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Abstract

Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations to the signal

transform from sound spectrograms to neural responses along the auditory pathway. Their dependence on

statistical attributes of the stimuli, such as sound intensity, is usually explained by nonlinear mechanisms

and models. Here, we apply an efficient coding principle which has been successfully used to understand

receptive fields in early stages of visual processing, in order to provide a computational understanding of

the STRFs. According to this principle, STRFs result from an optimal tradeoff between maximizing the

sensory information the brain receives, and minimizing the cost of the neural activities required to represent

and transmit this information. Both terms depend on the statistical properties of the sensory inputs and

the noise that corrupts them. The STRFs should therefore depend on the input power spectrum and the

signal-to-noise ratio, which is assumed to increase with input intensity. We analytically derive the optimal

STRFs when signal and noise are approximated as Gaussians. Under the constraint that they should be

spectro-temporally local, the STRFs are predicted to adapt from being band-pass to low-pass filters as the

input intensity reduces, or the input correlation becomes longer range in sound frequency or time. These

predictions qualitatively match physiological observations. Our prediction as to how the STRFs should be

determined by the input power spectrum could readily be tested, since this spectrum depends on the stimulus

ensemble. The potentials and limitations of the efficient coding principle are discussed.

Author Summary

Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations of the signal

transform from sound spectrograms to neural responses along the auditory pathway. Their dependence on

the ensemble of input stimuli has usually been examined mechanistically as a possibly complex nonlinear

process. We propose that the STRFs and their dependence on the input ensemble can be understood by
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an efficient coding principle, according to which the responses of the encoding neurons report the maximum

amount of information about the sensory input, subject to limits on the neural cost in representing and

transmitting information. This proposal is inspired by the success of the same principle in accounting for

receptive fields in the early stages of the visual pathway and their adaptation to input statistics. The principle

can account for the STRFs that have been observed, and the way they change with sound intensity. Further,

it predicts how the STRFs should change with input correlations, an issue that has not been extensively

investigated. In sum, our study provides a computational understanding of the neural transformations of

auditory inputs, and makes testable predictions for future experiments.

Introduction

In response to acoustic input signals, neurons in the auditory pathway are typically selective to sound

frequency f and have particular response latencies. At least ignoring cases with f < 4kHz, in which

neuronal responses often phase lock to the sound waves, a spectro-temporal receptive field (STRF) is often

used to describe the tuning properties of a neuron [1, 2, 3, 4]. This is a two-dimensional function STRF (f, t)

that reports the sensitivity of the neuron at response latency t to acoustic inputs of frequency f for a given

stimulus ensemble (i.e., given input statistics). More specifically, in a stimulus ensemble, the power S(f, t)

of the acoustic input at frequency f at time t fluctuates around an average level denoted by S̄(f). If we let

O(t) denote the neuron’s response at time t (typically its spike rate), then STRF (f, t) best approximates

the linear relationship between O(t) and S(f, t) in this stimulus ensemble as

O(t) =

∫∫

STRF (f, τ)S(f, t− τ)dτdf + spontaneous activity (1)

Note that in this paper, we refer to S(f, t) as the input spectrogram, although some authors also include the

average input power S̄(f). Though S(f, t) is not a full description of acoustic input, since it ignores features

such as the phase of the oscillation in the sound wave, it is the only relevant aspect of the auditory input as

far as the STRF is concerned. Note that if we use O(t) to denote the deviation of the neural response from

its spontaneous activity level, then both O(t) and S(f, t) have zero mean. We will use this simplification

throughout the paper. In studies in which the temporal dimension is omitted, the STRF is called the spectral

receptive field (SRF).

Figure 1 cartoons a typical STRF. This has excitatory and inhibitory regions, reflecting its preferred fre-

quency and response latency. For example, if STRF (f, t) peaks at frequency f = f̂ and time t = t̂, then

this neuron prefers frequency f̂ and should respond to an input impulse S (f, t) = δ
(

f − f̂
)

δ (t) of this fre-

quency with latency t̂. We will also refer to STRF (f, t) as the receptive field, the filter kernel, or the transfer

function from input to neural responses, as these all convey the same or similar meanings. A neuron’s STRF

is typically estimated using reverse correlation methods [5, 4].
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Figure 1: A schematic example of a typical spectro-temporal receptive field, plotted with a reversed abscissa.
This STRF has one excitatory and three inhibitory regions, prefers frequency f̂ , and evokes response at a
typical latency t̂. Since the response at time t = 0 is O(t = 0) =

∫∫

STRF (f, τ)S (f,−τ) dτdf , an input
stimulus S (f, t) = STRF (f,−t) exactly as depicted in this plot is most likely to elicit a large response
O (t = 0) at time t = 0, or indeed a spike.

However, there are extensive nonlinearities in the signal transformation along the auditory pathway. Indeed,

the STRF formulation of neural responses, though linear in spectral power, is already a second-order nonlinear

function of the auditory sound wave. There are two kinds of nonlinearities when inputs are represented as

spectrograms. The simplier one is a static nonlinearity fnonlinear(O(t)), which when applied to the linear

approximation O(t) of equation (1) enables better predictions of the neural responses[6, 7]. This static

nonlinearity however does not alter the spectro-temporal selectivity of the neuron seen in the linear STRF.

This paper is interested in the more complex nonlinearity that the STRFs are dependent on the stimulus

ensemble used to estimate them[1, 5, 8, 9]. For example, the STRFs are wider when the input intensity is

weaker[10], or when the stimuli are animal vocalizations rather than noise[11]. The STRF (or SRF) also

becomes more band-pass when sound intensity increases. The dependence of the STRFs on the stimulus

ensemble holds, for example, for type IV neurons in the cochlear nucleus of cats[12, 13], the inferior colliculus

(IC) of the frog[8] and the gerbil [7], and field L region of the songbird (which is analogous to mammalian

auditory cortex) [14]. (The dependence on sound intensity also holds for the linear relationship between

the auditory nerve responses and input sound waves[5]). Nonlinearities in the auditory system become

progressively stronger further from the periphery.

Despite the nonlinearities, the concept of the STRF is still widely used, not only because it provides a

meaningful description of the spectro-temporal selectivity of the neurons in a given stimulus ensemble, but

also because it can predict neural responses to novel stimuli reasonably well, as long as the stimuli are

drawn from the same stimulus ensemble as that used to estimate the STRF in the first place. Reasonable

predictions from the STRFs have been obtained for the responses of auditory nerves(see [15]) and auditory

midbrain neurons[6, 7, 16] (also see[2]). They have also been obtained for responses of the auditory cortical
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neurons when the stimulus ensemble is composed of biologically more meaningful static or dynamic ripples

(broadband sound with sinusoidally modulated spectral envelopes and their linear combinations [17, 18, 19]).

If the linear neural filter is augmented to include the filtering performed by the head and ears, it is also

possible to predict the preferred locations of sound sources of auditory cortical neurons based on the linear

neural filter for input spectrograms[20]. Meanwhile, linear STRF models fail to capture many complex

phenomena, particularly in the auditory cortex, and nonlinearities are not limited to being just static or

monotonic. It has been suggested that some auditory cortical neurons process auditory objects in a highly

non-linear manner, by selectively responding to a weak object component while ignoring loud components

that occupy the same region in frequency space in auditory mixtures of these object components [21], and

some prefer low over high spectral contrast sounds [22]. Strong nonlinearities in the auditory processes have

long since motivated nonlinear models of auditory responses (e.g.,[5, 12, 23]).

This paper aims to understand from a computational, rather than a mechanistic, perspective why the auditory

encoding transform should depend on the stimulus ensemble in the ways observed. More specifically, the

paper focuses on cases in which STRFs can reasonably capture neural responses, and aims to identify

and understand the computational goal of the STRFs for a given stimulus ensemble – finding a metric

according to which the STRFs are optimal for the ensemble. This would provide a rationale for how the

physiologically measured STRFs should depend on or adapt to the stimulus ensemble. This paper does not

address what linear or nonlinear mechanisms could build the optimal STRFs, or whether or how nonlinear

auditory processes enable the adaptation of the STRFs to the stimulus ensemble. Existing computational

models of auditory neurons, including ones with the notion that cochlear hair cells perform independent

component analysis to provide an efficient code for inputs using spikes in the auditory nerves[24, 25], cannot

explain the observed dependence of the STRFs on the stimulus ensemble (see Discussion for more details).

Restricting attention to the temporal properties of STRF, Lesica and Grothe[26] observed that the temporal

filter in STRF adapted to the level of ambient noise in the input environment. In particular, the temporal

receptive field in the STRF changed from being bandpass to being low pass with the increase of ambient

noise. They argued using a simple model that such adaptation in the STRF enables more efficient coding of

the input information.

This study applies the principles of efficient coding to understand the auditory STRF and its variations

with sound intensities and other input characteristics. It generalizes the work of Lesica and Grothe[26] to

understand the temporal and spectral filtering characteristics of STRF adaptation to changes in noise, signal

and correlations in input statistics. Explicitly, the principle of efficient coding states that the neural receptive

fields should enable the neural responses to transmit as much sensory information as possible to the central

nervous system, subject to the limitation in neural cost in representing and transmitting information. This

principle has been proposed[27] and successfully applied to the visual system to understand the receptive

fields in the early visual pathway[28, 29, 30, 31, 32, 33] (see review[34]). We will borrow heavily techniques

and intuitions from vision to derive and explain the results in this paper.

To make initial progress, it is necessary to start with some simplifying assumptions. First, we assume that
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the statistical characteristics of the stimulus ensemble do not change more rapidly than the speed at which

the sensory encoding adapts, so that the stimulus ensemble can be approximated as being stationary as far

as optimal encoding is concerned. Knowing when this assumption does not hold tells us when the encoding

is not optimal, e.g., when one sees poorly for a brief moment before the visual encoding adapts to a sudden

change from a dark room to a bright garden. Second, for mathematical convenience, we assume that the

linear STRF model as in equation (1) can approximate adapted auditory neural responses reasonably well.

As we know from above, this assumption often does not hold, particularly for auditory cortical neurons. This

paper leaves the extension of the optimal encoding to nonlinear cases for future studies. Third, to derive a

closed-form, analytical, solution to the optimal STRF, we assume that the input statistics in the stimulus

ensemble can be approximated as being Gaussian, with higher order correlations in the input contributing

only negligibly to the inefficiency of the representation in the original sensory inputs. Although it is known

that the natural auditory inputs are far from Gaussian[35], as for the case of vision, the discrepancy may

have only a limited impact on the input inefficiency, as measured by the amount of information redundancy

in the original sensory input [36, 37, 38].

To understand how sensory inputs should be recoded to increase coding efficiency, we start with visual

encoding to draw insights and made analogies with auditory encoding. In vision, large amounts of raw data

about the visual world are transduced by photoreceptors. However, the optic nerve, which transmits the

input data to the visual cortex via thalamus, can only accommodate a dramatically smaller data rate. It has

thus been proposed that early visual processes use an efficient coding strategy to encode as much information

as possible given the limited bandwidth [27, 34], in other words, to recode the data such that the redundancy

in the data is reduced and consequently the data can be transmitted by the limited bandwidth. Compression

(while preserving most information) is possible since images are very redundant [39, 40, 41, 42], e.g., with

strong correlations between visual inputs at nearby points in time and space. Removing such correlations

can cut down the data rate substantially [34].

One way to remove the correlations is to transform the raw input S into a different representation O in

neural responses that would then have a much smaller data rate than S, yet preserving essential input

information. This transform is often approximated by the visual receptive field, analogous to the auditory

STRFs. For instance, the (spatial) center-surround receptive fields of the retinal ganglion cells help remove

spatial redundancy [30, 31, 43]. They do this by making the ganglion cells preferentially respond to spatial

contrast in the input, and so eliminating responses to visual locations whose input is redundant with that

of their neighbors. Consequently, the responses of retinal ganglion cells are much less correlated than those

of the photoreceptors, making their representation much more efficient. One facet of this efficient encoding

hypothesis is that the optimal receptive field transform should depend on the statistical properties, such as

the correlation structure and intensity, of the input. This dependence has been used to explain adaptation,

to changes in input statistics, of visual receptive field characteristics, such as the sizes of center-surround

regions and the color tuning of retinal neurons, or the ocular dominance properties of striate cortical neurons

[32, 34, 44, 45, 46, 47]. In the auditory system, information redundancy is also reduced along the auditory

pathway[48]. Although this redundancy reduction was only investigated in the neural responses to sensory
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inputs rather than in the coding (STRF) transform leading to the neural responses, it suggested that coding

efficiency is one of the goals of early auditory processes.

More formally, the efficient coding scheme is depicted in Figure 2A. The input contains sensory signal S and

noise N (e.g., input sampling noise). The net input S + N is encoded by a linear transfer function K into

output.

O = K(S + N) + No (2)

which also contains additional noise No introduced in the encoding process. When the input has multiple

channels, e.g., many different photoreceptors or hair cells, S = (S1, S2, ..., Sj, ...) is a vector with many

components, as indeed is N . Output O is a vector representing the neural population responses from many

neurons. For output neuron i, we have Oi =
∑

j Kij(Sj + Nj) + No,i. Therefore K is a matrix, and its ith

row (Ki1, Ki2, ..., Kij , ...) models the receptive field for output neuron i as the array of effective weights from

input receptors j to output neuron i. In the particular example when input neurons are photoreceptors and

output neurons are retinal ganglion cells, Kij is the effective connection from photoreceptor j to ganglion cell

i (implemented via the interneurons in the cell layers of the retina), and collectively, (Ki1, Ki2, ..., Kij , ...)

describe the linear receptive field of this ganglion cell. We consider the problem of finding an optimal K that

maximizes the information extracted by O about S, i.e., the mutual information I(O; S)[49] between O and

S subject to a given cost of the neural encoding, which depends on the responses in a way we will describe

shortly.

Therefore, the optimal K should minimize the objective function:

E (K) = neural cost − λ × I (O; S) (3)

where λ is a parameter whose value specifies a particular balance between the needs to minimize costs and to

maximize extracted information. Neural costs can arise from various sources, such as the metabolic energy

cost for generating neural activities or spikes[50] and the cost of thicker axons to transmit higher rates of

neural firing. We follow a formulation that has been productive in vision[31, 34], and model the neural cost

as

neural cost =
∑

i

〈

O2
i

〉

,

where 〈...〉 indicates the average over the stimulus ensemble. This gives

E(K) =
∑

i

〈

O2
i

〉

− λ × I(O; S) (4)

It has been shown [29, 33, 51, 34] that the K that provides the most efficient coding according to E(K)

has the following properties. At high signal-to-noise ratio (SNR), K is such that O extracts the difference

between correlated channels, and thus avoids transmitting redundant information. Hence, for example, in
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Figure 2: Formulation and components of efficient coding. (A) A schematic plot of the efficient encoding
transform. (B) Signal transformation in the auditory system. The cochlea turns the time-varying waveform
W (t) into a time-frequency representation S (f, t), as the population activities of the auditory nerves, which
is the input to the efficient encoding system. Signal and noise pass through a series of brain nuclei such
as cochlear nucleus, superior olive, inferior colliculus, etc. The current work proposes that the effective
transform STRF of the spectrogram that is collectively realized by these nuclei is, in its linear form, the
optimal filter K implied by the efficient coding principle. The output O (t) is the activity of neurons in
a higher nucleus. (C) Three steps of signal flow within the linear encoding step K or STRF in (A) and
(B). Note that these three steps are merely abstract algorithmic steps, rather than neural implementation
processes for the effective transform K or STRF.
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photopic conditions, retinal ganglion cells have center-surround spatial receptive fields which extract the

spatial contrast of the input. By contrast, at low SNR, K is a smoothing filter that averages out input noise

instead of reducing redundancy. This avoids spending neural cost on transmitting noise. Hence, for example,

in scotopic conditions, when SNR can be considered as being low, the receptive fields of retinal ganglion

cells expand the sizes of their center regions and weaken their suppressive surrounds [52]. We will apply this

framework to the auditory encoding to understand STRFs and their adaptation to stimulus ensembles.

Methods

Auditory encoding system and its comparison to vision

To apply the efficient coding principle to auditory STRFs, we borrow insights from vision by making an

analogy between (aspects of) the auditory and visual systems. For simplicity, we start by ignoring input

noise. While sound signals are typically air vibrations over time, at the input sampling stage, they are

sampled as Sf,t from a continuous time-frequency representation S(f, t), namely the response at time t of

a hair cell tuned to sound vibration frequency f . This is analogous to visual input sampling, in which the

response of a photoreceptor at location i samples the light signal in the form of electromagnetic vibrations.

Auditory hair cells are tonotopically arranged in the cochlea, so that neighboring hair cells are tuned to

nearby sound frequencies. Therefore, at any instant t , the response pattern (Sf1,t, Sf2,t, ...Sfi,t, ...) as a

function of hair cell’s location i over the cochlea is an auditory “image” of the pattern of powers across sound

frequencies, analogous to a retinal image. (In our formulation, we focus on sampling the intensity or power

in Sf,t, and ignore the phase of the sound wave at frequency f . This is because (1) auditory nerve responses

do not encode the phase except for low frequency inputs via phase locking, and (2), as mentioned, our goal

is to understand the STRFs which do not concern the phase information.) While a retinal image is two

dimensional in space (and one additional dimension in time), the auditory “image” at any instant t is one

dimensional in sound frequency f . One may use time t as the second dimension such that Sf,t for all f and

t collectively can be seen as a single discrete sample of the two-dimensional auditory “image”. When input

noise N is included, input S becomes S + N .

As for vision, we explore whether the auditory STRFs can be partly understood by the goal of efficiently

coding auditory information. The sensory input is sampled as S +N , the responses of the cochlear hair cells.

This input is encoded by the STRFs to give rise to outputs O as the neural activities of a higher nucleus,

such as the inferior colliculus (IC) or the auditory cortex (Figure 2B). The STRF is then analogous to a

spatial receptive field, such as that of the retinal ganglion cells. Thus the STRF should be determined by

the statistics of the auditory inputs, and in particular, the correlation RS
ij =

〈

S(f,t)i
S(f,t)j

〉

between different

inputs S(f,t)i
and S(f,t)j

, where (f, t)i labels a particular spectro-temporal combination of a frequency value

f and time t. Note that for i 6= j, the frequency f or t, but not both, in the two indices (f, t)i and (f, t)j may

be equal. (Here, for simplicity we assume, or pre-process the signal, such that all inputs have zero mean,
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i.e.,
〈

S(f,t)i

〉

= 0, just like the input signal fluctuation S(f, t) around the ensemble average in the definition

of the STRF in equation (1)). As in vision, natural auditory inputs express substantial correlations between

inputs of neighboring frequencies and at neighboring temporal instances. When the input SNR is sufficiently

high, an optimal STRF should reduce these correlations to achieve efficient transmission. Such an STRF

will have neighboring excitatory and inhibitory regions in the frequency-latency domain, making the neuron

be tuned to spectro-temporal contrast and be insensitive to the spectro-temporal redundancy.

Auditory STRF filter as an efficient coding transform

The general formulation and derivation of the efficient coding transform K (or STRF) can be found in its

application to vision [34]. Here we outline these results and illustrate their consequences for auditory coding.

Let S be the input with p input channels:

S = (S1, S2, ..., Sp)
T (5)

(superscript T denotes vector or matrix transpose). These p input channels may correspond to p auditory

nerves if we omit the temporal dimension, p time instances if we focus on a single frequency channel, or they

may correspond to p spectro-temporal labels (f, t)i for i = 1, 2, ..., p. Let the input correlation be described

by correlation matrix RS with elements RS
ij = 〈SiSj〉. The optimal transform K that minimizes E(K) in

equation (4) can be decomposed in three steps (Figure 2C): (1) a principal component transform to de-

correlate the inputs, (2) gain control of each principal component, (3) an ortho-normal or unitary transform

on the array of the gain-controlled components to arrive at various output channels. We now elaborate and

elucidate these three steps.

The first step is a coordinate rotation, or ortho-normal transform, S → KoS, by an ortho-normal matrix Ko

that de-correlates the input channels such that each of the channels in the transformed signal KoS contains a

principal component of the original signal. We denote these principal components as Sk =
∑

j(Ko)kjSj , with

sub-index k (instead of i, j) as the indices of the de-correlated channels (later, we also use ω to denote the

de-correlated channels in the temporal domain, or (Ω, ω) in spectro-temporal domain). Since the correlation

between Sk and Sk′ is 〈SkSk′ 〉 = (KoR
SKT

o )kk′ , decorrelation between principal components implies that

KoR
SKT

o is a diagonal matrix, with (KoR
SKT

o )kk′ =
〈

S2
k

〉

δkk′ , where
〈

S2
k

〉

is the kth eigenvalue of matrix

RS and also the average signal power of the kth principal component Sk. As we will see later, when the

input correlation 〈Sf,tSf ′,t′〉 depends mainly on the differences (f − f ′, t− t′) in frequency and time, it turns

out that Sk (with the index k denoting the spectro-temporal modulation frequency (Ω, ω)) is the amplitude

of a dynamic or moving ripple that some experiments use to estimate the STRFs of cortical and midbrain

neurons [17, 18, 19, 16, 2].

The second step is gain control gk on each component Sk, giving output gkSk. Including noise Nk, which is

the original input noise N projected to the kth channel by the transform Ko, and the encoding noise No,k

(in the decorrelated k space), the total output becomes Ok = gk(Sk + Nk) + No,k. It can be shown (see
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[34]) that the gain gk that minimizes E(K) in equation (4) is determined by the input signal-to-noise ratio
〈

S2
k

〉

/
〈

N 2
〉

to satisfy

g2
k ∝ Max

{[

1

2(1 + 〈N 2〉 / 〈S2
k〉 )

(

1 +

√

1 +
2λ

(ln2) 〈N 2
o 〉

〈N 2〉

〈S2
k〉

)

− 1

]

, 0

}

(6)

where
〈

N 2
〉

is the variance of Nk, and also of the input noise N (assumed to be independent, identically

distributed and Gaussian in each channel) , and
〈

N 2
o

〉

is the variance of the encoding noise No,k in each

channel k (and of the encoding noise No,i in each i since different encoding noise channels are also assumed

to be independently and identically distributed).

Note that the total noise at output neuron i is output noisei =
∑

j KijNj + No,i. One effect of the encoding

transform K is that noise corrupting different output neurons can be correlated, even when the original input

noise is independent. The additional encoding noise No,i could also be correlated in different output neurons,

since it could also reflect a common origin in intermediate stages of the encoding processes. Our assumption

of independence between No,i and No,j for i 6= j is thus a simplification for mathematical convenience.

Since all the variables are assumed to be Gaussian, each output Ok extracts the following amount of infor-

mation

I(Ok;Sk) =
1

2
log

(

1 +
g2

k

〈

S2
k

〉

g2
k 〈N

2〉 + 〈N 2
o 〉

)

about the input S and has an output power
〈

O2
k

〉

= g2
k(
〈

S2
k

〉

+
〈

N 2
〉

)+
〈

N 2
o

〉

. Since different output channels

Ok from different k are decorrelated from each other, the quantity E in equation (4) is

E =
∑

k

〈

O2
k

〉

− λ
∑

k

I(Ok;Sk) (7)

One can then verify that g2
k in equation (6) indeed minimizes this E since dE/dg2

k = 0 at that value. Note

that if Sk is the amplitude of a moving ripple indexed by k, gk will be the sensitivity of the neuron to the

moving ripple.

We can write these two steps as the product gKo, where Ko is the principal component transform, and

g performs the gain control. g is a diagonal matrix with diagonal elements gk. The net output is then

O = gKo(S + N) + No. Consider imposing on this transform an orthonormal or unitary transform U (with

UUT = 1), the third step in building the efficient coding filter K, giving K = UgKo. It follows [34] from the

properties of unitary matrices that neither the first term nor the second term in E in equation (4) will be

affected by U (at least when signal and noise are Gaussian and when the components of No are independent

and identically distributed).

Each row vector of the matrix K determines the receptive field of a particular output channel or neuron.

Without U , K = gKo would specify receptive fields that would be gain controlled eigenvectors or principal

components of the input correlation matrix. For example, they would look like ripples covering the entire
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spectro-temporal range. An appropriate choice of non-trivial U will alter the receptive field shape dramat-

ically, giving rise to receptive field properties found in real neurons such as a finite span in input channel

space. For example, if we consider only the input frequency channels f for auditory inputs and omit the

time dimension, we may prefer that the STRF for an output neuron to be selective to only a finite band of

input frequencies such that the neural responses O resemble periphery inputs S while maintaining coding

efficiency. It can be shown[34, 45] that this can be achieved by choosing U = K−1
o , such that K = K−1

o gKo.

We will use this choice, U = K−1
o , in building our STRF in frequency domain. However, insensitive to the

exact form of U , the critical feature of the STRF comes from the gain gk specified in the second step of the

encoding model (as long as one does not impose additional computational goals that may restrict the final

STRFs, see Discussion). We will show later that gk often corresponds to the modulation transfer functions

(MTFs, also called ripple transfer function, RTF,in different literatures) of the STRFs.

We now apply this general framework to the case of auditory encoding. Sound spectrogram S(f, t) is

derived from the sound waveform W (t) as follows. The first step is to perform a temporally-windowed

Fourier transform of W (t) to obtain the sound spectrum Ŵ (f̂ , t) ∝
∫

W (τ)T (t − τ)e−i·2πf̂τdτ as a function

of time, where T (t) is a temporal window function (e.g., T (t) = 1 for t ∈ [0, t0],T (t) = 0 otherwise).

Since the cochlea performs approximately a log scale frequency analysis, we first let f = log
(

f̂
)

to obtain

Ŵ (f, t) (although the more accurate form would be f = 21.4 log10

(

4.37f̂ + 1
)

[53]). Then the input

power in f is Ŝ(f, t) =
∣

∣

∣
Ŵ (f, t)

∣

∣

∣

2

. One may employ a further logarithmic transform S(f, t) = log Ŝ(f, t)

to characterize the cochlear response better (through capturing the compressive input/output transform

realized by processes in the basilar membrane and hair cells)[54, 55]. However, this further logarithmic

transform is not essential for our formulation, and, as pointed out previously[56], it does not significantly

affect the qualitative characteristics of the empirical STRFs. If one omits this logarithmic transform, then

S(f, t) = Ŝ(f, t). We then subtract the mean 〈S(f, t)〉 from S(f, t), and, for simplicity, denote the resulting

zero mean signal still by S(f, t), as in the definition of STRF. We next consider discrete samples Sf,t of the

continuous S(f, t). This leads to the input correlation matrix RS
ij = 〈S(f,t)i

S(f,t)j
〉.

Finally, we follow the three encoding steps above to obtain the optimal encoding transform as STRF = K.

In the sub-section “The spectral filter SRF", we discuss the simple case in which the temporal dimension t

is omitted. Then, the input vector (equation (5)) is S = (Sf1
, Sf2

, ...)T , and the input correlation matrix is

RS
ij = 〈Sfi

Sfj
〉. The efficient encoding procedure specifies the optimal spectral receptive field (SRF) Kij for

neuron i, with Oi =
∑

j KijSfj
+ noise. When the temporal dimension is included S = (S(f,t)1 , S(f,t)2 , ...)

T ,

RS
ij = 〈S(f,t)i

S(f,t)j
〉, and efficient coding specifies the optimal STRF as input weights or selectivity associated

with the spectrogram {S(f,t)i
}.

It is apparent that the optimal SRF and STRF depend on input statistics via the input correlation RS and

the input SNR (through the steps 1 and 2 in the encoding scheme). Therefore, when the stimulus ensemble

changes, altering the input correlations and signal intensity, the form of the encoding receptive field should

adapt in order to maintain encoding optimality. We propose that it is this that explains the input ensemble

11



dependence of the STRFs.

A special class of input statistics has translation invariant correlations, i.e., with RS
ij =

〈

S(f,t)i
S(f,t)j

〉

depending only on the differences fi−fj (quantified in octaves) and ti−tj. This is a reasonable approximation

of the input correlations in natural auditory scenes under two conditions. The first is that a local frequency

range is considered that is not much larger than the range of the frequencies to which a neuron is sensitive,

i.e., in the perspective of a neuron, the dependence of
〈

S(f,t)i
S(f,t)j

〉

on the frequency is mainly through

fi − fj. This is analogous to approximating spatial correlation of visual inputs as translation invariant to

understand the retinal ganglion cell’s spatial receptive fields although the spatial sampling density varies

substantially with input eccentricity[31, 34]. The second is that the environment is statistically stationary,

as then the correlations in time depend only on the temporal difference ti − tj. It can then be shown

that[34] the principal components are moving ripple ∝ ei(2πΩf+2πωt), each of which has a 2D modulation

frequency (Ω, ω), which can be indexed by k ≡ (Ω, ω). The first encoding step is then a 2D Fourier transform

(Ko)(Ω,ω),j ∼ exp[−2πi(Ωfj + ωtj)] of the input S(f, t) to obtain S(Ω, ω) ∝
∫∫

S(f, t)e−i(2πΩf+2πωt)dfdt.

Meanwhile, the original input can be written as S(f, t) ∝
∫∫

S(Ω, ω)ei(2πΩf+2πωt)dΩdω, i.e., as a weighted

sum of the moving ripples[19]. The second encoding step determines the gains for the ripple amplitudes

S(Ω, ω) [34] as

g2(Ω, ω) ∝ Max

{[

1

2(1 + 〈N 2〉 / 〈S2(Ω, ω)〉 )

(

1 +

√

1 +
2λ

(ln2) 〈N 2
o 〉

〈N 2〉

〈S2(Ω, ω)〉

)

− 1

]

, 0

}

(8)

i.e., replacing gk and
〈

S2
k

〉

in equation (6) by the corresponding g(Ω, ω) and
〈

S2(Ω, ω)
〉

. If U is chosen as

the inverse Fourier transform

Ui,(Ω,ω) ∼ exp[2πi(Ωfi + ωti) + iφ(Ω, ω)], (9)

with an extra phase function φ(Ω, ω), then the encoding transform is Kij =
∑

(Ω,ω) Ui,(Ω,ω)g(Ω, ω)(Ko)(Ω,ω),j .

This gives

K (fi, ti; fjtj) ≡ K (fi − fj , ti − tj)

∝

∫∫

g (Ω, ω) exp [2πi(Ω(fi − fj) + ω(ti − tj)) + iφ(Ω, ω)] dΩdω, (10)

which depends only on the differences fi − fj and ti − tj . Applying this transform to input S to give output

Oi(ti) =
∫∫

dfjdtjK(fi − fj , ti − tj)S(fj , tj), we see, by comparison with equation (1), that the STRF is

STRF (f, t) = K(fi−f, t). This is a temporal filter tuned to sound frequency with a tuning pattern governed

by g(Ω, ω), and centered around frequency fi. Changing the center frequency from fi to fj is like shifting

from one output neuron i to another neuron j. Altering the phase φ(Ω, ω) in equation (9) alters the STRF

shape, in particular to ensure its temporal causality. In physiology, modulation tuning function (MTF) is

12



often mentioned as the Fourier transform of auditory receptive field [19]. Therefore, it is clear from equation

(10) that the gain profile g(Ω, ω), which is determined by efficient coding, corresponds to the magnitude of

the MTF. However, the shape of an STRF is determined by the phase as well as the magnitude of the MTF,

and efficient coding does not strongly constrain the phase. Therefore, while we will illustrate the general

properties of some example STRFs predicted by the theory by choosing particular U transforms (governed

by the additional requirements of spectro-temporal locality and causality), in the Results, we will generally

compare physiological data to the magnitudes of the MTFs that the theory predicts.

In the Results, we will discuss the efficient coding framework for situations both with (e.g., to study temporal

aspects of STRFs) and without (e.g., to study their spectral aspects) translation invariance in input statistics.

Results

To illustrate how the framework explains and predicts physiological experiments, we first discuss a few

examples when the temporal or the spectral dimension is omitted, and then show a full spectro-temporal

STRF.

The spectral filter SRF

We first omit time, treating the input S(f) as varying only in frequency. In this case, the encoding filter

reduces from being an STRF to an SRF. We take fi as one of 250 discrete values i = 1, 2, ..., 250, from low to

high frequencies; hence input S is a one dimensional vector S = (Sf1
, Sf2

, ..., Sf250
)T . In simulations, input

sample S is generated by smoothing a random noise vector S′ = (S′

f1
, S′

f2
, ..., S′

f250
)T (Figure 3A), with all

the components S′

fi
taken to be independent, zero mean, unit variance, Gaussian noise. Specifically

Sfi
=
√

IF

∑

j

MijS
′

fj
(11)

where IF is a factor to scale the overall input power intensity, and M is the smoothing matrix with elements

Mij = AiM̂ij (12)

explained in detail below. Here Ai = 250−i
300 +0.1 controls the scale of the signal Sfi

, which decays with i (like

in an environment in which high frequency sounds do not propagate well), and M̂ is a normalized smoothing

matrix with elements M̂ij = M̃i−j/NORM , in which

M̃i−j =

{

0.54 + 0.46 cos(2π(i−j)
L ), if −L/2 ≤ i − j ≤ L/2

0, otherwise.
(13)

NORM =
(

∑L/2
a=−L/2 M̃2

a

)1/2

is a normalization constant, and L controls the range of frequency difference

|fi − fj| for significant correlation coefficient between the variation of Sfi
and that of Sfj

.
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Figure 3: Simulation of the efficient spectral kernel SRF, when the temporal dimension is omitted. (A) 250
samples of input spectra S(f), each of which is smoothed Gaussian white noise in the frequency domain
(equations (11 - 13), IF = 2, L = 14). (B) Correlation between different frequency channels S(f). Left:
Correlation RS ; Right: an zoomed-in view, as RS

ij vs fi = fj. (C) Ten examples of eigenvectors V k(f) of the

correlation matrix RS in B; each is an independent component in S (f). Smaller indices k are associated with
larger eigenvalues. (D) Gain profile (peaking at kp), and signal and noise power in decorrelated channels.
(E) Four examples (i = 50, 100, 150, and 200) of spectral receptive fields SRFi(f) =

∑

k gkV k(fi)V
k(f);

each prefers input frequencies around fi.
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Consequently, each Sfi
is also a zero mean Gaussian random variable, and the input correlations comprise

a 250x250 matrix RS = IF MMT . One could also estimate RS from input samples S (as when animals

adapt their auditory system to environmental sound through experience), in which case element RS
ij =

〈

(Sfi
− 〈Sfi

〉)
(

Sfj
−
〈

Sfj

〉)〉

. Figure 3B illustrates RS (obtained numerically from 250 samples of S in

Figure 3A, of course one could use more than 250 samples to estimate RS) for L = 14. The correlation

RS
ij = IF AiAj(M̂

2)ij scales with strengths of the original signals Sfi
and Sfj

through the scales Ai and Aj ,

and so decays with frequency fi and fj . Thus the statistics of the stimulus ensemble are not translation

invariant in the spectral frequency f . Nevertheless, the correlation coefficient

Cij ≡
RS

ij
√

RS
iiR

S
jj

=
(M̂2)ij

√

(M̂2)ii(M̂2)jj

does depend mainly on the (frequency) difference |i − j|, since (M̂2)ii is almost independent of i and (M̂2)ij

depends mainly on |i − j| except for the very small or very large i and j. This is evident in the fact that

the rate of decay of RS
ij with the difference |fi − fj | in Figure 3B is almost constant. Since the stimu-

lus ensemble is not translation invariant, we will use the general formulation to obtain the SRF. From

RS , we obtain its 250 eigenvalues and the corresponding eigenvectors. Each of these is a vector with

250 components. We list them in the order of descending eigenvalues, denoting the kth eigenvector as

V k ≡ [(Ko)k1, (Ko)k2, ..., (Ko)kj , ...(Ko)k250]
T , and placing it as the kth row vector of the Ko transform

matrix. Figure 3C depicts the eigenvectors for k = 5, 10, ..., 50, where smaller k is associated with a larger

eigenvalue. Each principal component or eigenvector can be seen as a special input spectrum pattern S = V k,

while a general input S =
∑

k SkV k is a linear sum of the principal components with weights Sk. The first

encoding step is thus a transformation of the original input S by Ko to obtain the decorrelated signal Sk,

for k = 1, 2, ..., 250. The average power in Sk is the kth eigenvalue of matrix RS

〈

S2
k

〉

= (KoR
SKT

o )kk

The eigenvectors look roughly like oscillating waveforms (spectral oscillations) with different oscillation rates,

and are comparable to the sinusoidal bases in the Fourier transform. They also resemble the “ripples” used

in physiological experiments. This is because the input correlations are roughly translation invariant, at

least within a small range of frequencies in which the signal power
〈

S2
f

〉

is roughly independent of f (just

like in vision when the statistics of inputs sampled at the retina can be seen as roughly translation invariant

within a local region). Also note that smaller or larger k is associated with eigenvectors with fewer or

more oscillations. This makes k relate monotonically to the spectral modulation frequency (corresponding

to the “ripple frequency” Ω in physiological experiments). Larger eigenvalues, i.e., larger signal powers
〈

S2
k

〉

, are associated with fewer spectral modulations or smaller indices k, because inputs of more similar

sound frequencies are more correlated with each other, i.e., RS
ij decreases with increasing |fi − fj |. The

analogy between the eigenvectors and the Fourier bases can be understood as follows: if RS is strictly

translation invariant, then the eigenvectors are sine waves with different spectral modulation frequencies

Ω. The eigenvalues are the Fourier transforms of RS
ij ≡ RS(fi − fj), and hence they decrease with the

modulation frequency Ω because RS(fi − fj) is non-negative and decreases with increasing |fi − fj|.
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The second encoding step is to assign the gain gk to each of these channels Sk according to equation (6),

giving Sk → gkSk (see Figure 3D; IF = 2,
〈

N 2
〉

= 1 and λ/〈N 2
o 〉 = 10). Note that while the signal power

〈

S2
k

〉

decreases with increasing k, the gain magnitude gk first increases with k and then decreases and drops

to zero at higher k.

The gain for small k is low since the SNR
〈

S2
k

〉

/
〈

N 2
〉

is high enough to make amplifying Sk less necessary.

From equation (6)[34],

g2
k ∝

〈

S2
k

〉−1
when

〈

S2
k

〉

/
〈

N 2
〉

→ ∞ (14)

This implies that g2
k〈S

2
k〉 = constant for sufficiently large SNRs. When each principal component Sk is a

modulation frequency mode, this gain profile gk is often called whitening. At smaller signal powers, the gain

increases so as to utilize the channel’s dynamic range fully. However, when SNR is too small, for example,

when noise power is higher than signal power
〈

S2
k

〉

/
〈

N 2
〉

< 1, gain decreases with decreasing
〈

S2
k

〉

[34]. This

is because such input components are dominated by noise, and amplifying noise increases neural cost. Thus,

in general, when
〈

S2
k

〉

decreases with increasing k, the gain profile has a band-pass shape, first increasing,

and then decreasing with increasing k (see the red curve in Figure 3D). The peak of the gain occurs at

k = kp, where 〈S2
k〉/〈N

2〉 ≃ 1.

Third, taking U = K−1
o in order to localize the receptive Fields as best as possible, the overall encoding

transform is K = K−1
o gKo. Here, the gain matrix is diagonal having elements gkk = gk. When KT

o = K−1
o

(as when the eigenvectors are real and othornormalized)

Kij = (KT
o gKo)ij =

∑

k

gk(Ko)ki(Ko)kj =
∑

k

gkV k
i V k

j .

As the overall encoding transform gives outputs O = KS + noise, where noise = KN + No, the ith output

neuron Oi has its SRF as a vector of weights for inputs Sfj
of various frequencies j = 1, 2, ..., 250

SRFi = (Ki1, Ki2, ..., Ki250) =
∑

k

gkV k
i V k

It can thus be seen as a weighted sum of the eigenvectors V k of the input correlation matrix, with weights

gkV k
i for output neuron i. Figure 3E shows SRFs for four different output neurons (or channels i). These

SRFs have different preferred frequencies f , so that the preferred frequencies of all the output neurons span

the whole input frequency range. The shapes of the SRF depend on the input statistics via the dependence

of V k and gk on the input correlation matrix RS. In particular, for sufficiently high input SNR, while a

neuron is excited by its preferred frequency, it is suppressed by nearby frequencies. This form of contrast

enhancement achieves a measure of decorrelation between neighboring output neurons that would otherwise

reflect the strong correlations between neighboring frequencies. For SRFs tuned to higher frequencies, the

center excitatory regions are larger and the surround suppression is weaker. This is because SNRs are weaker

for higher frequency inputs (the dependency of SRF on SNR will be discussed in the next sub-section). If

the input statistics are strictly translation invariant, the SRFs for different output channels will have the

same shape, and will just be centered on different frequencies.
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Adaptation of SRF to input signal-to-noise ratio

When sound intensity decreases, the basilar membrane in the cochlea undergoes a smaller vibration. This

decreases the magnitudes of input signals S, and so, if the level of the noise stays unchanged, the signal-to-

noise ratio
〈

Sk
2
〉

/
〈

N 2
〉

will decrease. This will change the optimal encoding gain gk via equation (6), and

thus change the final SRFs. In our example, we simulate the change in input intensity by changing IF in

equation (11).

Figure 4A shows three example input intensity profiles
〈

S2
k

〉

, and the corresponding gain profiles gk. While

an overall change of input intensity merely scales the profile
〈

S2
k

〉

up and down, the gain profile gk does

not trivially scale up and down. When input intensity decreases, the k at which
〈

S2
k

〉

/
〈

N 2
〉

= 1 becomes

smaller, thereby decreasing the kp at which gk peaks. Consequently, the gain profile turns from being

band-pass to being low-pass (Figure 4A).

The non-zero gain at higher k implies sensitivity to weaker principal components with more spectral oscil-

lations (or higher “ripple frequencies”). Thus, as input intensity decreases, the overall SRF filter changes

in two ways (Figure 4B): (1) it fluctuates less (i.e., has fewer excitatory and inhibitory regions, and with

decreased strength inhibitory regions); (2) the width of the excitatory and inhibitory regions increases, as

the result of losing contributions from spectral modulations V k with higher modulation frequencies.

The insights from Figure 4B can help to understand the difference between the four SRFs in Figure 3E. Given

the IF as in Figure 3, one may divide the whole sound frequency range into two ranges of equal bandwidth,

one for the lower and the other for the higher f ’s, and treat the two ranges as if they were two different

stimulus ensembles. If one ignores the overall sound frequency difference between these two ensembles, then

these two ensembles differ from each other only in their SNRs, with a higher SNR for the ensemble for the

lower sound frequencies f . In this perspective, one can understand why a SRF tuned to the lower frequencies

in Figure 3E has a narrower excitatory region and a stronger surround suppression than a SRF tuned to

higher frequencies, using the insights gained from Figure 4. (In comparing Figure 4B with Figure 3E, one

should note that each SRF in Figure 4B is depicted by zooming to the frequency region around the preferred

frequency f of the SRF.) One may even view the four SRFs in Figure 3E as if they were each exposed to

one of the four different stimulus ensembles that differ in SNRs (and in sound frequency f , and we ignore

this difference). Within each of these stimulus ensembles, the input statistics may be seen as approximately

translation invariant, since 〈S2
f 〉 is almost independent of f and the correlation 〈SfSf ′〉 is approximately

only a function of the frequency difference f − f ′ within a small range of frequency f .

Adaptation of SRF to input signal correlation

As well as adapting to the input SNR, the SRF can adapt to the signal correlations in the input. These

can also vary across auditory environments. We generate two stimulus ensembles (Ensembleshort and

Ensemblelong) based on equation (11), with short and long range (in frequency space) correlations between
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Figure 4: The effect of signal-to-noise ratio (SNR) on gain gk and the spectral receptive field (SRF). Same
stimulus ensemble as in Figure 3A except the overall SNR has been scaled by IF . (A) Gain control (red),
signal (blue), and noise power (black) under high, medium and low SNR. (B) The corresponding SRFs of
one output neuron (channel #120) in the three SNR cases.
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Figure 5: Adaptation of gain gk and spectral filter kernel SRF to input correlations under high/low SNR.
Same input ensemble as that in Figure 3A, except that the smoothing parameter, L = 10 and L = 20, are
set for short and long range correlations, respectively. Analogous figure format as in Figure 4, with added
illustrations of the adaptation to input correlations. The thick and thin curves correspond to quantities for
inputs with large and small correlations respectively, blue/red curves plot signal power 〈S2

k〉 and gain gk

respectively.
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inputs Sfi
and Sfj

of different sound frequencies. We do this by setting the smoothing length L in equation

(13) to be Lshort = 10 and Llong = 20. Since short and long range correlations give respectively smaller

and larger correlations or degrees of input redundancy, in this paper, we use the terms short/long-range and

small/large correlations interchangeably. The two stimulus ensembles are made to have the same overall

signal power
∑

k

〈

S2
k

〉

, and consequently their
〈

S2
k

〉

vs. k curves cross each other at a particular frequency

kx (Figure 5A). In Ensemblelong, signal power
〈

S2
k

〉

is more concentrated in lower k’s, and the “bandwidth”

of gain, i.e., the range of k’s with substantial gk, is consequently narrower.

If
〈

S2
k

〉

>
〈

N 2
〉

at k = kx, the k at which signal power
〈

S2
k

〉

/
〈

N 2
〉

= 1 is larger in Ensembleshort (Figure

5A, upper panel, IF = 2,
〈

N 2
〉

=1, λ/〈N 2
o 〉 = 10). Thus, the frequency kp at which gain gk peaks is also

larger in Ensembleshort. If the SNR is lower, so that
〈

S2
k

〉

<
〈

N 2
〉

at k = kx, then kp is instead smaller

in Ensembleshort than in Ensemblelong. However, this is less apparent since gain profiles in both ensembles

become “low-pass” in k implying that there is no obvious “peak position” (Figure 5A, lower panel, IF = 0.2

). Nevertheless, the cutoff frequency k where gk = 0 is always smaller for Ensemblelong (Figure 5A), and

the optimal SRFs for it consequently enjoy a greater spectral extent (i.e., the SRFs are non-zero for a larger

range of f (Figure 5B). Intuition for this effect is that for it to be effective as either a contrast enhancing

filter at a high SNR, or a smoothing filter at a low SNR, the SRF’s spectral extent should match the range

of the input correlations.

The temporal filter TRF

We can similarly ignore the frequency dimension of the input to understand the temporal receptive field

(TRF). This is determined from the way Ot =
∑

t′ Ktt′St′+noise, the input temporal sequence S =

(St1 , St2 , ..., Sti
, ...) is transformed to the output temporal sequence O. In a statistically stable auditory

environment, the input correlation should be time shift invariant, i.e., RS
tt′ = 〈StSt′〉 should depend only on

t − t′. Denote RS
tt′ = RS(t − t′). Then, the de-correlating transform Ko should just be a Fourier transform

(Ko)ωt ∝ e−i·2πωt with the principal component Sω ∝
∑

t e−i·2πωtSt being the Fourier Amplitude of the

relevant mode. Here we use index ω instead of k to denote the principal component to signify the association

with the temporal Fourier amplitude. The average power
〈

S2
ω

〉

∝
∫

dtRS(t)e−i·2πωt is simply the Fourier

transform of the input temporal correlation. If we set Ai = 1 in equation (12) to generate inputs with shift

invariant correlation, then
〈

S2
ω

〉

= IF M2(ω) where M(ω) is the Fourier amplitude of M(i − j) = M ij . The

gain control Sω → gωSω in the second encoding step is determined by equation (6) (substituting ω for k).

The final TRF will be the transform K = UgKo given an appropriate choice of U .

However, the actual procedure to obtain the TRF is trickier in that the U transform in the third encoding

step to give the overall K = UgKo has to be chosen to satisfy the causality constraint. That is, the output

Ot at time t should only depend on past input St′ for t′ ≤ t, i.e., Ktt′ = 0 for t′ > t. Moreover, it is better

for the TRF to have a short temporal span and latency, an outcome that can be achieved by assuming that

the optimal temporal filter K has a minimum phase-shift[57]. Short latency can feasibly be implemented by
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Figure 6: Simulation of temporal receptive field TRF, when the spectral dimension is omitted. The same
stimulus ensemble is used as in Figure 3A, except the factor Ai = 1 in equation (12) to ensure translation
invariance of correlation. (A;B) Demonstration of transforming an acausal temporal filter (A) to its causal
minimum-phase counterpart (B) at a relatively high input SNR. (C) TRF for a relatively low input SNR.
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neural synaptic and membrane mechanisms that typically have time constants no longer than a few hundred

milliseconds[58]. Hence, these offer credible constraints on the TRF. Note that if we choose U = K−1
o , i.e.,

Utω ∝ ei·2πωt, then Ktt′ ∝
∑

ω gωei·2πω(t−t′)would be an even function of t−t′ and thus not a causal temporal

filter given gains gω that are all real. The filter K can be made causal and minimal phase by choosing another

U simply as Utω ∝ ei·2πωt+iφ(ω) with a particular phase function φ(ω), so that Ktt′ ∝
∑

ω gωei·2πω(t−t′)+iφ(ω).

Instead of directly obtaining this phase function φ(ω), we can also equivalently obtain this minimum phase

shift causal filter by transforming the acausal K using standard procedures in signal processing theory as

follows (see [57] for the proof). Given a non-causal filter K
(

t̂
)

with finite non-zero values in discrete time

t̂ = −M,−M +1, ..., 0, ..., N −M − 1, N −M , first let t = t̂ + M to make a causal filter K (t) whose nonzero

values are at t = 0, 1, ..., N . Second define

K̃ (z) = K (0) + K (1) z−1 + K (2) z−2 + · · · + K (N) z−N .

Among the N complex roots of the equation K̃ (z) = 0, let zi denote the roots with |zi| > 1 and zj the other

roots with |zj | ≤ 1. Third, let

K̃min = z−N
∏

i (z − 1/zi)
∏

j (z − zj)

= Km (0) + Km (1) z−1 + Km (2) z−2 + · · · + Km (N) z−N

The coefficients Km (t), t = 0, 1, ..., N are the values of the desired causal minimum phase filter. One example

of this process is demonstrated in Figure 6A (before the minimum phase adjustment) and Figure 6B (after

the minimum phase adjustment)( IF = 2, L = 14).

The temporal kernel also depends on the SNR and the input correlations. The change in gω when sound

intensity becomes lower is similar to that in the spectral case: from band-pass to low-pass. A temporal

kernel under lower SNR is demonstrated in Figure 6C. The changes in gω and TRF with input correlations

are analogous to those in the spectral case as well (figure not shown).

The two dimensional STRF

Finally, we show examples of the two dimensional STRF (f, t). Here, we extended the assumption of shift

invariance in the input correlations to the spectral dimension for the convenience of calculation. This

assumption is reasonable when individual STRFs cover sufficiently small ranges of frequencies that the

correlation in the spectral space is almost translation invariant within that range, as we see in our SRF

examples. Then, spectral and temporal dimensions can be de-correlated at the same time by performing a

2-D Fourier transform on inputs S(f, t), with the moving ripples as decorrelated channels, each denoted by

a 2D index (Ω, ω) marking the spectral and temporal modulation frequencies.

Let the signal power in the de-correlated channels (Ω, ω) for input S(f, t) be
〈

S2(Ω, ω)
〉

= IF F (Ω, ω).

Here, F (Ω, ω) typically decays with modulation frequency |Ω| and |ω| since most natural inputs have input

correlation 〈S(f, t)S(f ′, t′)〉 that decays with |f − f ′| and |t− t′|. IF is a scale factor that controls the SNR.
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We use the following example in our simulations

〈

S2(Ω, ω)
〉

=
IF

NORM
exp[−(|Ω|/Ω0)

3 − α(|ω|/ω0)
3] (15)

where α = 1.8, Ω0 and ω0 are parameters that control input correlation, and NORM =
∑

Ω

∑

ω exp[−(|Ω|/Ω0)
3−

α(|ω|/ω0)
3] is a normalization factor. Figure 7A shows an example with Ω0 = 4, ω0 = 4. According to equa-

tion (8), the gain g(Ω, ω) can be obtained as shown in Figure 7B (
〈

N 2
〉

= 1, λ/〈N 2
o 〉 = 10, and IF = 60, 500).

In particular, in the frequency range (Ω, ω) in which noise is negligible relative to the signal, the gain

g(Ω, ω) ∝ (
〈

S2(Ω, ω)
〉

)−1/2 (16)

specifies the whitening filter of equation (14). This gain profile changes from being a band-pass to a low-pass

two dimensional filter as the SNR is lowered.

As we noted before, efficient coding predicts the gain g(Ω, ω), or the modulation transfer function (MTF),

but does not precisely determine the STRF shape. The latter depends on the less constrained U transform.

Therefore, we qualitatively compare our g(Ω, ω) for two different IF ’s with the MTFs obtained from phys-

iological experiments under two different input sound levels. Figure 7E and Figure 7F are obtained from

data on STRFs of 40 cells in the inferior colliculus of animals exposed to natural rain sound at low and

high sound levels[7]. We first did a two-dimensional Fourier transform on the STRF of each cell to obtain

its MTF. Then the spectral modulation frequency Ωp and the temporal modulation frequency ωp where the

MTF has its maximum value were identified and normalized by a fixed value across cells. The average Ωp

and ωp across all cells are shown in Figure 7E. These two “peak frequencies” both increased when sound

intensity increased. The physiological MTF averaged across all cells (Figure 7F) also becomes higher pass,

both spectrally and temporally, under higher sound intensities, as predicted by efficient coding (Figure 7B).

For completeness, we illustrate in Figure 7C the model STRFs from the gain profiles g(Ω, ω), using an inverse

Fourier transform with a proper phase function φ(Ω, ω) as the candidate U matrix. Specifically, the model

STRF is

STRF (f, t) =

∫

dΩ

∫

dωg(Ω, ω)ei·2πΩf+i·2πωt+iφ(Ω,ω)

where the phase φ(Ω, ω) is chosen to make the STRF causal, and with minimum phase shifts in the temporal

dimension. In practice, the STRF is obtained as follows, by extending our method for obtaining the causal

1-D TRF. For each Ω, we first obtain the temporal acausal filter

K(Ω, t)acausal =

∫

g(Ω, ω)ei·2πωtdω

and then transformed this into a causal minimum phase filter K(Ω, t) as for the one dimensional TRF filter.

The final two-dimensional STRF is then

STRF (f, t) =

∫

K(Ω, t)ei·2πΩfdΩ

24



In general the model STRF has its highest amplitude at the preferred frequency on the spectral axis and for

short latencies (i.e., the early part of the temporal axis). At low IF , the STRF has a large excitatory region

and a weak inhibitory surround (Figure 7C). At larger IF , the STRF involves more excitatory and inhibitory

regions with an increased inhibitory strength. Overall this has a more band-pass gain profile. Meanwhile,

the bandwidth for the gain g(Ω, ω) increases with IF , thus shrinking the width of the main excitatory region.

Therefore, adaptation to higher sound levels makes the frequency-time tuning curve sharper, or equivalently

more narrowly tuned and so, at a single cell level, supporting a more precise read out of the time and

frequency of auditory input. Qualitatively, physiologically observed STRFs adapt to the input intensity in

the same way [7] (also see[14]).

The model also predicts changes to MTFs and STRFs for different input correlations. Figure 7D shows the

gain function g(Ω, ω) and STRF for an example in which the input has longer-range correlations in both

spectral and temporal dimensions (we set Ω0 = 3.2, ω0 = 3.2 while holding IF = 500 as in the high SNR case

in Figure 7B and 7C). The peak modulation frequency in g(Ω, ω) is decreased, and the excitatory region is

wider compared with counterparts in Figure 7B and 7C at high SNR. This is consistent with our 1-D results

in the spectral dimension (Figure 5).

Discussion

Summary of findings and predictions

In summary, this study set out to understand the computational role of auditory spectro-temporal receptive

fields (STRFs). In particular, we generalized previous work[26] by proposing that STRFs are efficient codes for

inputs which retain maximal information for a given neural cost associated with the output. We analyzed this

proposal in detail for the case that input signals and noise are approximated as Gaussian. Mathematically,

the STRF transform can be shown[34] to be composed of three abstract steps: input de-correlation, gain

control, and multiplexing. For typical input statistics that are shift-invariant in sound frequency and time,

the transform can be compared with two sorts of experimental data. First, gain control corresponds to the

magnitude of the modulation transfer function of the STRFs. Second, by choosing the form of multiplexing

to arrange the STRFs to have minimal phase, one can predict their full form. That the STRFs or the

MTFs adapt to input statistics is a direct prediction of this efficient coding framework, since both the

information conveyed and the neural coding cost depend on these statistics. Our efficient coding proposal is

thus experimentally testable.

We made two particular predictions about the adaptation of the STRFs, one associated with input intensity,

the other with input correlation. For the case of intensity, we predicted that the MTF of the STRFs should

become more low pass when input intensity is lowered. Intuitively, as long as inputs at nearby frequencies

and times are correlated, a low pass filter smoothes the input to reduce noise, whereas a band pass filter

extracts differences between input frequencies and times to remove redundancy. Compared with a band
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pass STRF, a low pass STRF has one or all of the following characteristics: (1) it has fewer excitatory and

inhibitory regions; (2) each excitatory/inhibitory region has a larger size; (3) the secondary or opponent

region, e.g., the inhibitory region for a STRF with an primary excitatory region, is weaker. All three

characteristics help to smooth noise, a necessary strategy for weak inputs. In contrast, a band-pass filter

has the opposite characteristics, so as not to increase the neural cost due to the transmission of redundant

input information. These predictions are analogous to those seen in adaptations of visual coding to input

SNR [29, 33, 34, 51, 52]. They also generalize previous accounts of the adaptation of the temporal auditory

filter [26] to input intensity.

For the case of adaptation to input correlation, our framework predicts that the sizes of the excitatory and

inhibitory regions of the STRFs should adapt to the range of input correlations. That is, input ensembles

with longer range correlations in frequency and/or time should lead to STRFs with larger excitatory and

inhibitory regions in the corresponding feature dimensions. Longer range input correlations are typically

equivalent to greater input modulation power in the lower modulation frequency range in the stimulus

ensemble. Equally, larger excitatory/inhibitory regions in the STRF are typically equivalent to its MTF

being tuned to lower modulation frequencies. Thus, our prediction can be stated equivalently as saying that

a stimulus ensemble with greater input power in the lower modulation frequency range, spectrally and/or

temporally, should lead to neural MTFs tuned to the lower modulation frequency ranges. We demonstrated

this form of adaptation for SRFs in Figure 5, and for STRFs in Figure 7 In particular, with a sufficiently

high SNR, the MTF profile g(Ω, ω) should whiten the ensemble specific input modulation power 〈S2(Ω, ω)〉.

Experimental evidence and tests of the predictions

Various experimental observations pertain to these predictions about adaptation to input intensity. Lesica

and Grothe [7] presented natural rain sounds to gerbils and found that, for a majority of cells in inferior

colliculus (IC), the STRFs have more excitatory/inhibitory regions for higher input sound levels, and only

have excitatory regions, or at least very weak inhibitory regions for lower sound levels. Nagel and Doupe[14]

conducted a similar study in field L of songbirds, an area analogous to mammalian auditory cortex. In

both spectral and temporal dimensions, they found that the excitatory/inhibitory regions of the STRFs

become smaller and sharper under higher sound intensity, while the number of such regions do not increase.

These results paralleled those of an earlier study in which they only examined the temporal dimension of

the receptive fields [58]. Both studies are consistent with our proposal that the MTF changes from lower to

higher pass when input intensity (and hence, SNR) increases. They thus offer complementary confirmation

of our predictions.

As mentioned in the Introduction, Lesica and Grothe[26] also examined the adaptation of the temporal

receptive field(TRF) to vocalizations and ambient noises. They found that the TRF changed from being

bandpass to lowpass when noise was mixed into the ensemble of vocalizations, and accounted for this finding

in terms of efficient temporal coding. Their result can be understood as a special case of adaptation to SNR
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in our framework, focusing on the temporal dimension of the STRF, and treating the addition of noise as

a reduction in input SNR. According to the principle of efficient coding, the spectral receptive field should

also have changed from bandpass to lowpass when this noise was added.

There are as yet few physiological experiments that pertain to our prediction about adaptation to input

correlations. One study by Woolley et al [11] examined the STRFs of midbrain neurons in zebra finch in

response to bird songs or modulation-limited noise. Compared to that of the noise, the input modulation

power of the songs is more concentrated in lower modulation frequencies. The MTFs of the STRFs matched

the corresponding modulation frequency spans, consistent with our theoretical prediction.

The studies by Woolley et al [11] and Lesica and Grothe [26] could be extended to different ensembles of

natural stimuli, e.g., songs, speech, animal vocalization, and environmental background, each with its own

particular input correlations [59]. Findings from such extended studies would provide a stern test of the

efficient coding framework. Generally, the input modulation power 〈S2(Ω, ω)〉 in natural sounds decays

with increasing modulation frequency (Ω, ω), at a rate that is specific to the ensemble [59]. Ensembles with

faster decays have longer range input correlations (or larger correlations), as modelled in our Figure 5A and

Figure 7BCD. We predict that this decay rate in 〈S2(Ω, ω)〉 should dictate the shape of the neural MTFs

g(Ω, ω), such that ensembles with faster decay should lead to neural MTFs focusing on lower modulation

frequency ranges. In particular, for high input SNR, the MTF profile should be that of a whitening filter

g(Ω, ω) ∝ (〈S2(Ω, ω)〉)−1/2, with the upper frequency limit (Ω, ω) for this whitening (beyond which MTF

quickly decays to zero) being around the frequency at which 〈S2(Ω, ω)〉 is comparable to the power level

of the noise. The recent study by Rodriguez et al [59] showed that inferior colliculus (IC) neurons, when

examined collectively as a population, do seem to whiten typical natural stimuli, in that the population MTF

g(Ω, ω) increases with frequency (Ω, ω) (up to a high frequency limit). This is to be expected for an efficient

code, since natural input power 〈S2(Ω, ω)〉 decreases with frequency. However, the neural STRFs in this

study were obtained (using the moving ripple stimuli) without specific adaptation to any particular natural

stimulus ensemble. We predict that if the STRFs had been measured under adaptation to the natural sounds

for high SNR, then the neural MTF profile, at a neural population level if not at individual neuron level,

should be ensemble specific, i.e., whitening the input power 〈S2(Ω, ω)〉 of the adapting stimuli.

The neural implementation of the efficient STRF and its adaptations

We seek the overall effective STRF rather than its realization. Thus, it is important to note that the

three separate steps of our mathematical analysis of the efficient STRFs are purely abstract. They do

not correspond to an actual physiological implementation. In principle, when a receptive field is entirely

linear, it can as well be implemented in a single step, as in multiple linear steps in a cascade. Meanwhile,

the observation that STRFs adapt to changes in the statistics of auditory inputs, and indeed that visual

receptive fields expand when the visual environment changes from bright outdoors to dark indoors[52], attest

to the availability of the mechanisms for implementing (and thus adapting) efficient sensory coding.
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We speculate that the adaptation of a STRF in a midbrain auditory neuron is likely to involve gain control in

many intervening and distributed neural processes upstream along the auditory pathway [60]. Even a simple

adaptation of efficient coding, in the large monopolar cells (LMCs) in an insect compound eye to changes

in the distribution of input contrasts in the visual environment, involves multiple stages of processes, some

in the photoreceptors and others in lamina from the receptors to the LMCs[61]. Synaptic and intrinsic

mechanism were also found in the adaptation of retinal bipolar and ganglion cells to temporal contrast

[62, 63]. Considering the multiple synapses from the hair cells to IC or auditory cortex, and the many

recurrent and feedback networks with both excitatory and inhibitory connections [64, 65] in this pathway

(for example, medial olivocochlear (MOC) efferent effects [66]), we speculate that gain control processes are

likely to include synaptic facilitation and depression and distributed channel based adaptations. They should

collectively achieve the effective adaptation in the gain such as the gk in equation (6) and/or the underlying

eigenmodes. Because there are multiple, redundant, and distributed synapses from the auditory periphery to

the neuron whose STRF we model, a STRF could be implemented in multiple ways. Such implementational

redundancy is likely to be needed to accommodate the many forms of adaptation that might be needed,

given a limited degree of flexibility in any individual mechanism.

The timescale of STRF adaptation to sound levels or input SNRs should be less than several or tens of seconds,

or even shorter, since, in the physiological experiments, the stimulus duration for one sound intensity level is

40s in[7] and 5s in[14], while adaptation to mixing noise into the vocalization inputs occurs within hundreds

of milliseconds in [26]. Adaptation has been observed to occur over multiple time scales, ranging from tens of

milliseonds to minutes in the fly visual system[67]. In the auditory systems, midbrain neurons adapt to sound

levels within hundreds of milliseconds[68, 69], while cortical adaptation happens over multiple timescales and

is likely to arise from network activities [70, 71] . We still know too little about the actual mechanisms for

STRF adaptation[26] or sensory adaptation in general, although it has been suggested that channel based

mechanisms at the cellular level are plausible candidates[67]. Understanding the computational roles of the

STRFs should motivate future investigations of these mechanisms.

Limitations of the framework

As an initial attempt to understand the computational role of the STRFs, our framework has various lim-

itations. First, the STRF model as a whole is quantitatively inaccurate since it specifies a linear mapping

between sensory inputs and neural responses (in each adapted state). The accuracy could be improved in

future work through the addition of a static nonlinearity after the STRF [6, 7]. However, this would not

be expected to lead to a qualitative change in STRFs or their adaptation. Extensions to dynamic non-

linearities would be much more complex. Second, for analytical convenience, we assumed that the input

statistics are Gaussian, meaning that there are no input signal correlations higher than second order. The

same approximation was made for the case of efficient visual coding, in the absence of good information

about higher order input correlations [30, 32, 34]. Subsequent work using independent component analysis

(ICA) on natural visual images avoided the Gaussian assumption, leading to models of visual encoding in

28



primary visual cortex V1 [72, 73]. This approach has been adopted to understand the STRFs in the auditory

cortex[74] and avian primary auditory area field L[75], although it cannot predict adaptation to SNR and its

whitenning prediction does not go beyond that obtained under the Gaussian assumption. It is still contro-

versial whether higher order statistics are the cause for the dramatic difference between the V1 encoding and

that in the retina and the lateral geniculate nucleus[34]. Furthermore, higher order correlations in natural

visual inputs contribute much less redundancy (measured in signal entropy) than second order correlations

[36, 37, 38]. This may explain why the Gaussian assumption was not overly deleterious to the predictions of

the efficient coding principle in vision. Although higher order correlations in auditory inputs are also poorly

understood, they do cause auditory adaptation, e.g., in stimulus-specific adaptation to complex temporal

patterns of tones[76]. To what extent higher order input statistics can influence auditory encoding remains

to be answered in future studies.

Our focus on coding efficiency ignores aspects of auditory processing devoted to additional tasks such as

sound source localization or stream segmentation. The observed STRFs may reflect elements of both efficient

coding and requirements associated with these tasks. In fact, some variations are possible within the context

of an efficient code. For instance, we have so far restricted ourselves by making all neurons share the same

MTF profile predicted by efficient coding (by restricting the U transform to that in equation (9)). Relaxing

this restriction would allow other STRFs. In particular, different neurons in the coding population could

be tuned to different modulation frequency regions within the (Ω, ω) extent covered by the overall MTF

envelope g(Ω, ω), and could have different shapes. Accordingly, different STRFs could have different spectral

bandwidths (or resolution) and shapes, in addition to preferring different center frequencies f . Indeed,

in the auditory cortex, different neurons exhibit different spectral resolutions, and even prefer different

motion directions of the spectral ripples[77, 78, 19]. (Analogously, primary visual cortical neurons are

tuned to multiple spatial sizes and prefer different orientations, a coding scheme that can be shown to be

consistent with efficient coding[36].) Such a collection of STRFs could satisfy the joint goals of coding

efficiency and detecting ecologically meaningful auditory objects (such as vocalizations). Diversity in the

shape and bandwidth of the STRFs is already present, although perhaps less so sub-cortically, e.g., in

inferior colliculus[78]. When different neurons have different STRF bandwidths, our prediction that the

input modulation power will be whitened by the neural MTFs should be modified, such that the ’neural

MTFs’ should mean the collective MTF of the whole neural population within a particular auditory stage

(such as IC, see[59]).

There could be alternative formulations (other than equation (4)) of the efficient coding principle, in par-

ticular, in the formulation of the neural cost. Our formulation neural cost =
∑

i〈O
2
i 〉 causes the degeneracy

of the efficient coding solution, i.e., the existence of many choices of the equally efficient coding transforms,

when the signals are gaussian. Other formulations of the neural cost could break this degeneracy. For exam-

ple, formulation neural cost =
∑

i H(Oi) in terms of the summation of individual neural channel capacity (or

entropy H(Oi)), or neural cost =
∑

i〈|Oi|〉 in terms of the total activity level, would generate neural codes

to encourage very different MTFs for different neurons. In both audition and vision, the MTFs (in audition)

and the contrast sensitivity functions (the vision analog of the MTFs) for different neurons tend to be similar
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in the sensory periphery (cochlear nucleus and retina), but they are increasingly disparate further towards

the central brain. These changes could be caused by the different cost functions in the nervous system, or,

as discussed in the previous paragraph, due to the breaking of the degeneracy by additional computational

tasks further downstream along the sensory pathway.

Redundancy redunction and information preservation are two essential ingredients of the efficient coding

principle. While this principle has been quite successful in understanding the retinal coding, it cannot

explain the enormous increase in the redundancy of the visual coding in the primary visual cortex (in which

the number of neurons are about 100 times as many as those in the retina)[34], nor the drastic loss of visual

information outside the focus of attention in the higher visual areas without introducing task-dependent

factors. It remains to be investigated how much and in what form the efficient coding will take further along

the auditory pathway. One can expect that more processes will be devoted to solving specific auditory tasks,

in addition to the task of sensory encoding, in the higher stages of auditory processing.

Concluding remarks

This study was partly inspired by the success of the efficient coding principle in understanding receptive fields

in the early stages of visual processing, and the way these receptive fields adapt across sensory environments.

Analogies between visual and auditory processes have been explored by previous researchers [79], and we

expect that they can be carried further in higher level sensory processes including segmentation, selective

attention [80], and even object recognition.

In conclusion, efficient coding provides a plausible computational interpretation of various recent experimen-

tal observations on STRFs, and notably the way they adapt to input environments. By making testable

predictions, it motivates experimental directions which should hopefully lead to further insights and under-

standing.
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