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Abstract:

Some cortical circuit models study the mechanisms of the transforms from visual inputs to neural

responses. They model neural properties such as feature tunings, pattern sensitivities, and how

they depend on intra-cortical connections and contextual inputs. Other cortical circuit models are

more concerned with computational goals of the transform from visual inputs to neural responses,

or the roles of the neural responses in the visual behavior. The appropriate complexity of a cor-

tical circuit model depends on the question asked. Modeling neural circuits of many interacting

hypercolumns is a necessary challenge, which is providing insights to cortical computations, such

as visual saliency computation, and linking physiology with global visual cognitive behavior such

as bottom-up attentional selection.

Introduction

A full computational understanding of the visual cortex requires understanding both of the fol-

lowing computations: (A) from visual inputs to neural responses, and (B) from neural responses

to visual behavior. Physiological and anatomical data[1, 2, 3, 4, 5] suggest that neural interactions

in intra-cortical circuits play a main role in shaping neural responses. Hence, understanding the

neural circuit is essential for insights into the cortical computation. The computational issues of

interest include, for example, how neural circuits enable the invariance of orientation tuning width

of a neuron to input contrast, and whether the cortical circuits transform visual inputs to signals

for guiding bottom-up attentional selection, and/or other goals. This review aims to understand

computation by interacting neurons in early visual cortex. It omits phenomenological models of

contextual influences, e.g., the divisive normalization model of cortical responses[6]), feedforward

models of hierachical processing across multiple visual areas for, e.g., object recognition[7, 8], cir-

cuit models of higher visual areas (e.g., frontal eye field[9]), and does not emphasize models which

are purely on mapping visual inputs to neural responses (e.g., [10, 11, 12]).

Neural circuit models may be categorized into three levels of complexity, giving model classes

referred to as reduced columnar models, hypercolumn models, and interacting hypercolumn mod-

els. The reduced columnar models[13••]) have all neurons sharing the same receptive field position

and preferred feature (e.g., orientation, Fig. (1a)). They are often used to study response gain con-

trol by direct and contextual visual inputs, and their behavior can be linked to visual contrast sensi-

tivity in behavior. The hypercolumn models contain interacting neurons tuned to different feature

values in a single feature dimension, typically orientation (Fig. (1b))[14, 15••, 16•]. When this fea-

ture dimension is space[17, 18•], the neurons are no longer within a single cortical hypercolumn,

however, the complexity of such models are similar to the hypercolumn model. They can be used

to study feature tuning or response selectivity to feature patterns, and their behavior can be linked

to feature discrimination behavior. The interacting hypercolumn models contain neurons tuned to

both space (by their receptive field locations) and another feature such as orientation, color, motion

direction, or depth (or even combinations of them) (Fig. (1c)). For example, when different model

neurons have different receptive field locations and different preferred orientations spanning the
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whole range of locations and orientations, a model can simulate neural responses to meaningful

object contours and surface textures[19•, 20, 21••], and be linked to global visual behavior.

The representative circuit models and their computations

For better overview, the reviewed models are presented by paraphrasing their main features (while

citing the original references) using a common set of mathematical notations. Model parameters to

reproduce all the simulation results (in Fig.2) are provided for interested readers.

A reduced columnar model of an excitatory-inhibitory (E-I) cell pair for input
gain control

This[13••, 15••] models a local circuit of a principal, pyramidal, excitatory (E) cell connected with an

inhibitory(I) interneuron, each modeling a local group of similar cortical cells. With only one prin-

cipal neuron, the preferred feedforward (direct) input feature is fixed, and hence this circuit cannot

exhibit any input feature selectivity. However, it has been used to shed light on computations from

visual inputs to neural responses to behavior. In particular, it demonstrated the mechanism for

input gain control in the mapping (the contrast response function) from visual input to E neuron’s

response[13••] observed physiologically. Furthermore, this gain control by contextual inputs (via

intra-cortical connections from other E-I pairs outside the model) was even suggested to play a role

in the behavior of contour completion and pop out[15••], even though this suggestion can not be

demonstrated in this reduced columnar model.

Let membrane potentials of the E and I neurons be x and y respectively, with their neural

responses gx(x) and gy(y) as nonlinear, sigmoid-like, functions of x and y, then

ẋ = −αxx+ Jeegx(x) − Jeigy(y) + Ie, (1)

ẏ = −αyy + Jiegx(x) − Jiigy(y) + Ii, (2)

where Jee, Jie, Jei, and Jii model the synaptic connection strengths between the neurons, αx and αy

are constants modeling the inverses of membrane time constants of the E and I neurons respectively,

while

Ie = TeIt + CeIc (3)

Ii = TiIt + CiIc (4)

are inputs converged from the thalamic inputs It, via feedforward connection weights (Te, Ti), and

contextual or central inputs Ic, via lateral or feedback connection weights (Ce, Ci). The fixed point

(x̄, ȳ), where ẋ = ẏ = 0, typically approximates the temporal averages of neural activities x and y

under static inputs (It, Ic). To see how this circuit exhibits gain control, as in [13••], first examine

the sensitivity of the response gx(x̄) to thalamic input It (see[22•] for a proof in a simplified case)

δgx(x̄)

δIt
= g′x(x̄)

(αy + Jiig
′
y(ȳ))Te − Jeig

′
y(ȳ)Ti

(αx − Jeeg′x(x̄))(αy + Jiig′y(ȳ)) + JeiJieg′x(x̄)g′y(ȳ)
(5)

It increases with E cell’s gain g′x(x̄) but decreasing with I cell’s gain g′y(ȳ) at the average activity

(x̄, ȳ). It is highest when thalamic and contextual/central inputs It and Ic are weak such that the I

cell is not activated, i.e., g′y(ȳ) = 0, giving input sensitivity

δgx(x̄)

δIt
=

g′x(x̄)Te

αx − Jeeg′x(x̄)
(6)
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(a) a reduced columnar model, an excitatory -inhibitory (E-I) pair, for a given visual feature

(b) a hypercolumn model for input pattern selectivity in a single feature dimension

(c) a model of interacting hypercolumns for global spatial vision

Example computations modelled:
Input gain control
Contextual facilitation
Contextual suppression
Contrast dependence

of contextual influences

Example computations modelled:
Shaping the orientation tuning

by lateral interactions
Spontaneous network activities

(hallucinations)

Contrast invariance of
orientation tuning curves

Optimal estimation of visual
features in noisy inputs

Example computations modelled:
Contour detection/enhancement
Texture segmentation
Visual pop-out of

feature singletons
Creating a global saliency map

by intra-cortical interactions
Stereo matching
Surface border ownership

computation

Figure 1: Three levels of complexity to model visual cortical circuits. A: an E-I network preferring
a single visual feature, e.g., a particular orientation θ at a particular location i, in response to feed-
forward visual inputs, and contextual recurrent inputs or central feedback inputs. B: a network
for a single feature dimension, e.g., a model of neurons tuned to various orientations θ spanning
0 < θ ≤ 180o, or a model of neurons whose receptive fields i collectively span the visual field.
C: a network of neurons for processing two feature dimensions, space (indexed by i) and another
dimension (indexed by θ) such as orientation. Different E-I pairs are tuned to different (i, θ). When
θ is orientation, input {Iiθ} can include object contours and surface textures. Each computational
issue is best addressed by a model of a suitable complexity.
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(b) behavior in a hypercolumn model(a) behavior in a reduced columnar model

E cell: gx(x) vs. x lateral connection Jij

θi − θj (deg)
Noisy orientation inputs Ii

preferred orientation θi(deg)

preferred orientation θi(deg)

Sharpened and smoothed responses g(xi)

cell state x

I cell: gy(y) vs. y

cell state y

Input response function gx(x) vs. It

Ic = 0

Ic = 2

Visual thalamic input It

(c) behavior in a model of interacting hypercolumns for computing visual saliencies
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Figure 2: Example performances of models at the three levels of complexity in Fig. (1). A: an E-I
pair model as in equations (1-4), with its piece-wise linear firing rates gx(x) and gy(y), and its input
response function gx(x) vs. It under different contextual conditions. αx = αy = 1, gx(x) = 0, x−0.5,
and 2.5 for x < 0.5, 0.5 ≤ x ≤ 3, and x > 3 respectively; gy(y) = 0, 0.1y− 0.1, y − 1.9, and 5y− 13.9
for y < 1, 1 ≤ y ≤ 2, 2 ≤ y ≤ 3, and y > 3 respectively; (Te, Ti) = (0.8, 0.2); (Ce, Ci) = (0.3, 0.9),
(Jee, Jei, Jie, Jii) = (0.2, 1.5, 1, 0.2). B: a hypercolumn circuit model of interacting neurons tuned to
orientation, as in equation (9), N = 50 model neurons are used for a model hypercolumn, g(x) =
gx(x) in A, Jij = 0.7 exp[−(i − j)2/(N/8)2] − 0.5. Lateral connections helps to smooth, amplify
and sharpen orientation input patterns. C: a model of interactions between E-I pairs in various
hypercolumns and tuned to different orientations, as in equations (10-11), model parameters are
as in [39••]. Input and output strengths are visualized by the thicknesses of the bars plotted, each
image is a part of a much larger image. The model gives relatively higher responses to conspicuous
image locations.
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in which the negative feedback from the I cell is non-existent. Meanwhile, this sensitivity is zero

before the E cell’s state x̄ is above the threshold to give a non-zero g′x(x̄), and is amplified by E

cell’s self-excitation Jee (modeling mutual excitation within the group of pyramidal cells modelled

by this single E model cell). Increasing thalamic input It raises I cell’s ȳ, either directly via TiIt

or indirectly via excitation from E to I, making g′y(ȳ) > 0 and thereby reducing the input sensitiv-

ity δgx(x̄)/δIt. When the I cell is activated sufficiently, E cell’s response to It saturates or super-

saturates, i.e., δgx(x̄)/δIt ≤ 0, when (αy + Jiig
′
y(ȳ))Te ≤ Jeig

′
y(ȳ)Ti, even before the E cell saturates

by itself when g′x(x̄) = 0. Such threshold, saturation, and super-saturation behavior (Fig. (2a))

are as physiologically observed[23, 24], and the behavior without the super-saturation has been

well fitted by the phenomenological contrast response function R = RmaxC
γ/(Cγ

50 + Cγ) relating

response R to input contrast C with model fitting parameters Rmax, C50 and γ[23].

Meanwhile, contextual visual inputs Ic outside the receptive field of the E-I pair typically

cause lateral input (δIe, δIi) = (CeIc, CiIc) to the E-I pair, more so when they are oriented parallel

to the inputs within the receptive fields[3, 4, 2, 25]. The sensitivity δgx(x̄)/δIc is obtained by sim-

ply replacing δgx(x̄)/δIt and (Te, Ti) in equation (5) by δgx(x̄)/δIc and (Ce, Ci), respectively. The

change in gx(x̄) caused by the lateral inputs (δIe, δIi) = (CeIc, CiIc) is then

δgx(x̄) = g′x(x̄)Ic
(αy + Jiig

′
y(ȳ))Ce − Jeig

′
y(ȳ)Ci

(αx − Jeeg′x(x̄))(αy + Jiig′y(ȳ)) + JeiJieg′x(x̄)g′y(ȳ)
(7)

Hence, Ic is facilitatory when

(αy + Jiig
′
y(ȳ))Ce > Jeig

′
y(ȳ)Ci (8)

and suppressive otherwise. Hence, the contextual influence depends on the I cell’s state ȳ. Under

weak feedforward input It when the I cell is inactivated and g′y(ȳ) ≈ 0, contextual influences are

facilitatory[26, 27]. Stronger input It activates the I cell and increases g′y(ȳ), and can switch the

contextual influences to suppression, as physiologically observed[28, 27, 29, 30, 31]. Note that this

switch in the effect of contextual influence is mainly caused by the low activation of the I cell by

weak input, and by the stronger inhibition from the I cell when it is activated and more sensitive

to inputs[13••]. When the contextual inputs are perpendicular to the (optimal) input within the

receptive field of the modelled E-I pair, (Ce, Ci) are much smaller. This reduces the lateral inputs

(δIe, δIi) = (CeIc, CiIc), making the E cell’s contrast response function gx(x̄) vs. It similar to that

without the contextual inputs (Fig. 2a). This switch of the contextual effect and its orientation

sensitivity has been suggested[15••] to underlie contour completion in weak input, when the iso-

orientation context enhances the response of the E-I pair, and orientation pop out in stronger inputs,

when the E-I pair is less suppressed by the cross-orientation background whose evoked responses

are more mutually suppressed within themselves.

This circuit with its nonlinear interactions between the E and I neurons has also been used to

understand other phenomena such as context enabled learning[32] and faster responses to inputs

while having positive feedback amplifications[33].

“Hypercolumn” models for feature selectivity

To model response to input patterns and their impact on behavior, we need multiple principal

cells preferring different feature values spanning a sufficient range at least in a single feature di-

mension. For example, one could model a hypercolumn by N interacting model neurons i, with

their respective preferred orientations θi spanning the whole orientation range. To an input pattern

I = (I1, I2, ..., IN ), its response pattern is g(x) = (g(x1), g(x2), ..., g(xN )). Alternatively, the feature
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dimension can be spatial locations, generalizing the concept of the “hypercolumn” model, so that

Ii models feedforward input at location i, and g(x) is a spatial pattern of responses. The compu-

tational goals of the recurrent processing in such models have included[17, 18•, 14, 16•, 34•, 35]

sharpening the neural feature tuning, denoising responses to noisy inputs, amplifying responses to

certain weak input patterns, and maintaining or generating responses in the absence of inputs as

in sensory hallucination.

Many hypercolumn models[17, 14, 16•, 34•] assume for simplicity that a neuron can be excita-

tory to some and inhibitory to other post-synaptic cells (see [13••, 11, 12, 18•] for exceptions), such

that the model equation is like

ẋi = −xi +
∑

j

Jijg(xj) + Ii (9)

where Jij ’s are elements of matrix J modeling the intra-cortical connections. Due to translation

invariance, Jij depends only on the difference |i − j| or |θi − θj |, and Jij = Jji. In the orientation

dimension, if a raw input is oriented at θ̂, it may generate feedforward input Ii = A+C · cos(θi − θ̂)

as the result of the orientation tuning curves (with constants A and C). Under static inputs, such

networks with symmetric connections between any two neurons (e.g., the Hopfield model[36]) are

known to converge to stable (static) states x̄, such that x̄i =
∑

j Jijg(x̄j) + Ii. Zero J makes state

x̄ = I, but stronger J makes x̄ a distorted (e.g., more sharply tuned) version of I. When J is strong

enough the network could even have non-zero state x̄ under zero input I[14, 16•]. For example, if

Jij = 1.1 for |i−j| ≤ 1 and Jij = −1 otherwise, and if g(x) is a step function with g(x) = 1 for x ≥ 1

and g(x) = 0 otherwise, then a broadly tuned input I = (..., 0, 0, 0.2, 0.3, 0.4, 0.5, 0.4, 0.3, 0.2, 0, 0, ...)

can lead to a more narrowly tuned response g(x̄) = (..., 0, 0, 1, 1, 1, 0, 0, ...). If a transient input I

brings the network near this state x̄, the network is likely to settle and remain in it as if it is a mem-

ory. A non-zero J also increases input response gain, as mutual excitation between nearby neurons

amplifies input. An initially noisy orientation input biased to orientation θi could evoke response

g(x̄) as if the input is noise free and oriented near θi, see Fig. (2b). As J becomes stronger, x̄ and the

orientation tuning width of neurons become less sensitive to the shape and strength of I. This helps

to optimally estimate the visual input orientation θ̂ from a noisy I, by locating the peak position i in

the population activity pattern g(x̄) and assigning θ̂ = θi[34•]. However, insensitivity of response

shape g(x̄) to the input pattern I makes the network unfaithful to input features. For example, the

network could hallucinate an oriented input by a unimodal response pattern g(x̄) even when the

actual input is non-oriented or have a bimodal pattern caused by two input orientations[37]. Avoid-

ing hallucination requires decreasing J , at the expense of input sensitivity. However, in a network

of orientation tuned E-I pairs[38•], sensitivity to oriented inputs and avoidance of hallucination can

be achieved simultaneously.

Models of interacting hypercolumns for spatial vision

To study spatial patterns of input features such as orientation, models should include visual fea-

tures in at least two dimensions: space, indexed by i, and the interested feature dimension such

as orientation, color, motion direction, depth, or other features, indexed by θ. When θ denotes

orientation, visual patterns like object contours and surface textures can be represented as spatial

configurations of oriented elements (i, θ). High complexity of such models makes them very diffi-

cult to harness. Therefore, in order to properly investigate the cortical roles, it is essential that the

models are designed to have its responses resemble the physiological responses, particularly the

responses under contextual influences which are sensitive to network interactions[29, 27, 30, 31].

One such model[22•, 39••] is a spatial array of interacting hypercolumns i, each composed of E-I
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pairs (iθ) tuned to different features θ

ẋiθ = −αxxiθ − gy(yi,θ) −
∑

∆θ 6=0

ψ(∆θ)gy(yi,θ+∆θ)

+Jogx(xiθ) +
∑

j 6=i,θ′

Jiθ,jθ′gx(xjθ′) + Iiθ + Io (10)

ẏiθ = −αyyiθ + gx(xiθ) +
∑

j 6=i,θ′

Wiθ,jθ′gx(xjθ′ ) + Ic (11)

where Iiθ , xiθ , yiθ, gx(xiθ), gy(yiθ) are analogous to the corresponding variables in equations (1-

2), Jo is the self-excitation factor of E neurons, Ic and Io model background inputs, including

noise, feature unspecific surround suppression, and central feedbacks, ψ(∆θ) models connection

strength for intra-hypercolumn interactions, Jiθ,jθ′ and Wiθ,jθ′ are synaptic connection strengths

between hypercolumns from the E neurons to other E and I neurons respectively. Suitable neu-

ral interactions make response patterns g(x) = (...g(xiθ), ..., g(xjθ′ ), ...) enhance some visual inputs

I = (...Iiθ , ..., Ijθ′ , ...) relative to others. For example, when the dominant interaction between colin-

early aligned elements (iθ) and (jθ′) is mutual excitation via Jiθ,jθ′ and that between near-parallel

and non-aligned elements is mutual disynaptic inhibition via Wiθ,jθ′ , and when between E neu-

rons di-synaptic inhibition via Wiθ,jθ′ ’s dominates mono-synaptic excitation via Jiθ,jθ′ ’s, responses

to smooth contours, to orientation pop-outs (e.g., a vertical bar among horizontal bars), or to tex-

ture borders can be relatively higher than those to homogeneous textures or noisy backgrounds (see

Fig. (2c)). It can be shown[38•, 21••] that, in order to achieve sensitive amplification of conspicuous

input elements relative to other inputs without sensory hallucinations, it is necessary to model the

cortical circuit as an E-I network, whose oscillatory tendency[40] has non-intuitive computational

benefits, instead of a simplified Hopfield-like network[20, 41•] (like that described by equation (9))

in which connection strengths between neurons are symmetric.

This V1 model was instrumental to developing a theory — the V1 saliency hypothesis. In

particular, due to contextual influences leading to iso-feature suppression (e.g., iso-orientation

suppression[27]), the V1 response to a pop-out feature singleton in a background of uniformly fea-

tured elements (e.g., a horizontal bar among vertical bars) is higher than its responses to the back-

ground elements. The model showed that, even in images (like those used in many visual search

studies) where saliency differences between input items are subtler, the model responses to more

salient locations are consistently higher than its responses to less salient locations[42•, 22•, 39••].

These findings inspired the hypothesis that V1 computes saliency from its inputs via its intra-

cortical mechanisms, such that the most salient location in the visual field to guide attention in

a bottom-up or goal independent manner is the receptive field location of the V1 cell most acti-

vated by the visual scene[42•, 43, 44•]. Since contextual suppression of V1 responses to a center

stimulus is stronger when the context is presented to the same, rather than a different, eye as the

center stimulus[45], the theory thus predicts surprisingly that visual attention can be captured by

an eye-of-origin singleton, e.g., a vertical bar presented to the left eye among many identical vertical

bars to the right eye, even though this singleton is perceptually so non-distinctive that observers

typically can not distinguish it from background elements[46]. This prediction was nevertheless

confirmed — this eye-of-origin singleton even out-competes a very salient and distinctive orienta-

tion singleton to capture attention and gaze, prolonging the reaction time to find this orientation

singleton as a target in a visual search task[47, 48]. Several other non-trivial predictions from the

theory have also been confirmed[49, 50].

Other E-I circuit models of comparable complexity have been used to demonstrate that neu-

ral tuning to surface border ownership in V2[51] could in principle emerge from intra-cortical
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interactions[52], and that a single network[53] for stereo matching in random dot stereograms

could also enhance responses to depth singletons and borders of depth surfaces as observed in

V2 cells[54], while a Hopfield-like network for stereo matching could not[19•]. There are other

complex cortical circuit models involving space and other visual features, with added complexity

including interactions between multiple visual areas or cortical layers[20, 55•]. Proposed functions

of these model circuits include visual segmentation, boundary completion, and feature filling-in.

However, an insufficient understanding of these complex models has so far made it difficult to

make the proposed functions precise and convincing.

Concluding remarks

We have limited intuitions of the neural circuit models of more than two interacting neurons, ex-

cept of those with special properties such as translation symmetry. It is important to find a mini-

mal model which has all the necessary complexity, but no more, to address the problem of interest,

whether to test the feasibility of a hypothesized behavioral role or to understand the mechanisms

underlying neural responses. Meanwhile, a complex model, such as the one of interacting hyper-

columns of E-I pairs in equations (10-11) should also be first understood at the level of their simpler

components, a single E-I pair or a hypercolumn of them. It remains an exciting challenge to model

neural circuits appropriately to discover and understand their computational roles[56, 57], partic-

ularly when modeling the recurrent interactions both within and between different visual cortical

areas. Computational understanding of the computations in cortical circuits can then inspire phe-

nomenological models for engineering applications[58, 59].
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