Understanding early visual coding from information theory

By Li Zhaoping

EU-India-China summer school, ISI, June 2007
Contact: z.li@ucl.ac.uk

Facts: neurons in early visual stages: retina, V1, have particular receptive fields. E.g., retinal ganglion cells have center surround structure, V1 cells are orientation selective, color sensitive cells have, e.g., red-center-green-surround receptive fields, some V1 cells are binocular and others monocular, etc.

Question: Can one understand, or derive, these receptive field structures from some first principles, e.g., information theory?

Example: visual input, 1000x1000 pixels, 20 images per second --- many megabytes of raw data per second.

Information bottle neck at optic nerve.
Solution (Infomax): recode data into a new format such that data rate is reduced without losing much information.

Redundancy between pixels.
1 byte per pixel at receptors $\longrightarrow 0.1$ byte per pixel at retinal ganglion cells?

Consider redundancy and encoding of stereo signals

Redundancy is seen at correlation matrix (between two eyes)

$$
\begin{aligned}
& R^{S} \equiv\left(\begin{array}{ll}
<S_{L}^{2}> & <S_{L} S_{R}> \\
<S_{R} S_{L}> & <S_{R}^{2}>
\end{array}\right)=<S_{L}^{2}>\left(\begin{array}{cc}
1 & r \\
r & 1
\end{array}\right) \\
& 0<=\mathrm{r}<=1 .
\end{aligned}
$$

Assume signal $\left(\mathrm{S}_{\mathrm{L}}, \mathrm{S}_{\mathrm{R}}\right)$ is gaussian, it then has probability distribution:

$$
\left.P(\mathbf{S}) \propto \exp \left(-\sum_{i j} S_{i} \widetilde{S}_{j}\left(R^{S}\right)_{i j}^{-1} / 2\right)\right)
$$

An encoding:

$$
O_{+}=S_{+} \equiv\left(S_{L}+S_{R}\right) / \sqrt{2}, \quad O_{-}=S_{-} \equiv\left(S_{L}-S_{R}\right) / \sqrt{2}
$$

Gives zero correlation $<\mathrm{O}_{+} \mathrm{O}_{-}>$in output signal $\left(\mathrm{O}_{+}, \mathrm{O}_{-}\right)$, leaving output Probability

$$
\mathrm{P}\left(\mathrm{O}_{+}, \mathrm{O}_{-}\right)=\mathrm{P}\left(\mathrm{O}_{+}\right) \mathrm{P}\left(\mathrm{O}_{-}\right) \quad \text { factorized. }
$$

The transform S to O is linear.
O_{+}is binocular, O_{-}is more monocular-like.
Note: S_{+}and S_{-}are eigenvectors or principal components of the correlation matrix R^{S}, with eigenvalues $\left\langle S_{ \pm}^{2}\right\rangle=(1 \pm r)<S_{L}{ }^{2}>$

In reality, there is input noise $N_{L, R}$ and output noise $N_{o, t}$, hence:
$O_{ \pm}=\left[\left(S_{L}+N_{L}\right) \pm\left(S_{R}+N_{R}\right)\right] / \sqrt{2}+N_{o, \pm}$,
Effective output noise:

$$
N_{ \pm}=\left(N_{L} \pm N_{R}\right) / \sqrt{2}+N_{o, \pm}
$$

Let:

$$
<N^{2}>\equiv<N_{L}^{2}>=<N_{R}^{2}>, \text { and }<\bar{N}_{o}^{2}>\equiv<N_{o,+}^{2}>=<N_{o,-}^{2}>.
$$

Input $S_{L, R}+N_{L, R}$ has

$$
I_{L, R}=\frac{1}{2} \log _{2} \frac{<S_{L, R}^{2}>+<N^{2}>}{<N^{2}>}
$$

Bits of information about signal $S_{L, R}$

Input $\mathrm{S}_{\mathrm{L}, \mathrm{R}}+\mathrm{N}_{\mathrm{L}, \mathrm{R}}$ has

$$
I_{L, R}=\frac{1}{2} \log _{2} \frac{<S_{L, R}^{2}>+<N^{2}>}{<N^{2}>}
$$

bits of information about signal $S_{L, R}$
Whereas outputs $\mathrm{O}_{+,-}$has

$$
I_{ \pm}=\frac{1}{2} \log _{2} \frac{<O_{ \pm}^{2}>}{<N_{ \pm}^{2}>}=\frac{1}{2} \log _{2} \frac{<S_{ \pm}^{2}>+<N^{2}>+<N_{o}^{2}>}{<N^{2}>+<N_{o}^{2}>}
$$

bits of information about signal $S_{L, R}$
Note: redundancy between S_{L} and S_{R} cause higher and lower signal powers $\left\langle\mathrm{O}_{+}^{2}\right\rangle$ and $\left\langle\mathrm{O}_{-}^{2}\right\rangle$ in O_{+}and O_{-}respectively, leading to higher and lower information rate I_{+}and I_{-}

If cost $\sim \ll \mathrm{O}_{ \pm}^{2>}$.
Gain in information per unit cost $(\Delta I / \Delta$ cost $)$
smaller in O_{+}than in O_{-}channel.

```
If cost \(\sim\left\langle\mathrm{O}_{ \pm}^{2}\right\rangle\)
    \(\left.I_{ \pm}=\frac{1}{2} \log _{2}\left(<O_{ \pm}^{2}\right\rangle\right)+\) constant \(=\frac{1}{2} \log _{2}(\) cost \()+\) constant,
```

Gain in information per unit cost $(\Delta I / \Delta \tilde{\text { cost }})$ smaller in O_{+}than in O_{-}channel.

Hence, gain control on $\mathrm{O}_{ \pm}$is motivated.

$$
\mathrm{O}_{ \pm} \rightarrow \mathrm{g}_{ \pm} \mathrm{O}_{ \pm}
$$

To balance the cost and information extraction, optimize by finding the gain g_{+}such that

$$
E\left(V_{ \pm}\right) \equiv \sum_{a}\left(<O_{a}^{2}>\right)-\lambda \sum_{a}\left(I_{a}\right)=\text { cost }-\lambda \cdot \text { Information }
$$

Is minimized. This gives, for $\mathrm{k}=+$ or -
$g_{k}^{2} \propto \operatorname{Max}\left\{\left[\frac{1}{2} \frac{\left\langle S_{k}^{2}\right\rangle}{\left\langle S_{k}^{2}\right\rangle+\left\langle N^{2}\right\rangle}\left(1+\sqrt{1+\frac{4 \lambda}{(\ln 2)\left\langle N_{o}^{2}\right\rangle} \frac{\left\langle N^{2}\right\rangle}{\left\langle S_{k}^{2}\right\rangle}}\right)-1\right], 0\right\}$
$g_{k}^{2} \propto \operatorname{Max}\left\{\left[\frac{1}{2} \frac{\left\langle S_{k}^{2}\right\rangle}{\left\langle S_{k}^{2}\right\rangle+\left\langle N^{2}\right\rangle}\left(1+\sqrt{1+\frac{4 \lambda}{(\ln 2)\left\langle N_{o}^{2}\right\rangle} \frac{\left\langle N^{2}\right\rangle}{\left\langle S_{k}^{2}\right\rangle}}\right)-1\right], 0\right\}$
In the zero noise limit when $\frac{\left\langle S_{+}^{2}\right\rangle}{\left\langle N^{2}\right\rangle} \gg 1$,

$$
g^{2} \propto<S^{2}>-1
$$

This equalizes the output power $\left.\left\langle\mathrm{O}_{+}^{2}\right\rangle \approx<\mathrm{O}_{-}^{2}\right\rangle$--- whitening

When output noise N_{0} is negligible, output O and input $\mathrm{S}+\mathrm{N}$ convey similar amount of information about signal S , but uses much less output power with small gain $g_{ \pm}$
$\left.<\mathrm{O}_{+}^{2}\right\rangle_{\sim} \mathrm{O}_{-}^{2}>$--- whitening also means that output correlation matrix

$$
\mathrm{R}_{\mathrm{ab}}^{\circ}=\left\langle\mathrm{O}_{\mathrm{a}} \mathrm{O}_{\mathrm{b}}\right\rangle
$$

Is proportional to identity matrix, (since $<\mathrm{O}_{+} \mathrm{O}_{-}>=0$).

Any rotation (unitary or ortho-normal transform):

$$
\binom{O_{1}}{O_{2}}=\left(\begin{array}{ll}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right)\binom{O_{+}}{O_{-}}=\binom{\cos (\theta) O_{+}+\sin (\theta) O_{-}}{-\sin (\theta) O_{+}+\cos (\theta) O_{-}} .
$$

Preserves de-correlation $\left\langle\mathrm{O}_{1} \mathrm{O}_{2}\right\rangle=0$
Leaves output cost $\operatorname{Tr}\left(\mathrm{R}^{\circ}\right)$ unchanged
Leaves amount of information extracted $\mathrm{I}=\frac{1}{2} \log \frac{\operatorname{det} R^{o}}{\operatorname{det} R^{N}}$, unchanged
Tr , det, denote trace and determinant of matrix.

Both encoding schemes:

$$
S_{L, R} \rightarrow O_{ \pm} \text {and } S_{L, R} \rightarrow O_{1,2}
$$

With former a special case of latter, are optimal in making output decorrelated (non-redundant), in extracting information from signal S , and in reducing cost.

In general, the two different outputs:
$\binom{O_{1}}{O_{2}}=\binom{S_{L}\left(\cos (\theta) V_{+}+\sin (\theta) V_{-}\right)+S_{R}\left(\cos (\theta) V_{+}-\sin (\theta) V_{-}\right)}{S_{L}\left(-\sin (\theta) V_{+}+\cos (\theta) V_{-}\right)+S_{R}\left(-\sin (\theta) V_{+}-\cos (\theta) V_{-}\right)}$
prefer different eyes. In particular, $\theta=45^{\circ}$ gives

$$
\mathrm{O}_{1,2} \sim \mathrm{~S}_{\mathrm{L}}\left(\mathrm{~g}_{+} \mp \mathrm{g}_{-}\right)+\mathrm{S}_{\mathrm{R}}\left(\mathrm{~g}_{+} \pm \mathrm{g}_{-}\right)
$$

The visual cortex indeed has a whole spectrum of neural ocularity.

Summary of the coding steps:

Input: $\quad \mathrm{S}+\mathrm{N}, \quad$ with signal correlation (input statistics) R^{s}
get eigenvectors (principal components) S^{\prime} of R^{s}

$$
S+N \longrightarrow S^{\prime}+N^{\prime}=\underset{\substack{K_{0} \\ K_{0}(S+N) \\ \text { rotation of coordinates }}}{ }
$$

gain control V on each principal component
$S^{\prime}+N^{\prime} \longrightarrow \mathrm{O}=\mathrm{g}\left(\mathrm{S}^{\prime}+\mathrm{N}^{\prime}\right)+\mathrm{N}$
rotation U' (multiplexing) of O

$$
\mathrm{O}^{\prime} \rightarrow \text { U'O }=\text { U'g }^{\prime} \mathrm{K}_{0} \mathrm{~S}+\text { noise }
$$

Neural output $=$ U'g K ${ }_{\circ}$ sensory input + noise

Receptive field, encoding kernel

Variations in optimal coding:

Factorial codes
Minimum entropy, or minimum description length codes
Independent components analysis
Redundancy reduction

Sparse coding

Maximum entropy code
Predictive codes
Minimum predictability codes, or least mutual information between output Channels.

They are all related!!!

Signal at spatial location x is $S_{x}=S(x)$
Signal correlation is $R_{x, x^{\prime}}^{S}=\left\langle S_{x} S_{x^{\prime}}\right\rangle=R^{S}\left(x-x^{\prime}\right)$--- translation invariant
Principal components S_{K} are Fourier transform of S_{x}

$$
S_{x} \rightarrow \mathcal{S}_{k} \sim \sum_{x_{-}} K_{o}^{k x} S_{x} \sim \sum_{x} e^{-i k x} S_{x}
$$

Eigenvalue spectrum (power spectrum): $<\mathcal{S}_{k}^{2}>\sim 1 / k^{2}$
Assuming white noise power $\left\langle\mathrm{N}_{\mathrm{k}}{ }^{2}\right\rangle=$ constant, high S / N region is at low frequency, i.e., small k, region.

Gain control, $V(k) \sim\left\langle S_{k}^{2}\right\rangle^{-1 / 2} \sim k,---$ whitening in space
At high k, where S / N is small, $\mathrm{V}(\mathrm{k})$ decays quickly with k to cut down noise according to

$$
g_{k}^{2} \propto \operatorname{Max}\left\{\left[\frac{1}{2} \frac{\left\langle S_{k}^{2}\right\rangle}{\left\langle S_{k}^{2}\right\rangle+\left\langle N^{2}\right\rangle}\left(1+\sqrt{1+\frac{4 \lambda}{(\ln 2)\left\langle N_{o}^{2}\right\rangle} \frac{\left\langle N^{2}\right\rangle}{\left\langle S_{k}^{2}\right\rangle}}\right)-1\right], 0\right\}
$$

Let the multiplexing rotation be the inverse Fourier transform: $U^{x^{\prime} k} \sim e^{i k x^{\prime}}$
The full encoding transform is

$$
O_{x^{\prime}}=\Sigma_{k} U^{x^{\prime} k} g(k) \Sigma_{x} e^{-k x} S_{x}=\Sigma_{k} g(k) \Sigma_{x} e^{-k\left(x^{\prime}-x\right)} S_{x}+\text { noise }
$$

Understanding adaptation by input strength

Noise power

Receptive field at high S/N

Receptive field at lower S/N

spatial frequency k

Where $\mathrm{S} / \mathrm{N} \sim 1$
When overall input strength is lowered, the peak of $V(k)$ is lowered to lower spatial frequency k, a band-pass filter becomes a low pass (smoothing) filter.

Another example: optimal color coding

Analogous to stereo coding, but with 3 input channels, red, green, blue.

For simplicity, focus only on red and green

$$
\text { Input signal } \mathrm{S}_{\mathrm{r}}, \mathrm{~S}_{\mathrm{g}} \quad \text { Input correlation } \quad \mathrm{R}_{\mathrm{rg}}>0
$$

Eigenvectors: $S_{r}+S_{g} \leadsto$ Luminance channel, higher S / N $\mathrm{S}_{\mathrm{r}}-\mathrm{S}_{\mathrm{g}} \longleftarrow$ Chromatic channel, lower S / N

Gain control on $S_{r}+S_{g}$--- lower gain until at higher spatial k

Gain control on $S_{r}-S_{g}$--- higher gain then decay at higher spatial k

Multiplexing in the color space:

How can one understand the orientation selective receptive fields in V1?
Recall the retinal encoding transform:

$$
O_{x^{\prime}}=\Sigma_{k} U^{x^{\prime k}} g(k) \Sigma_{x} e^{-k x} S_{x}=\Sigma_{k} g(k) \Sigma_{x} e^{-k\left(x^{\prime}-x\right)} S_{x}+\text { noise }
$$

If one changes the multiplexing filter $U^{x} k$, such that it is block diagonal, and for each output cell x^{\prime}, it is limited in frequency band in frequency magnitude and orientation --- V1 receptive fields.

Different frequency bands

)

V1 Cortical color coding

Different frequency bands

Orientation tuned cells

Lower frequency k bands, for chromatic channels

Higher frequency k bands, for luminance channel only

In V1, color tuned cells have larger receptive fields, have double opponency

Question: if retinal ganglion cell have already done a good job in optimal coding by the center-surround receptive fields, why do we need change of such coding to orientation selective? As we know such change of coding does not improve significantly the coding efficiency or sparseness.

Answer? Ref: (Olshausen, Field, Simoncelli, etc)

Why is there a large expansion in the number of cells in V1?
This leads to increase in redundancy, response in V 1 from different cells are highly correlated.

What is the functional role of V1? It should be beyond encoding for information efficiency, some cognitive function beyond economy of information bits should be attributed to V 1 to understand it.

