, while the original
target bar was a rotated version of the bar distractors. dtreeently shown[66] that, when the bottom-up saliency is
not sufficiently high (as manifested in the longer than 108RTis in Pomerantz’s data, likely due to a small set size),
object rotational invariance between target and distractould introduce object-to-feature interference to tically
prolong RT. This interference is because the original tardentically shaped as distractors, is confused as aadistr
object. Whereas Gestalt principles and many psychologtadies of emergent phenomena have provided excellent
summaries and descriptions of a wealth of data, the V1 mechanisms provatplanations behind at least some of
these data.

Meanwhile, the psychological data in the literature, idahg the vast wealth of data on visual grouping, can
in turn predict the physiology and anatomy of V1 through thesaliency hypothesis, thus providing opportunities
to further test the hypothesis through physiological/amatal experiments. Such tests should help to explore the
potentials and the limitations of the V1 mechanisms to eryilee bottom-up selection factors. For example, knowing
that color-orientation conjunctive search is difficult(¢37], searching for a red-vertical target among redzwrtal
and green-vertical distractors) and that color-orieatatiouble feature is advantageous allow us to predict th&t]
intra-cortical (di-synaptic) suppressive connectiormusth link conjunctive cells with other cells preferriegher the
same coloand/or the same orientation. Data by Hegde and Felleman[28] argistent with this prediction, although
more direct and systematic tests of the prediction are algsir Similarly, the ease to search for a uniqgue motion-
orientation (or motion-form) conjunction predicts[23httV1 cells tuned to motion-orientation conjunctions tead t
connect to other cells preferring both the same orientati@hthe same motion direction.

The V1 mechanisms for bottom-up saliency also have imptinatfor mechanisms of top-down attention.
Firstly, if V1 creates a bottom-up saliency map for visudéston, then it would not be surprising that subsequent
cortical areas/stages receiving input from V1 should nestifnuch interaction between bottom-up and top-down se-
lectional and attentional factors. Secondly, by the Vi1esady hypothesis, the most active V1 cell attracts attention
automatically to its receptive field location. This cell mag tuned to one or a few feature dimensions. Its response
does not provide information about other feature dimersstorwhich it is un-tuned. Thus, such a bottom-up selec-
tion does not bind different features at the same locatiod,the top-down attention may have to bind the features
subsequently[4]. Meanwhile, the conjunctive cells in Vidiwo (or more) features at the same location into a single
cell by default (which may or may not be veridical). This sagp that top-down attentional mechanisms are required
to determine, from the responses of the conjunctive andaomjunctive cells, not only the relative strengths of the
two features, but also whether the two features belong tedhee objects or whether the two features need to be un-
bound. Our findings reported here should motivate new dmesfor research into the mechanisms and frameworks of
bottom-up and top-down attentional selection, and pdsistenal processes for problems including feature bigdin
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4 Materials and Methods

Simuli: In all our experiments, each stimulus pattern had 22 rev&0 columns of items (of single or double bars)
on a regular grid with unit distanck6° of visual angle. Each bar was a white (CIE illuminant C), ¥2.12
degree rectangle (for experiments in orientation featimeedsions only), or a colored 12 0.24 degree rectangle
(for experiments involving color and orientation feat)reall bars had a luminance of 14 cdfnunless otherwise
stated, and the background was black. The colored bars weea gr pink specified by their CIE 1976 coordinates
(uv',v"), with hue angles,, = 130° or 310° respectively, wherean(h,,) = (v' — v),)/(uw' — ), and(u,,, v})

are the coordinates of CIE illuminant C (0.201, 0.461). Adrdwithin a stimulus had the same saturatign =
13/[(w/ — u},)? + (v/ — v},)?]. For segmentation experiments, the vertical texture brdoelveen two texture regions
was located randomly left or right, at 7, 9, or 11 inter-eletrdistances laterally from the display centre. Stimuli in
search tasks were made analogously to those in texture ségioa tasks, by reducing one of the two texture regions
into a single target item. In each trial, the target was pws#td randomly in one of the middle 14 rows; given the
target’s row number, its column number was such that theetasgs positioned randomly left or right, as close as
possible to 16.8 degrees of visual angle from the displayreeifhe non-coloured bars are oriented either as specified
in captions of the figures and tables presented, or are eddrdrizontally, vertically, of=45° from vertical. The color
and orientation of the target or left texture region in ea@ tvere randomly green or pink (for colored stimuli) and
left or right tilted (or horizontal or vertical) in the relat orientations.

Subjects: Subjects are adults with normal or corrected to normal wisimd they are identified by letters, such
as 'LZ’, in the figures and tables. Most subjects are naivéhéopurpose of the study, except for 'LZ’ (one of the
authors), 'LJ’, and 'ASL’. Some subjects are more expergehat reaction time tasks than others. 'AP’, 'FE’, 'LZ’,
'NG’, and 'ASL’ participated in more experiments than othésuch as 'KC’, 'DY’, and 'EW’) who only participated
in one or a few experiments.

Procedure and data analysis: Subjects were instructed to fixate centrally until stimubnset, to freely move
their eyes afterwards, and to press a left or right key (Edt#&b their left or right hand side) using their left or right
hand, respectively, quickly and accurately to indicate tivbethe target or texture border (present in each trial) was
in the left or right half of the display. The stimulus pattestayed after onset till the subject’s response. There were
96 trials per subject per stimulus conditions shown. AverRis were calculated (and shown in the figures and
tables) excluding trials that were erroneous or had an R3idei8 standard deviations from the mean. The number
of such excluded trials was usually less tidh of the total for each subject and condition, and our resuttsndt
change qualitatively even when we included all trials ircaldting RTs or considered the speed-accuracy trade-off in
performances. The error bars shown are standard errorexpeeiments were carried out in a dark room. Within each
figure plot, and each part (A, B, C, etc) of Table 1, or Tablelzha stimulus conditions were randomly interleaved
within an experimental session such that the subjects cooligredict before each trial which stimulus condition
would appear. For texture segmentation, the subjects whtéa locate the border between two textures regardless of
the difference (e.g., whether in color or orientation orrf)dietween the two textures. For visual search, the subjects
were told to locate the target which had a unique featureh(siscorientation, color, or both, regardless of which
orientation(s) and/or which color), i.e., the odd one outhin the display. The subjects were shown examples of
the relevant stimulus conditions to understand the tasérbehe data taking. Experiments (e.g., the one for Fig. 5)
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requiring more than 300-400 trials in total were broken daaymultiple data taking sessions such that each session
typically takes 10-20 minutes.
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Table 1: RTs (ms) in visual search for unique color and/or orientgtamrresponding to those in Figs. 3-4.

Each data entry is: R its standard error (percentage error rate)Alrorientation of background bars:45°
from vertical, orientation contrast:18°, s,,, = 1.5; In B, stimuli are the visual search versions of Fig. 4E-GAIn
and B, the normalized RT (normalized as in Fig. 4) for the dedéature contrast is significantly « 0.05) longer
in A than that in B; In C, luminance of baes 1cd/m?, s,, = 1.5, bar orientation=-20° from vertical or horizontal,
irrelevant orientation contrast #°. No significant differencey( = 0.36) between RTs with and without irrelevant
feature contrasts; In D, orientation of background/talges: +/  81° from vertical, s, = 1.5, RTs for stimuli
with irrelevant color contrast (of either condition) argrsficantly longer < 0.034) than those for stimuli without
irrelevant color contrasts.

UJ

A: Single or double color/orientation contrast search, ajals to Fig. (A-D)

Subjects color orientation color and orientation

AP 512 £ 8(1) 1378 £ 71(1) 496 £ 7(1)

FE 529 +12(1) 1509 + 103(3) 497 £ 12(0)

LZ 494 +11(3) 846 + 37(4) 471 £ 7(0)

NG 592 4+ 29(2) 808 + 34(4) 540 + 19(0)

B: Single or double orientation contrast search, analogobgto(4E-H)

Subjects | single contrast 1, as Fig. 4Esingle contrast 2, as Fig. 4Fdouble contrast, as Fig. 4

LZ 732 +23(1) 689 + 18(3) 731 +22(1)

EW 688 + 15(0) 786 4 20(1) 671+ 18(2)

C: Irrelevant Orientation in Color Search, analogous to F3g-(0)

Subjects No Irrelevant Contrast | 1x1 Orientation Blocks

AP 804 + 30(0) 771 +29(0)

FE 506 + 12(5) 526 + 12(0)

LZ 805 + 26(1) 893 + 35(5)

NG 644 + 33(1) 677 + 34(3)

D: Irrelevant Color in Orientation Search, analogous to RB&-F)

Subjects No Irrelevant Contrast 1x1 Color Blocks 2x2 Color Blocks

AP 811 4+ 30(0) 854 + 38(0) 872 +29(0)

FE 1048 + 37(0) 1111 + 34(0) 1249 4 45(2)

LZ 557 £ 13(1) 625 + 22(1) 632 + 21(1)

NG 681 +22(1) 746 + 27(3) 734 + 31(1)
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Table 2: RTs(ms) for visual search for unique orientation, corresiing to data in Fig. B.

Stimulus condition®\-G are respectively the visual search versions of the stimeduslitionsA-G in Fig. 5.
For each subject, no significant difference between RRd RTz (p > 0.05); Irrelevant bars irC-G increase RT
significantly ( < 0.01). All subjects as a group, no significant difference betwe€&p and Rz (p = 0.38); RT¢ >
RTp significantly p < 0.02); RT¢, RTp > RTg, RTr, RTg significantly p < 0.01). Each data entry is: R its

standard error (percentage error rate).

Subjects
Conditions AP FE LZ NG ASL

A 485 + 8(0.00) 478 £ 6(0.00) 363 + 2(0.00) 366 + 3(1.04) 621 + 19(0.00)
B 479 4 9(0.00) 462 £ 6(0.00) 360 = 2(0.00) 364 = 3(0.00) 592 & 16(1.04)
C 3179 + 199(6.25) 2755 + 280(5.21) 988 + 50(3.12) 1209 + 62(2.08) 2238 + 136(11.46)
D 1295 + 71(1.04) 1090 + 53(5.21) 889 + 31(3.12) 665 + 22(2.08) 1410 4+ 74(4.17)
E 623 & 20(0.00) 707 £ 19(0.00) 437 4 9(1.04) 432 4 7(1.04) 838 =+ 35(0.00)
F 642 & 20(0.00) 743 £ 21(0.00) 481 4 12(3.12) 456 + 9(2.08) 959 =+ 40(1.04)
G 610 £ 21(0.00)

680 + 23(0.00)

443 4 10(2.08)

459 + 12(2.08)

1042 + 48(3.12)
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Figure Captions

Fig. 1 Prediction of interference by task irrelevant feagjrand its psychophysical test, B, C are schematics
of texture stimuli (extending continuously in all direai®beyond the portions shown), each followed by schematic
illustrations of its V1 responses, in which the orientatiord thickness of a bar denote the preferred orientation and
response level, respectively, of the activated neuronh Edcresponse pattern is followed below by a saliency map,
in which the size of a disk, denoting saliency, correspondhé response of the most activated neuron at the texture
element location. The orientation contrasts at the textareler inA and everywhere i3 lead to less suppressed
responses to the stimulus bars since these bars have feweriéntation neighbours to evoke iso-orientation sup-
pression. The composite stimul@s made by superposinyy andB, is predicted to be difficult to segment, since the
task irrelevant features frof interfere with the task relevant features frém giving no saliency highlights to the
texture borderD, E: reaction times (differently colored data points denoffedent subjects) for texture segmentation
and visual search tasks testing the prediction. For eagecuRT for the composite condition is significantly higher
(p < 0.001). In all experiments in this paper, stimuli consist of 22 sow 30 columns of items (of single or double
bars) on a regular grid with unit distant&° of visual angle.

Fig. 2 Further illustrations to understand interferencedsk irrelevant features. A, B, and C, are as in Fig.
1, the schematics of texture stimuli of various feature @sis in task relevant and irrelevant features. D is like A,
except that each bar i9)° from vertical, reducing orientation contrast20°. F is derived from C by replacing each
texture element of two intersecting bars by one bar whosntation is the average of the original two intersecting
bars. G, H, and | are derived from A, B, and C by reducing therdétion contrast (t&0°) in the interfering bars,
each is10° from horizontal. J, K, and L are derived from G, H, and | by reidg the task relevant contrast 26°.
E plots the normalized reaction times for three subjects,B¥, and TT, on stimuli A, D, F, C, I, and L randomly
interleaved within a session. Each normalized RT is obthinyadividing the actual RT by the RT (which are 471, 490,
and 528 ms respectively for subjects DY, EW, and TT) of theesanbject for stimulus A. For each subject, RT for
C is significantly § < 0.001) higher than that for A, D, F, and | by, at least, 95%, 56%, 588 29%, respectively.
Matched sample t-test across subjects shows no signifidéeretice p = 0.99) between RTs for stimuli C and L.

Fig.3 Interference between orientation and color, withesadtic illustrations (topA,B) and stimuli/data (bot-
tom,C-J). A: Orientation segmentation with irrelevant colBr. Color segmentation with irrelevant orientation. Larger
patch sizes of irrelevant color gives stronger interfeegbat larger patch sizes of irrelevant orientation doesmake
interference stronge€, D, E: small portions of the actual experimental stimuli for ota&tion segmentation, without
color contrastC) or with irrelevant color contrast in 1xD{ or 2x2 ) blocks. All bars had color saturatiep, = 1,
and weret5° from horizontal. F: Normalized RTs foiC, D, E for four subjects (different colors indicate different
subjects). The ‘no’, ‘1x1’, '2x2’ on the horizontal axis nkastimulus conditions fo€, D, E. , i.e., with no or ‘nxn’
blocks of irrelevant features. The RT for condition '2x2'sgnificantly longer < 0.05) than that for 'no’ in all
subjects, and than that of '1x1’ in 3 out of 4 subjects. By rhattsample t-test across subjects, mean RTs are signif-
icantly longer in '2x2’ than that in 'no’)f = 0.008) and than that in '1x1'# = 0.042). Each RT is normalized by
dividing by the subject’s mean RT for the 'no’ condition, whifor the four subjects (AP, FE, LZ, NG) are 1170, 975,
539, 1107 milliseconds (ms)s-J are for color segmentation, analogousdd-, with stimulus bars oriented45°
and of color saturation,,, = 0.5. Matched sample t-test across subjects showed no sigrifidéerence between
RTs in different conditions. Only 2 out of 4 subjects had ith&€I significantly higher§ < 0.05) in interfering than
no interfering conditions. The un-normalized mean RTs efftur subjects (ASL, FE, LZ, NG) in 'no’ condition are:
650, 432, 430, 446 (ms).

Fig. 4 Small portions of actual stimuli and data in the testhaf predictions of saliency advantage in color-
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orientation double feature (left, A-D) and the lack of it inemtation-orientation double feature (rightp-C the
texture segmentation stimuli by color contrast, or origatacontrast, or by double color-orientation contrabt
Normalized RTs for the stimulus conditions A-C. Normaliaatfor each subject is by whichever is the shorter mean
RT (which for the subjects (AL, AB, RK, ZS) are, respectiveéi$1, 888, 821, and 634 ms) of the two single feature
contrast conditions. All stimulus bars had color saturatig, = 0.2, and weret7.5° from horizontal. All subjects
had their RT for the double feature condition significanttyprer (p < 0.001) than those of both single feature
conditions.E-G the texture segmentation stimuli by single or double o&tah contrast, each oblique bar40°
from vertical inE and+20° from horizontal inF, andG is made by superposing the task relevant bais amdF. H:
Normalized RTs for the stimulus conditions E-G (analogaud}. The shorter mean RT among the two single feature
conditions are, for four subjects (LZ, EW, LJ, KC), 493, 6889, 998 (ms) respectively. None of the subjects had
RT for G lower than the minimum of the RT for E and F. Averagedrdhe subjects, the mean normalized RT for the
double orientation feature in G is significantly longer< 0.01) than that for the color orientation double feature in
C.

Fig. 5 Demonstration and testing the predictions on spagtialiping. A-G: portions of different stimulus
patterns used in the segmentation experiments. Each raw atish an original stimulus (left) without task irrelevan
bars, followed by stimuli when various task irrelevant beurs superposed on the originel: RT data when different
stimulus conditions are randomly interleaved in experitaksessions. The un-normalized mean RT for four subjects
(AP, FE, LZ, NG) in conditiorA are: 493, 465, 363, 351 (ms). For each subject, it is stzdiffi significant that
RTc >RTa (p < 0.0005), RTp >RTg (p < 0.02), RTA >RTg (p < 0.05), RTa <RTg, RTg (p < 0.0005),
RTp >RTr, RTc > RTg, RTg (p < 0.02). In 3 out of 4 subjects, R <RTg (p < 0.01), and 2 out of 4 subjects,
RTe < RTr (p < 0.0005). Meanwhile, by matched sample t-tests across subje@snttan RT values between
any two conditions are significantly different émaller than values ranging from 0.0001 to 0.04).schmatics
of responses from relevant (red) and irrelevant (blue) aesirwith (solid curves) and without (dot-dashed curves)
considering general suppressions, for situatioris-@. Interference from the irrelevant features arise from thaial
peaks in their responses away from the texture border.

Fig. 6 lllustration of Pomerantz’s configuration supetipeffect. The triangle is easier to detect among the
three arrow shapes in the composite stimulus, than thélteft bar among the right tilted bars in the original stinsilu
Identical shape of the target and distractor bars in theraigtimulus could lead to confusion and longer RT.
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A: task relevant B: task irrelevant C: composite=A + B

S/ 7NN N N
S/ 7NN N N

VD A N
2 7 AN N
P AR B N
Ve NEER N

Mﬂm J /7 /NN N\ N\
stimuli S/ 7/ NNN N

F=F#¥%=1=~=
Vi ol ol o B Nl |
responses ' —n | o *... | S
= f=k>1=1
Saliency
maps

D: RT for texture segmentation (ms) E: RT for visual search (ms)
Subjects Subjects
. AP Bl AP
Bl FE 4000; B FE
Lz Lz
2000) @ NG Bl NG
[ AsSL
2000
1000
1000
500 500
Task Relevant(A) Composite(C) Task Relevant Composite

Figure 1: Prediction of interference by task irrelevantdiees, and its psychophysical tegt, B, C are schematics

of texture stimuli (extending continuously in all direai®beyond the portions shown), each followed by schematic
illustrations of its V1 responses, in which the orientatéord thickness of a bar denote the preferred orientation and
response level, respectively, of the activated neuronh Edcresponse pattern is followed below by a saliency map,
in which the size of a disk, denoting saliency, correspondhé response of the most activated neuron at the texture
element location. The orientation contrasts at the textareler inA and everywhere i3 lead to less suppressed
responses to the stimulus bars since these bars have feweriéntation neighbours to evoke iso-orientation sup-
pression. The composite stimul@s made by superposinyy andB, is predicted to be difficult to segment, since the
task irrelevant features frof interfere with the task relevant features frém giving no saliency highlights to the
texture borderD, E: reaction times (differently colored data points denoffedént subjects) for texture segmentation
and visual search tasks testing the prediction. For eage&RT for the composite condition is significantly higher
(p < 0.001). In all experiments in this paper, stimuli consist of 22 sow 30 columns of items (of single or double
bars) on a regular grid with unit distant&° of visual angle.
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Figure 2: Further illustrations to understand interfeeehyg task irrelevant features. A, B, and C, are as in Fig. 1, the
schematics of texture stimuli of various feature contrastask relevant and irrelevant features. D is like A, except
that each bar i$0° from vertical, reducing orientation contrast20°. F is derived from C by replacing each texture
element of two intersecting bars by one bar whose oriemtasithe average of the original two intersecting bars. G,
H, and | are derived from A, B, and C by reducing the orientationtrast (t®20°) in the interfering bars, each i9°
from horizontal. J, K, and L are derived from G, H, and | by reidg the task relevant contrast26°. E plots the
normalized reaction times for three subjects, DY, EV8landdrTstimuli A, D, F, C, I, and L randomly interleaved
within a session. Each normalized RT is obtained by dividimg actual RT by the RT (which are 471, 490, and
528 ms respectively for subjects DY, EW, and TT) of the sanigesi for stimulus A. For each subject, RT for C
is significantly ¢ < 0.001) higher than that for A, D, F, and | by, at least, 95%, 56%, 58%g 29%, respectively.
Matched sample t-test across subjects shows no signifidéeretice p = 0.99) between RTs for stimuli C and L.



lllustrations:

A orientation segmentation with irrelevant color B color segmentation with irrelevant orientation
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Figure 3: Interference between orientation and color, with schemititistrations (topA,B) and stimuli/data (bottorG-J). A: Orientation seg-
mentation with irrelevant coloB: Color segmentation with irrelevant orientation. Largeichasizes of irrelevant color gives stronger interference,
but larger patch sizes of irrelevant orientation does ndtematerference stronge€, D, E: small portions of the actual experimental stimuli for
orientation segmentation, without color contras) or with irrelevant color contrast in 1xD] or 2x2 (E) blocks. All bars had color saturation
suwv = 1, and weret5° from horizontal.F: Normalized RTs forC, D, E for four subjects (different colors indicate different gdis). The ‘no’,
‘1x1’, '2x2’ on the horizontal axis mark stimulus conditi®fior C, D, E. , i.e., with no or ‘nxn’ blocks of irrelevant features. Th& Rr condition
'2x2' is significantly longer f < 0.05) than that for 'no’ in all subjects, and than that of '1x1’ ino8t of 4 subjects. By matched sample t-test
across subjects, mean RTs are significantly longer in 'Zx@tthat in 'no’ p = 0.008) and than that in "1x1'% = 0.042). Each RT is normalized
by dividing by the subject's mean RT for the 'no’ conditionhieh for &% four subjects (AP, FE, LZ, NG) are 1170, 975, 588)7 milliseconds
(ms). G-J are for color segmentation, analogoustd=, with stimulus bars orienteet45° and of color saturatios,, = 0.5. Matched sample
t-test across subjects showed no significant differencedest RTs in different conditions. Only 2 out of 4 subjects thedr RT significantly higher

(p < 0.05) in interfering than no interfering conditions. The un-malized mean RTs of the four subjects (ASL, FE, LZ, NG) in 'gohdition
are: 650, 432, 430, 446 (ms).
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A: color contrast E: single orientation contrast

B: Orientation contrast F: single orientation contrast

C: double feature contrast G: double orientation contrast

D: Normalized RTs H: Normalized RT's
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Figure 4. Small portions of actual stimuli and data in thd ta#sthe predictions of saliency advantage in color-
orientation double feature (left, A-D) and the lack of it inemtation-orientation double feature (rightp-C the
texture segmentation stimuli by color contrast, or origatacontrast, or by double color-orientation contrabt
Normalized RTs for the stimulus conditions A-C. Normaliaatfor each subject is by whichever is the shorter mean
RT (which for the subjects (AL, AB, RK, ZS) are, respectiveéi$1, 888, 821, and 634 ms) of the two single feature
contrast conditions. All stimulus bars had color saturatig, = 0.2, and weret+7.5° from horizontal. All subjects
had their RT for the double feature condition signif@zanttyrer (p < 0.001) than those of both single feature
conditions.E-G the texture segmentation stimuli by single or double og#ah contrast, each oblique bar420°
from vertical inE and+20° from horizontal inF, andG is made by superposing the task relevant bats éamdF. H:
Normalized RTs for the stimulus conditions E-G (analogaud}. The shorter mean RT among the two single feature
conditions are, for four subjects (LZ, EW, LJ, KC), 493, 6889, 998 (ms) respectively. None of the subjects had
RT for G lower than the minimum of the RT for E and F. Averagedrdhe subjects, the mean normalized RT for the
double orientation feature in G is significantly longer< 0.01) than that for the color orientation double feature in
C.
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Figure 5: Demonstration and testing the predictions oniagbuping.A-G: portions of different stimulus patterns
used in the segmentation experiments. Each row starts withriginal stimulus (left) without task irrelevant bars,
followed by stimuli when various task irrelevant bars arpesposed on the originalH: RT data when different
stimulus conditions are randomly interleaved in experitaksessions. The un-normalized mean RT for four subjects
(AP, FE, LZ, NG) in conditiorA are: 493, 465, 363, 351 (ms). For each subject, it is stdifi significant that
RTc >RTa (p < 0.0005), RTp >RTp (p < 0.02), RTA >RTp (p < 0.05), RTA <RTg, RTg (p < 0.0005),
RTp >RTr, RTc > RTg, RTg (p < 0.02). In 3 out of 34subjects, R§ <RTq (p < 0.01), and 2 out of 4 subjects,
RTe < RTr (p < 0.0005). Meanwhile, by matched sample t-tests across subje@snttan RT values between
any two conditions are significantly different émaller than values ranging from 0.0001 to 0.04).schmatics

of responses from relevant (red) and irrelevant (blue) ersirwith (solid curves) and without (dot-dashed curves)
considering general suppressions, for situatioris-@. Interference from the irrelevant features arise from thaial
peaks in their responses away from the texture border.
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Figure 6: lllustration of Pomerantz’s configuration sup#ty effect. The triangle is easier to detect among theethre
arrow shapes in the composite stimulus, than the left tittedamong the right tilted bars in the original stimulus.
Identical shape of the target and distractor bars in thamaigtimulus could lead to confusion and longer RT.
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