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A B S T R A C T   

Li and Atick (Network: Computation in Neural Systems 5 (1994) 157–174) presented a theory of efficient 
binocular encoding that explains a number of experimental findings. A binocular neuron is conventionally 
described in terms of two channels: the left and right eyes. Li and Atick’s theory instead describes the neuron in 
terms of two alternative channels: the binocular sum and difference. The advantage of the latter description is 
that, unlike the left and right eye channels, the summation and differencing channels are usually uncorrelated; 
this means that each channel can be optimised independently of the other. The theory shows how to derive 
optimal receptive fields for the binocular summation and differencing channels; from these, it is easy to derive 
the neuron’s optimal left and right eye receptive fields. The functional reality of the summation and differencing 
channels is demonstrated by a series of adaptation studies that confirm some counterintuitive predictions of the 
theory. Here we provide an accessible account of the theory, and review the evidence supporting it.   

1. A generic linear neuronal model 

1.1. The standard linear model of a binocular neuron 

The standard linear model of a binocular simple cell (e.g. Ohzawa & 
Freeman, 1986) has two receptive fields, KL(x) and KR(x) for, respec-
tively, the left and right eyes, where x is spatial position. These receptive 
fields give the sensitivity of the neuron as functions of spatial position in 
the two retinal images. If the left and right eye images (as functions of 
spatial position) are SL(x) and SR(x), then the output, O, of the linear 
neuron is given by 

O =
∑

x
KR(x)SR(x) + KL(x)SL(x). (1)  

Positive and negative regions of the receptive fields represent, respectively, 
“on” and “off” regions; positive and negative regions of the image signals 
represent, respectively, luminances above and below the mean. O in Eq. 
(1) represents the output of the linear spatial summation process carried 
out by the cell, which can be positive or negative. To obtain the overt spike 
rate from O, we subtract a threshold ≥ 0, and then set all negative values to 
zero (Ohzawa & Freeman, 1986). For mathematical simplicity, in this 
article we only work with O, the linear part of the neuron’s response. 

1.2. A different description of the same standard model neuron 

We now present a different description of the same model neuron; 
this description is equivalent to the previous one – each description can 
be derived from the other. Instead of describing the neuron in terms of 
its sensitivity to the left and right eye images, we can describe it in terms 
of its sensitivity to the sum of the left and right images (S+) and the 
difference between the left and right images (S− ), where 

S+(x) =
SR(x) + SL(x)

̅̅̅
2

√ (2)  

S− (x) =
SR(x) − SL(x)

̅̅̅
2

√ . (3)  

The division by 
̅̅̅
2

√
is just to keep the total signal power of S+ and S− the 

same as that for SL and SR. We can define receptive field profiles K+(x)
and K− (x) that allow us to determine the neuron’s output from the sum 
and difference images: 

O =
∑

x
K+(x)S+(x) + K− (x)S− (x). (4) 

* Corresponding author at: Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK. 
E-mail address: keith.may@essex.ac.uk (K. May).  

Contents lists available at ScienceDirect 

Vision Research 

journal homepage: www.elsevier.com/locate/visres 

https://doi.org/10.1016/j.visres.2021.08.005 
Received 14 October 2020; Received in revised form 10 August 2021; Accepted 19 August 2021   

mailto:keith.may@essex.ac.uk
www.sciencedirect.com/science/journal/00426989
https://www.elsevier.com/locate/visres
https://doi.org/10.1016/j.visres.2021.08.005
https://doi.org/10.1016/j.visres.2021.08.005
https://doi.org/10.1016/j.visres.2021.08.005
zli
Text Box
This article is published in Vision Research in 2022, in  volume 201,   107950, https://www.sciencedirect.com/science/article/abs/pii/S0042698921001863?via%3Dihub



Vision Research xxx (xxxx) xxx

2

We are not proposing that the visual system necessarily adds and 
subtracts the two eyes’ images to produce signals S+(x) and S− (x) before 
applying receptive fields K+(x) and K− (x). Eqs. (1) and (4) both describe 
exactly the same model neuron, each providing a different, but equally 
valid way of calculating its output. Eq. (1) comes closer to describing 
how this model would actually be implemented in the brain; Eq. (4) 
gives an alternative way to calculate the model neuron’s response, 
which turns out to be more useful when deriving the optimal receptive 
fields. We can ensure that Eq. (4) gives the same output as Eq. (1) by 
starting with the premise that the outputs from the two equations are 
equal and then deriving K+(x) and K− (x) from that premise. Using Eqs. 
(2) and (3) and to substitute for S+(x) and S− (x) in Eq. (4), and then 
rearranging, we have 

O =
∑

x

K+(x) + K− (x)
̅̅̅
2

√ SR(x) +
K+(x) − K− (x)

̅̅̅
2

√ SL(x). (5)  

Eq. (5) has the same form as Eq. (1), with 

KR(x) =
K+(x) + K− (x)

̅̅̅
2

√ (6)  

KL(x) =
K+(x) − K− (x)

̅̅̅
2

√ . (7) 

Eq. (4) describes the neuron’s output in terms of its sensitivity to two 
“channels”: a binocular summation channel and a binocular differencing 
channel. Alternatively, Eq. (1) describes the same neuron’s response in 
more conventional terms, i.e. in terms of its sensitivity to the left and 
right eyes’ images. To derive the optimal binocular code, we derive the 
optimal receptive field profiles for the summation and differencing 
channels, and then use Eqs. (6) and (7) to obtain the optimal receptive 
field profiles for the left and right eyes. 

2. Deriving the optimal binocular code 

The theory described in this article was first presented by Li and 
Atick (1994), and further expounded by Zhaoping (2014); please note 
that the names "Li" and "Zhaoping" in these citations both refer to Li 
Zhaoping, the second author of this article. 

Deriving the optimal binocular code involves finding the best trade- 
off between cost (energy usage) and benefit (information transfer). The 
measure of information that we use is “mutual information”, the infor-
mation about the external sensory signal contained in the neuronal 
signal. Supplementary Appendix A explains how mutual information is 
defined and quantified, but the rest of this article can be understood 
without referring to this appendix. 

2.1. Encoding the sensory signal 

Instead of considering the signal to be a whole 2-dimensional (2D) 
image in each eye, we will begin by considering a single point at the 
same location in each eye. This will allow us to determine the optimal 
sensitivity to each eye’s signal, but ignores the spatial aspects of the 
receptive field. We will then extend the exposition to full 2D images and 
receptive fields in Section 3. As a further simplification, we will consider 
only luminance, not spectral wavelength. So the sensory input signal is 
represented by two values, SL and SR, the luminances of a pair of points 
with the same location in the left and right eye retinal images. For 
mathematical simplicity, we assume that all signals and noise have zero- 
mean Gaussian distributions; thus, the luminance signal is normalised by 
subtracting the mean, so the signal can take positive or negative values. 

We will often find it convenient to represent the sensory input signal 
using a column vector, S, given by 

S =

(
SL
SR

)

. (8)  

In the text, we will sometimes write S as (SL, SR)
T , and similarly for other 

vectors; the superscript T means “transpose”, which converts the row 
vector to a column vector. We use this for notational convenience because, 
although S is a column vector, row vectors take up less space in the text. 

We assume that this sensory signal is corrupted by additive sensory 
noise, N, given by 

N =

(
NL
NR

)

, (9)  

to give a noisy sensory signal, S′

: 

S′

= S + N =

(
SL + NL
SR + NR

)

=

(
S

′

L

S
′

R

)

. (10) 

To maintain the information in this 2-element vector, we need to 
encode it using at least two output channels, whose values are labelled 
O1 and O2: 

O =

(
O1
O2

)

. (11)  

We assume that the output of each channel, Oi, is a linear function of the 
two eyes’ noisy sensory signals, plus added noise. The response of 
channel 1 is given by 

O1 = K1LS′

L +K1RS′

R +(NO)1, (12)  

where K1L and K1R are the sensitivities of channel 1 to the left and right 
eyes’ signals, respectively (Zhaoping, 2014, Equation 3.103); (NO)1 is a 
noise sample added to the output of channel 1, due to noise in the 
encoding process. Similarly, 

O2 = K2LS′

L +K2RS′

R +(NO)2. (13)  

Eqs. (12) and (13) are analogous to Eq. (1), except that the images and 
receptive fields have been reduced from 2D images to single, scalar 
numbers, and encoding noise has been added to the output. 

Eqs. (12) and (13) can be expressed in matrix form as follows 
(Zhaoping, 2014, Equation 3.102): 
(

O1
O2

)

=

(
K1L K1R
K2L K2R

)(
S′

L

S′

R

)

+

(
(NO)1
(NO)2

)

, (14)  

or more compactly: 

O = KS′

+ NO. (15)  

The goal of efficient coding is to find an encoding matrix, K, that gives 
the best trade-off between information and cost. 

2.2. Finding the optimal encoding matrix 

Zhaoping (2014) uses the output variance as the measure of cost, 
because the energy usage will increase with increasing variance 
(Zhaoping, 2014, Section 3.2.2.3). Because we assume the signals to have 
zero mean, the variance of output i is simply 

〈
O2

i

〉
, where 〈y〉 is the mean 

of y. The optimal matrix, K, is the one that minimises the loss function, 

E(K) =

(
∑

i=1,2

〈
O2

i

〉
)

− λI(O; S), (16)  

where I(O; S) is the mutual information between the sensory input signal, 
S, and the neuronal output, O. Good encoding matrices will be those that 
give a low total energy consumption, 

∑
i=1,2

〈
O2

i

〉
, or a high mutual in-

formation, or both. The free parameter, λ, quantifies the importance of 
information relative to energy usage: it tells us the maximum amount of 
energy we are prepared to expend per bit of information. 
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In general, the two elements of the sensory input signal S = (SL, SR)
T 

are correlated, because the left eye’s image is similar to the right eye’s 
image (as in the top-left panel of Fig. 1): each eye’s signal carries in-
formation about the other. This makes it difficult to minimise the loss 
function, because any change in the sensitivity to one eye’s signal can 
influence the amount of additional information provided by the other 
eye. Imagine that, instead, we had a signal S = (S1, S2)

T in which S1 and 
S2 were uncorrelated; and imagine further that O1 provided information 
only about S1, and O2 provided information only about S2. Then O1 

provides I(O1; S1) bits of information about the signal and O2 provides 

I(O2; S2) bits about the signal. Because there is no overlap between the 
information provided by O1 and O2, the total information given by O1 

and O2 together is simply the sum of the information that each provides 
individually: 

I(O; S) =
∑

i=1,2
I(Oi; Si). (17)  

Using Eq. (17) to substitute for I(O; S) in Eq. (16), we have 

E(K) =
∑

i=1,2
Ei(K), (18)  

where 

Ei(K) =
〈
O2

i

〉
− λI(Oi; Si). (19)  

E(K) is therefore a sum of terms, Ei(K), one for each output channel. 
Each channel’s output, Oi, carries information only about the corre-
sponding input element Si, and no information about the other input 
element; because of this, any change that we make to one channel has no 
effect on the other channel’s Ei(K) term, so we can minimise E(K) by 
minimising each channel’s Ei(K) term independently of the others; this 
makes the process quite straightforward. Thus, the first step in finding 
the optimal K is to apply an information-preserving linear trans-
formation (matrix KO – Eq. (21)) that transforms the correlated sensory 
input signal, (SL, SR)

T , into a decorrelated signal, (S1, S2)
T ; then the loss 

function can be written in the form given in Eq. (18). The second step is 
to find a linear transformation that minimises each channel’s term in the 
loss function; because each channel is being optimised independently of 
the other, and the signals are single scalar values, this linear trans-
formation is a simple gain control in each channel (matrix g – Eq. (28)). 
Finally, there is a third step in which O1 and O2 are multiplexed across 
two further channels to produce an encoding scheme that is equally 
optimal in terms of the loss function, but can reduce the amount of 
neural wiring required to implement it. Conceptually, the process con-
sists of three linear transformations, as just described. However, there is 
no need for these three stages to be carried out separately in the brain: 
they could all be cascaded into a single linear transformation. In the next 
three subsections, we outline these three stages. 

2.2.1. Step 1: Decorrelation 
Assuming the inputs to the two eyes have the same variance, so 

〈
S2

L

〉
=
〈
S2

R

〉
, we can decorrelate the signals by rotating the coordinate 

axes by 45◦ (positive angles give anticlockwise rotations; negative an-
gles give clockwise rotations) – see Fig. 1. Rotating the axes by θ is 
equivalent to rotating the points about the origin by − θ. This can be 
achieved by multiplying the signal vector by a standard rotation matrix, 
(

cos(− θ) − sin(− θ)
sin(− θ) cos(− θ)

)

=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)

. (20)  

With θ = 45◦, we call this matrix KO: 

KO =

(
cos(45) sin(45)
− sin(45) cos(45)

)

=
1̅
̅̅
2

√

(
1 1
− 1 1

)

. (21)  

Using KO, we can transform the noisy sensory signal S′

= (S′

L, S
′

R)
T 

to a 
decorrelated signal (S′

+, S′

− )
T :  

where 

S+ = (SR + SL)/
̅̅̅
2

√
(23)  

S− = (SR − SL)/
̅̅̅
2

√
(24)  

N+ = (NR + NL)/
̅̅̅
2

√
(25)  

N− = (NR − NL)/
̅̅̅
2

√
. (26)  

Note that we use the subscripts + and − to refer to the decorrelated 

Fig. 1. Idealised distributions of signal values in the left and right eyes. In the 
left column, each point plots the luminance of a point in the left eye (SL) against 
the luminance at the same location in the right eye (SR); each eye’s signal is a 
Gaussian distribution with the same variance. In the top row, the correlation 
between the left and right eyes is 0.9; in the bottom row, the correlation is zero. 
The right column shows the same distributions, but plotted on axes representing 
the binocular sum (S+) and difference (S− ), which are rotated by 45◦ with 
respect to the SL and SR axes. When the two eyes’ signals are correlated (top 
row), 

〈
S2
+

〉
>
〈
S2
−

〉
; when the two eyes’ signals are uncorrelated (bottom row), 

〈
S2
+

〉
=
〈
S2
−

〉
. In both cases, the S+ and S− signals are uncorrelated. 

(
S′

+

S′

−

)

= KO

(
S

′

L

S′

R

)

=
1̅
̅̅
2

√

(
S

′

R + S
′

L

S′

R − S′

L

)

=
1̅
̅̅
2

√

(
SR + SL
SR − SL

)

+
1̅
̅̅
2

√

(
NR + NL
NR − NL

)

=

(
S+

S−

)

+

(
N+

N−

)

(22)   
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signals, rather than the more general subscripts 1 and 2 in the previous 
sections. This is because, in this particular case, the decorrelation trans-
form creates a summation channel, S+, which adds the two eyes’ sensory 
signals together, and a differencing channel, S− , which subtracts one 
eye’s signal from the other. The effect of this rotation of the coordinate 
axes is illustrated in Fig. 1. In these new coordinate axes, the signals are 
now decorrelated. 

Transforming the correlated signal (S′

L, S′

R)
T to the decorrelated signal 

(S′

+, S
′

− )
T does not change the amount of information that we have about 

the original sensory signal, (SL, SR)
T . This is because the transformation is 

completely reversible – given (S′

+, S′

− )
T , we can rotate the axes back to 

find (S′

L, S′

R)
T , and vice-versa, so (S′

L, S′

R)
T and (S′

+, S
′

− )
T are equally 

informative about the original sensory signal, (SL, SR)
T . More formally, 

we can say that the mutual information between (SL, SR)
T and (S′

L, S
′

R)
T is 

the same as the mutual information between (SL, SR)
T and (S′

+, S
′

− )
T : 

I
((

S′

+, S′

−

)T
; (SL, SR)

T
)
= I
((

S′

L, S
′

R

)T
; (SL, SR)

T
)
. (27)  

So, if (S′

L, S
′

R)
T or (S′

+, S′

− )
T were the output, O, then the second term in 

the loss function (Eq. (16)), i.e. λI(O;S), would be unchanged by this 
decorrelation. Furthermore, the first term in the loss function is the sum 
of the variances of the output neurons, and it can be shown that this, too, 
is unchanged by the rotation of the coordinate axes (Zhaoping, 2014, p. 
99). Thus, neither term in the loss function is changed by the rotation, 
and so the 

(
S′

+, S
′

−

)T encoding scheme is no more efficient by this mea-

sure than the 
(
S′

L, S′

R

)T scheme. It is true that 
(
S′

+, S
′

−

)T is less redundant 

than 
(
S′

L, S′

R

)T (Attneave, 1954; Barlow, 1961; Barlow, 2001), because, 

unlike 
(
S′

L, S
′

R

)T , there is no overlap in the information in the two ele-

ments of 
(
S′

+, S′

−

)T . However, in Li and Atick’s theory, the decorrelation 
itself does not increase the efficiency – it merely provides a conceptual 
stage that allows straightforward derivation of the optimal K through 
simple gain control in each channel: because the channels are uncorre-
lated, the optimal gain in each channel can be derived independently of 
the other channel. 

2.2.2. Step 2: Gain control 
We can apply gain control to the transformed signal, 

(
S′

+, S
′

−

)T , by 
applying a diagonal gain control matrix, g, given by 

g =

(
g+ 0
0 g−

)

. (28)  

When the gain values, g+ and g− , have been optimised, the optimal 
encoding matrix, K, is given by 

K = gKO =
1̅
̅̅
2

√

(
g+ g+

− g− g−

)

. (29)  

Then, by expanding Eq. (15), we have 
(

O+

O−

)

=
1̅
̅̅
2

√

(
g+ g+

− g− g−

)(
SL + NL
SR + NR

)

+

(
(NO)+
(NO)−

)

(30)  

=

⎛

⎜
⎜
⎜
⎝

g+(SR + SL) + g+(NR + NL)
̅̅̅
2

√ + (NO)+

g− (SR − SL) + g− (NR − NL)
̅̅̅
2

√ + (NO)−

⎞

⎟
⎟
⎟
⎠

(31)  

=

(
g+S+ + g+N+ + (NO)+
g− S− + g− N− + (NO)−

)

. (32) 

We now show how to calculate the optimal gain in each channel. Let 

us assume that the sensory noise samples, NL and NR, are uncorrelated 
and both sampled from a Gaussian distribution with mean zero and 
variance 

〈
N2
〉
: then it can be shown that noise samples N+ and N− are 

also uncorrelated, and sampled from the same distribution (Zhaoping, 
2014, Equation 3.111). We also assume that the encoding noise samples, 
(NO)+ and (NO)− , are both sampled from a zero-mean Gaussian distri-
bution with variance 

〈
N2

O

〉
. Thus, each output, Oi, is the sum of three 

independent Gaussian random variables. Since the variances of summed 
independent signals add, the output variance, σ2

O, is given by 

σ2
O =

〈
O2

i

〉
= g2

i

( 〈
S2

i

〉
+
〈
N2〉 )+

〈
N2

O

〉
. (33)  

Similarly, the total noise variance, σ2
N , for each channel is given by 

σ2
N = g2

i

〈
N2〉+

〈
N2

O

〉
. (34)  

For Gaussian-distributed signals and noise, the mutual information be-
tween the input and output is given by (Zhaoping, 2014, Equation 3.25) 

I(Oi; Si) = log2
σO

σN
(35)  

=
1
2

log2
σ2

O

σ2
N

(36)  

=
1
2

log2
g2

i

( 〈
S2

i

〉
+
〈
N2
〉 )

+
〈
N2

O

〉

g2
i
〈
N2
〉
+
〈
N2

O
〉 . (37)  

Using Eqs. (33) and (37) to substitute for 
〈
O2

i

〉
and I(Oi; Si) in Eq. (19), 

we have 

Ei(K) = g2
i

( 〈
S2

i

〉
+
〈
N2〉 )+

〈
N2

O

〉
−

λ
2

log2
g2

i

( 〈
S2

i

〉
+
〈
N2
〉 )

+
〈
N2

O

〉

g2
i
〈
N2
〉
+
〈
N2

O
〉 . (38)  

For each channel, i, the optimal gain, gi, is that which minimises Ei(K). 
This is found by differentiating Eq. (38) with respect to g2

i , setting the 
result to zero, and solving for g2

i . The derivative of Ei(K) is given by 

dEi(K)
d(g2

i )
=
〈
S2

i

〉
+
〈
N2〉 −

1
2ln2

×
λ
〈
N2

O

〉〈
S2

i

〉

(g2
i )

2〈N2
〉( 〈

S2
i
〉
+
〈
N2
〉 )

+ g2
i
〈
N2

O
〉( 〈

S2
i
〉
+ 2
〈
N2
〉 )

+
〈
N2

O
〉2. (39)  

Setting dEi(K)/d
(
g2

i

)
to zero gives 

a(g2
i )

2
+ bg2

i + c = 0 (40)  

where 

a =
〈
N2〉( 〈S2

i

〉
+
〈
N2〉 ) (41)  

b =
〈
N2

O

〉( 〈
S2

i

〉
+ 2
〈
N2〉 ) (42)  

c =
〈
N2

O

〉2
−

λ
〈
N2

O

〉〈
S2

i

〉

2ln2
( 〈

S2
i
〉
+
〈
N2
〉 ). (43)  

Using the quadratic formula to solve Eq. (40) for g2
i , we find that the 

optimal gain is given by 

g2
i =

〈
N2

O

〉

〈
N2
〉
(
Fsmoothing × Fdecorrelation − 1

)
(44)  

where 

K. May and L. Zhaoping                                                                                                                                                                                                                      
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Fsmoothing =

(

1 +

〈
N2
〉

〈
S2

i
〉

)− 1

(45)  

Fdecorrelation =
1
2
+

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2λ

〈
N2

O

〉
ln2

×

〈
N2
〉

〈
S2

i

〉

√

. (46)  

Note that, when λ is low, Eq. (44) can produce negative, i.e. impossible, 
values for g2

i ; in this case, the optimal achievable value for g2
i will be 

zero, indicating that any of the information in the sensory signal would 
cost more in energy terms than we are prepared to pay. Eqs. (44) to (46) 
are plotted in Fig. 2, each panel plotting a different set of parameter 
values. Fsmoothing increases with increasing ratio of signal to sensory noise, 
〈
S2

i

〉/〈
N2
〉
, while Fdecorrelation does the opposite. At high signal-to-noise 

ratios (SNRs), Fsmoothing asymptotes to 1, so the gain is dominated by 
Fdecorrelation: in this situation, the optimal gain varies inversely with the 
SNR; this approximately has the effect of whitening, i.e. making all 
outputs equally strong, which decorrelates the outputs (see the bottom 
row of Fig. 1), hence the name, Fdecorrelation. At low SNRs, Fsmoothing and 
Fdecorrelation change in opposite directions with SNR, but Fsmoothing is steeper, 
so the optimal gain follows Fsmoothing, increasing with the SNR; this has the 
effect of suppressing weak, noisy signals, i.e. smoothing out the noise, 
hence the name Fsmoothing. 

2.2.3. Step 3: Multiplexing 
After steps 1 and 2, we have two channels: the summation channel, 

O+, which tells us about the sum of the two eyes’ images, and the dif-
ferencing channel, O− , which tells us about the difference between 
them; the gain on each channel can be adjusted to optimise coding ef-
ficiency. The encoding process could stop there. However, the optimal 
code is not unique. In Section 2.2.1, we noted that rotating the 

coordinate axes of the encoding scheme had no effect on either the total 
information or the sum of variances of the outputs, so both terms of the 
loss function (Eq. (16)) are unchanged. This is equally true after gain 
control: the coordinate axes can subsequently be rotated through any 
angle, to produce a new encoding scheme that is just as optimal as the 
one found in step 2. This can be achieved by multiplying by a further 
rotation matrix, U(θ), to rotate the axes about an angle θ: 

U(θ) =
(

cos θ sin θ
− sin θ cos θ

)

. (47)  

The full encoding matrix, K, is then given by 

K = U(θ)gKO =
1̅
̅̅
2

√

(
cos θ sin θ
− sin θ cos θ

)(
g+ 0
0 g−

)(
1 1
− 1 1

)

, (48)  

with θ a free parameter, and the optimal g+ and g− determined by Eq. 
(44). For all values of θ except integer multiples of 90◦, the summation 
and differencing channels are multiplexed across the two output chan-
nels (so both channels carry information about the sum and difference 
signals, S+ and S− ). 

Although any value of θ is equally optimal in minimising the loss 
function (Eq. (16)), Li and Atick (1994) assume a value of θ = − 45◦. In 
this case, U(θ) is the inverse of KO, as it rotates the axes 45◦ in the 
opposite direction to KO. Li and Atick (1994) note that this results in the 
smallest overall change to the input, i.e. it minimises 

∑
i

(
Oi − S′

i

)2 (see 
Zhaoping, 2014, Box 3.1). This may minimise the amount of neural 
wiring involved in transforming the signal, conferring an additional 
advantage that is not taken into account by the loss function of Eq. (16). 
With θ = − 45◦, Eq. (48) simplifies to 

K =
1
2

(
g+ + g− g+ − g−

g+ − g− g+ + g−

)

. (49) 

Fig. 2. Optimal gain. Each panel shows 
Fdecorrelation, Fsmoothing and the optimal g2 for a 
different combination of parameters λ and 
〈
N2

O

〉
. g2, 

〈
N2
〉

and 
〈
N2

O

〉
are specified in units 

of sensory noise variance, so 
〈
N2
〉
= 1 by 

definition. The red curve shows Fsmoothing, 
which is the same in each panel. The blue 
curve shows Fdecorrelation; this increases in 
height with increasing λ, and decreases in 
height with increasing 

〈
N2

O

〉
. Panels on the 

same diagonal (top left to bottom right) have 
the same Fdecorrelation, because within a diago-
nal, λ/

〈
N2

O

〉
is constant. The optimal g2 is 

given by Eq. (44).   
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If the two eyes’ signals are already uncorrelated, then the binocular 
summation and differencing channels will have the same signal strength 
as each other (see Fig. 1), and thus the same optimal gain; in this case, 
we can let g = g+ = g− , giving 

K = g
(

1 0
0 1

)

. (50)  

Using Eq. (50) to substitute for K in Eq. (15), we have 
(

O1
O2

)

= g

(
S′

L

S
′

R

)

+

(
(NO)1
(NO)2

)

. (51)  

In this case, the optimal transform does nothing except change the gain. 
Multiplexing the summation and differencing channels using U(− 45◦) is 
particularly beneficial in this case, as it results in each output channel 
receiving its input from just one eye, eliminating the need for neural 
connections from both eyes. 

In the more general case of g+ ∕= g− , the output is found by using Eq. 
(49) to substitute for K in Eq. (15): 
(

O1
O2

)

=
1
2

(
(g+ + g− )S

′

L + (g+ − g− )S
′

R

(g+ − g− )S
′

L + (g+ + g− )S
′

R

)

+

(
(NO)1
(NO)2

)

. (52)  

Carrying out the matrix operations defined in Eq. (52), we obtain 

O1 =
g+ + g−

2
S′

L +
g+ − g−

2
S′

R +(NO)1 (53)  

O2 =
g+ − g−

2
S′

L +
g+ + g−

2
S′

R +(NO)2. (54)  

Eqs. (53) and (54) tell us how to calculate the outputs of channels 1 and 
2 from the left and right eye inputs. Each channel has the same pair of 
ocular sensitivities, i.e. (g+ + g− )/2 and (g+ − g− )/2, but they differ in 
which eye has which sensitivity. 

It will be useful to present alternative equations that tell us how to 
calculate the channel outputs from the noisy sum and difference signals, 
S′

+ and S′

− . From Eq. (22), we obtain 

S′

R =
S′

+ + S′

−̅̅̅
2

√ (55)  

S′

L =
S′

+ − S′

−̅̅̅
2

√ . (56)  

Using Eqs. (55) and (56) to substitute for S′

L and S′

R in Eqs. (53) and (54), 
we obtain 

O1 =
g+
̅̅̅
2

√ S
′

+ −
g−
̅̅̅
2

√ S
′

− + (NO)1 (57)  

O2 =
g+
̅̅̅
2

√ S′

+ +
g−
̅̅̅
2

√ S′

− + (NO)2. (58)  

Eqs. (57) and (58) are not presenting a different model from Eqs. (53) 
and (54): instead, Eqs. (57) and (58) give us, the researchers, an alter-
native way to calculate the model’s responses. The brain would still 
calculate the outputs from the left and right eye signals, as made explicit 
in Eqs. (53) and (54). Eqs. (57) and (58) show that using U(− 45◦) in the 
multiplexing step divides the summation and differencing channels 
equally between the two output channels: the two output channels both 
have a sensitivity of g+/

̅̅̅
2

√
to the summation signal, and both have a 

sensitivity of g− /
̅̅̅
2

√
to the difference signal. 

2.3. Summary so far 

This is a good point to take stock of what we have done, before moving 
on. The sensory input signal is a two-element vector, S = (SL, SR)

T . During 

the transduction process, this signal gets corrupted by additive sensory 
noise, to give a noisy sensory signal, S

′

= (SL + NL, SR + NR)
T (Eq. (10)). In 

transforming S′

to an efficient code, O, the visual system applies a linear 
transformation to give an output signal, O = KS′

+ NO (Eq. (15)), where 
NO is encoding noise (a different source of noise from the sensory noise). 
The optimal encoding matrix, K, is given by Eq. (49), with the gain values, 
g+ and g− , determined by Eq. (44). This linear transformation can be 
conceptually divided into a series of three steps, represented by the three 
matrices in Eq. (48): (1) a decorrelation that converts the left and right eye 
signals to binocular sum and difference signals; (2) gain control, which 
finds the optimal trade-off between energy usage and information transfer 
within the summation channel and within the differencing channel; (3) 
multiplexing the summation and differencing channels across the two 
output channels; this transformation preserves both energy consumption 
and information, and is therefore just as optimal as the encoding scheme 
obtained in step 2. The purpose of the decorrelation in step 1 is to ensure 
that the two channels do not share information, so that, in step 2, the 
whole system can be optimised by optimising each channel independently 
of the other. Step 3 minimises the difference between the input and output 
signals, which can reduce the amount of neural wiring needed to imple-
ment the process. Step 3 delivers two output channels, each of which has 
sensitivity g+/

̅̅̅
2

√
to the summation signal and sensitivity g− /

̅̅̅
2

√
to the 

difference signal (Eqs. (57) and (58)). 

3. Deriving the receptive field profiles for a neuron 

So far, we have ignored the spatial aspects of the stimuli, just 
deriving each output channel’s sensitivity. We will now expand our 
analysis to include the spatial receptive fields. We will consider the 
output channel to be a linear neuron, as defined in Section 1. To begin 
with, we extend Eq. (4) to include both sensory and encoding noise: 

O =

(
∑

x
K+(x)S

′

+(x) + K− (x)S
′

− (x)

)

+NO. (59) 

We will take K+(x) and K− (x) to be Gabor functions, whose 1-dimen-
sional cross-section is given by 

K(x) = sG(x)cos(2πfx+ϕ), (60)  

where s is the sensitivity, f is the neuron’s preferred spatial frequency, ϕ 
is the carrier phase, and G(x) is a Gaussian envelope, given by 

G(x) = exp
(

−
x2

2σ2

)

. (61)  

σ is the standard deviation of the Gaussian envelope, which controls its 
width. The centre of the envelope is defined as spatial position x = 0. 

As noted above, the neuron’s sensitivity to the binocular sum and 
binocular difference are g+/

̅̅̅
2

√
and g− /

̅̅̅
2

√
, respectively. This gives the 

following receptive fields: 

K+(x) =
g+
̅̅̅
2

√ G(x)cos(2πfx + ϕ+) (62)  

K− (x) =
g−
̅̅̅
2

√ G(x)cos(2πfx + ϕ− ). (63)  
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Fig. 3. Representations of the receptive 
fields with g+/g− = 1. Each column shows a 
different phase disparity, ϕ− − ϕ+, between 
the summation and differencing channels. In 
these examples, ϕ+ is always zero. The top 
row shows K+(x) in red, and K− (x) in green; 
the middle row shows KR(x) in yellow, and 
KL(x) in blue. The bottom row shows the 
vector representation of these receptive 
fields. Each vector is coloured to match the 
colour of the corresponding receptive field 
profile in the rows above. The angle of each 
vector represents the phase of the corre-
sponding receptive field (measured anti-
clockwise from 3 o’clock). The lengths of the 
vectors v+ and v− represent g+/

̅̅̅
2

√
and 

g− /
̅̅̅
2

√
, respectively. The lengths of the vec-

tors vL and vR represent gL and gR, respec-
tively. Thus, the lengths of v+ and v− give the 
neuron’s sensitivities to the summation and 
difference images, whereas the lengths of vL 

and vR are larger than the neuron’s sensitiv-
ities to the left and right eye images, by a 
factor of 

̅̅̅
2

√
. vR is the sum of vectors v+ and 

v− , while vL is the difference, v+ − v− . When 
g+/g− = 1, as in this figure, v+ and v− are the 
same length. Because of this, the parallelo-

grams formed by the vector addition and subtraction are identical rhombuses, so the diagonals (on which vL and vR lie) are orthogonal. This forces the magnitude of the 
neuron’s preferred binocular phase disparity, |ϕL − ϕR|, to be equal to 90◦ in all cases, regardless of the values of ϕ+ or ϕ− , apart from the degenerate cases of ϕ− − ϕ+ =

0◦ or 180◦, when the neuron is completely monocular, so the binocular phase disparity cannot be defined.   

Fig. 4. The same as Fig. 3, but with g+/g− = 1/2. The longer v− vector pulls vL and vR away from each other, so that the magnitude of the neuron’s preferred binocular 
phase disparity, |ϕL − ϕR|, is greater than 90◦ in all cases, regardless of the values of ϕ+ or ϕ− . 
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ϕ+ and ϕ− can be freely chosen to suit the computation at hand: all pairs 
of ϕ+ and ϕ− are equally optimal1. However, we will soon see that, 
although the phases of K+(x) and K− (x) can be freely chosen, the phase 
disparity between KL(x) and KR(x) is constrained by the sensitivity ratio, 
g+/g− . 

We can represent the sensitivity and phase of each receptive field 
using a 2-dimensional vector, where the length of the vector represents 
the sensitivity, and the direction of the vector represents the phase (see 
the examples in Figs. 3–5). So let us define vector v+, for the summation 
channel, which has length g+/

̅̅̅
2

√
and angle ϕ+, and define vector v− , for 

the differencing channel, which has length g− /
̅̅̅
2

√
and angle ϕ− . 

Having defined K+(x) and K− (x), we can obtain the neuron’s right 
and left eye receptive fields. Using Eqs. (62) and (63) to substitute for 
K+(x) and K− (x) in Eq. (6), we have 

KR(x) =
1̅
̅̅
2

√ G(x)
(

g+
̅̅̅
2

√ cos(2πfx + ϕ+) +
g−
̅̅̅
2

√ cos(2πfx + ϕ− )

)

. (64)  

When adding together two sine waves of the same frequency, the result 
is a sine wave with the same frequency, but with amplitude and phase 
given by a vector that is the sum of the vectors representing the am-
plitudes and phases of the two sine waves being added together. Thus, 
we have 

KR(x) =
gR
̅̅̅
2

√ G(x)cos(2πfx + ϕR), (65)  

where gR and ϕR are the length and angle of vector vR = v+ + v− . These 
are given by 

gR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g2
+ + g2

− + 2g+g− cos(ϕ− − ϕ+)

2

√

(66)  

ϕR = atan2(g+ sin ϕ+ + g− sin ϕ− , g+ cos ϕ+ + g− cos ϕ− ). (67)  

Similarly, using Eqs. (62) and (63) to substitute for K+(x) and K− (x) in 
Eq. (7), we have 

KL(x) =
gL
̅̅̅
2

√ G(x)cos(2πfx + ϕL), (68)  

where gL and ϕL are the length and angle of vector vL = v+ − v− , i.e. 

gL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g2
+ + g2

− − 2g+g− cos(ϕ− − ϕ+)

2

√

(69)  

ϕL = atan2(g+ sin ϕ+ − g− sin ϕ− , g+ cos ϕ+ − g− cos ϕ− ). (70)  

The magnitude of the neuron’s binocular phase disparity, |ϕL − ϕR|, can 
be calculated from Eqs. (67) and (70). Or alternatively from 

|ϕL − ϕR| = cos− 1

⎛

⎜
⎜
⎝

(g+/g− )
2
− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
(g+/g− )

2
+ 1

]2
− 4(g+/g− )

2cos2(ϕ− − ϕ+)

√

⎞

⎟
⎟
⎠.

(71)  

The sensitivities of the neuron’s right and left eye receptive fields are 
given by gR/

̅̅̅
2

√
and gL/

̅̅̅
2

√
, respectively. Figs. 3–5 illustrate K+(x), 

K− (x), KL(x) and KR(x) of some example model neurons, along with the 
corresponding vectors, v+, v− , vL and vR. 

As noted earlier, to fully represent the information in the two eyes, 
we need two output channels. Eqs. (57) and (58) show that these two 
channels are identical apart from the sign of the multiplier applied to the 
difference signal. The neuron outlined above implements one of these 
channels; to implement the other channel, we need a neuron with 
receptive fields K ′

+(x) and K ′

− (x) given by 

K ′

+(x) = K+(x) (72)  

K
′

− (x) = − K− (x). (73)  

Using Eqs. (6) and (7), we can show that this second neuron’s right and 

Fig. 5. The same as Fig. 3, but with g+/g− = 2. The longer v+ vector pulls vL and vR towards each other, so that the magnitude of the neuron’s preferred binocular 
phase disparity, |ϕL − ϕR|, is less than 90◦ in all cases, regardless of the values of ϕ+ or ϕ− . 

1 An explanation of this is beyond the scope of this article: it is possible to 
derive the full spatial receptive field using methods analogous to the derivation 
of the optimal ocular gains, and the free choice of phase values ϕ+ and ϕ−

comes from a multiplexing step in which there is a range of equally optimal 
solutions. 
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left eye receptive fields, K ′

R(x) and K ′

L(x), are given by 

K ′

R(x) = KL(x) (74)  

K ′

L(x) = KR(x). (75)  

In summary, we can have a range of equally optimal neurons with 
different ϕ+ and ϕ− ; however, for each of these neurons, there needs to 
be another neuron that is identical except that the left and right eye 
receptive fields are swapped between the eyes. 

4. Relationships between neuronal parameters 

The linear neuronal receptive field model outlined in the previous 
section gives rise to several relationships between the different neuronal 
parameters. These relationships can help us to use Li and Atick’s theory 
to explain various physiological findings, and to make predictions that 
have not yet been tested. 

4.1. Effect of (ϕ− − ϕ+) and sensitivity ratio g+/g− on the neuron’s 
preferred binocular disparity 

Figs. 3–5 illustrate how the relative sensitivity of K+(x) versus K− (x)
(i.e. g+/g− ) constrains the neuron’s preferred binocular disparity, 
ϕL − ϕR, i.e. the phase difference between KL(x) and KR(x):  

1. When g+/g− = 1 (Fig. 3), the left and right eye kernels have a phase 
disparity of exactly 90◦; this is because in this case, the identical par-
allelograms formed by the vector addition and subtraction are rhom-
buses, so the diagonals (on which vL and vR lie) are orthogonal.  
2. When g+/g− < 1 (Fig. 4), the left and right eye kernels have a phase 
disparity > 90◦; this is because the longer v− vector pulls vL and vR away 
from each other.  

3. When g+/g− > 1 (Fig. 5), the left and right eye kernels have a phase 
disparity < 90◦; this is because the longer v+ vector pulls vL and vR to-
wards each other. 

These constraints apply regardless of the phase values ϕ+ and ϕ− . Fig. 6 
shows how ϕL − ϕR varies with ϕ− − ϕ+ for several different values of 
g+/g− . Although g+/g− is imposed on the system by the signal and noise 
levels, ϕ+ and ϕ− can be freely chosen; Fig. 6 shows that, within the 
constraints outlined above, there is some scope to vary ϕ+ and ϕ− to 
yield a range of binocular phase disparities. 

An alternative visualisation is given in Fig. 7. The shaded regions 
indicate the possible combinations of g+/g− and binocular disparity 
magnitude, |ϕL − ϕR|: for g+/g− < 1, only binocular disparities greater 
than 90◦ are possible, while for g+/g− > 1, only binocular disparities less 
than 90◦ are possible. The colour at each point in Fig. 7 indicates how 
much |ϕ− − ϕ+| deviates from 90◦ (quadrature phase): the black end of 
the colour scale indicates that K+(x) and K− (x) are in quadrature phase 
(||ϕ− − ϕ+| − 90◦ | = 0◦), while the yellow end of the scale indicates that 
K+(x) and K− (x) are either exactly in phase or exactly out of phase 
(||ϕ− − ϕ+| − 90◦ | = 90◦). The curved boundaries of the shaded regions 
are lined with black, indicating that, as K+(x) and K− (x) approach 
quadrature phase, |ϕL − ϕR| gets as close as possible to 90◦. As K+(x) and 
K− (x) deviate from quadrature phase (i.e. become either in or out of 
phase), the left and right eye kernels become more out of phase for 
g+/g− < 1, and become more in phase for g+/g− > 1. The central point 
where the two shaded regions in Fig. 7 meet (corresponding to g+/g− =

1) represents the degenerate case where the left and right eye kernels 
are always in quadrature phase, i.e. |ϕL − ϕR| = 90◦, regardless of the 
values of ϕ+ and ϕ− . 

Fig. 6. This figure shows how the neuron’s preferred 
binocular disparity, ϕL − ϕR, is affected by the sensi-
tivity ratio, g+/g− , and the phase difference, ϕ− − ϕ+, 
of the summation and differencing channels. Binoc-
ular disparity was calculated using Eqs. (67) and (70). 
Fig. 4 illustrates parameter values that lie on the blue 
line (g+/g− = 1/2); Fig. 3 illustrates parameter values 
that lie on the green line (g+/g− = 1); Fig. 5 illus-
trates parameter values that lie on the yellow line 
(g+/g− = 2). Note, for this neuron, positive values of 
ϕ− − ϕ+ tune the neuron to near disparities, while 
negative values of ϕ− − ϕ+tune the neuron to far dis-
parities; if we had instead used the neuron defined by 
Eqs. (72) to (75), then the receptive fields would have 
been swapped between the eyes, and all the signs of 
the binocular disparities in this figure would have 
been reversed. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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4.2. Effect of (ϕ− − ϕ+) and sensitivity ratio g+/g− on binocularity 
Both the sensitivity ratio, g+/g− , and the phase difference, ϕ− − ϕ+, of 

the summation and differencing channels will affect the neuron’s 
binocularity, i.e. the extent to which it is similarly sensitive to the two 
eyes. Binocularity can be assessed by presenting each eye with the 
optimal sine wave grating stimulus for that eye’s receptive field, and 
then measuring the neuron’s outputs, OL and OR, in response to left and 
right eye monocular stimulation, respectively. Binocularity can then be 
quantified using the Ocular Balance Index (OBI): 

OBI = 1 −
⃒
⃒
⃒
⃒
OR − OL

OR + OL

⃒
⃒
⃒
⃒. (76)  

The OBI varies from 0 (totally monocular – the neuron only responds to 
stimulation in one eye) to 1 (totally binocular – the neuron responds 
with equal strength to stimulation in either eye). 

We can derive an analytical expression that gives the OBI as a 
function of g+/g− , and ϕ− − ϕ+. To simplify the mathematics, instead of 
using Gabor receptive fields with a Gaussian envelope, we will assume 
the envelope to be rectangular, with width equal to a whole number of 

Fig. 7. The shaded areas show the possible combinations of g+/g− and preferred binocular disparity magnitude, |ϕL − ϕR|. This figure allows us to see at a glance that 
low g+/g− causes the neuron to be tuned to high binocular disparity, and high g+/g− causes preference for low binocular disparity. The colour at each shaded point 
indicates how much |ϕ− − ϕ+| deviates from 90◦ (quadrature phase). Eq. (71) was rearranged to find the value of |ϕ− − ϕ+| at each point. 

Fig. 8. Ocular Balance Index (OBI) plotted as a function of g+/g− , for several different values of ϕ− − ϕ+. The OBI is calculated using Eq. (76) with OR and OL given by 
Eqs. (79) and (80). 
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cycles of the carrier. We have carried out numerical modelling with 
biologically plausible Gabor functions, and found that using a rectan-
gular envelope instead of a Gaussian makes a negligible difference to the 
predicted OBI. 

If each receptive field is a whole number of cycles of a sine wave, 
then the neuron’s response to the optimal sine wave stimulus will simply 
be proportional to the receptive field’s sensitivity, so we have 

OR ∝ gR (77)  

OL ∝ gL. (78)  

The actual constant of proportionality does not matter, since it will 
cancel out in Eq. (76). If we choose the constant of proportionality to be 
̅̅̅
2

√
/g− , then, using Eqs. (66) and (69) to substitute for gR and gL in (77) 

and (78), we have 

OR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(g+/g− )
2
+ 1 + 2(g+/g− )cos(ϕ− − ϕ+)

√

(79)  

OL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(g+/g− )
2
+ 1 − 2(g+/g− )cos(ϕ− − ϕ+)

√

. (80)  

Fig. 8 plots the OBI as a function of g+/g− with OR and OL given by Eqs. 
(79) and (80). This figure illustrates two key effects:  

1. For a given g+/g− , binocularity is maximised when K+(x) and K− (x)
are in quadrature phase (||ϕ− − ϕ+| − 90◦ | = 0◦), and minimised when 
their phase difference is 0◦ or 180◦ (||ϕ− − ϕ+| − 90◦ | = 90◦). To un-
derstand why this happens, first consider the case of K+(x) and K− (x)
perfectly in phase (a phase difference of 0◦); this case maximises the 
amplitude of their sum, and minimises the amplitude of their difference, 
so KR(x) and KL(x) are maximally different in sensitivity. Alternatively, a 
phase difference of 180◦ between K+(x) and K− (x) minimises the 
amplitude of their sum, and maximises the amplitude of their difference, 
so KR(x) and KL(x) are again maximally different in sensitivity. Halfway 
between these two extremes (quadrature phase), the difference between 
KR(x) and KL(x) is minimised.  
2. For a given phase difference, ϕ− − ϕ+, binocularity is minimised when 
g+/g− = 1. This is because, when g+/g− = 1, K+(x) and K− (x) have the 

same amplitude, allowing for more complete cancellation when they are 
added or subtracted (depending on their phase difference); this mini-
mises the sensitivity of either KR(x) or KL(x), making the neuron as 
monocular as possible. 

For further insights into these effects, see Supplementary Appendix B. 
Each point in Fig. 7 gives rise to a single value for each of g+/g− and 

||ϕ− − ϕ+| − 90◦ |, and thus a single OBI value (since the OBI is deter-
mined only by these two values – see Fig. 8). These OBI values are 
plotted in Fig. 9. The OBI is highest when |ϕL − ϕR| is as close as possible 
to 90◦, because that is when |ϕ− − ϕ+| = 90◦(see Fig. 7) which gives OBI 
= 1 in all cases. The OBI is also high when g+/g− takes an extreme (low 
or high) value. 

The predicted OBI values in Figs. 8 and 9 are calculated assuming 
that the neuron is completely linear, as in Eq. (1). As noted earlier, to 
obtain the spike rate from a real neuron, the calculation of Eq. (1) is 
followed by subtraction of a threshold ≥ 0, and then all negative values 
are set to zero (half wave rectification). The half wave rectification on its 
own makes no difference to the OBI because, for monocular stimulation 
with each eye’s optimally positioned sine wave grating stimulus, Eq. (1) 
will always produce a positive number. However, the subtraction of a 
threshold in combination with half wave rectification can make the 
neuron appear much more monocular than it really is, and this would 
reduce the measured OBI. Ohzawa and Freeman (1986) showed that 
some neurons appeared very monocular when tested with monocular 
stimulation in each eye, but nevertheless showed strong interactions 
between the two eyes’ stimuli when stimulated binocularly; they 
showed that this behaviour could be explained by including subtraction 
of a threshold in the linear model. An asymmetry between on responses 
and off responses could also reduce the OBI, particularly in cells with 
g− ≫g+. For more discussion of the effects of nonlinearities on the pre-
dictions of Li and Atick’s theory, see Zhaoping (2014), Section 3.5.7.1. 

5. Evaluating the predictions of the theory 

The core of Li and Atick’s theory is the predicted effect of SNR on the 
gains on the summation and differencing channels. We can therefore test 
the theory by looking at different situations that would be expected to 

Fig. 9. Similar to Fig. 7, except that the colour of each point gives the OBI corresponding to each combination of g+/g− and |ϕL − ϕR|.  
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affect the channel gains, and seeing whether we get the predicted effects. 

5.1. Predicted effects of interocular correlation on binocularity 

Fig. 1 illustrates that, when the interocular correlation is zero, the 
signal strength is identical in the summation and differencing channels, 
i.e. 

〈
S2
+

〉
=
〈
S2
−

〉
; since the optimal gain on each channel is determined 

by the SNR, a zero interocular correlation gives the same optimal gain on 
each channel, i.e. g+/g− = 1. When the interocular correlation is above 
zero, we have 

〈
S2
+

〉
>
〈
S2
−

〉
. Although a pair of different SNRs can give 

rise to the same optimal gain on each channel, it is generally the case 
that different SNRs will give rise to different gains (see Fig. 2). Thus, in 
general, Li and Atick’s theory predicts that, as the interocular correla-
tion decreases, g+/g− will get closer to 1, and this in turn will make the 
neurons more monocular (as shown in Fig. 8); conversely, when the 
interocular correlation increases, g+/g− will move away from 1, and the 
neurons will be more binocular. The following subsections examine 
various factors that affect the interocular correlation, and show how 
they lead to the predicted effects on binocularity. 

5.1.1. Strabismus (squint) 
In strabismus, the eyes are not correctly aligned. This gives rise to a 

lower interocular correlation than normal, so Li and Atick’s theory 
predicts a higher-than-normal level of monocularity. This prediction 
was confirmed by Hubel and Wiesel’s (1965) finding that, in primary 
visual cortex of kittens raised with artificially induced strabismus, 79% 
of the neurons (302 of 384) were monocular, compared with 20% (44 of 
223) in normally reared kittens (a significant difference in proportion: 
χ2 = 199.8, p = 2.3 × 10− 45). 

5.1.2. Alternating monocular occlusion 
Strabismus reduces the interocular correlation, but does not abolish 

it completely. In addition to their experiments on artificially induced 
strabismus, Hubel and Wiesel (1965) raised kittens with daily alter-
nating monocular occlusion, so that on each day, one eye was occluded 
with an opaque occluder, and the other eye was normal; the occluder 
was swapped between the eyes each day. In this setup, the occluded eye 
never had a signal – only noise – so the interocular correlation was zero 
at all times. Li and Atick’s theory would therefore predict an even larger 
proportion of monocular cells than in strabismic animals; Hubel and 
Wiesel (1965) found that this was indeed the case: 91% of the neurons 
(176 of 194) that they recorded were monocular, a significantly higher 
proportion than for strabismic animals (χ2 = 13.14, p = 0.00029). 

5.1.3. Interocular distance 
Most primates have ocular dominance columns (ODCs), in which 

neurons are clustered according to which eye elicits the highest response 
(for review, see Adams & Horton, 2009). A strong ODC structure cannot 
occur without the existence of highly monocular neurons, i.e. those that 
respond mainly to one eye. ODCs are less readily observed in smaller 
primate species such as the owl monkey (Kaas, Ling, & Casagrande, 
1976; Livingstone, 1996; Rowe, Benevento, & Rezak, 1978) squirrel 
monkey (Adams & Horton, 2003; Livingstone, 1996) and marmoset 
(Spatz, 1989). Although some studies have shown ODCs in these species 
(Adams & Horton, 2003; Chappert-Piquemal, Fonta, Malecaze, & 
Imbert, 2001; Takahata, Miyashita, Tanaka, & Kaas, 2014), the mixed 
findings suggest that these smaller species of primate show a weaker 
ocular dominance structure than shown by larger primates, such as 
macaques and humans. This is predicted by Li and Atick’s theory, 
because the smaller primates have a shorter interocular distance 
(McCrea & Gdowski, 2003; Solomon & Rosa, 2014), leading to an 
increased interocular correlation; this should make the neurons less 
monocular, leading to a weaker ODC structure. Li and Atick’s theory 
would predict that ODCs could be induced in these animals by intro-
ducing an artificial strabismus, thereby reducing the interocular 

correlation, and making the neurons more monocular; this prediction 
has been confirmed in both the owl monkey and squirrel monkey (Liv-
ingstone, 1996). 

5.1.4. Correlated electrical stimulation 
Stryker and Strickland (1984) (see also Stryker (1986); Stryker 

(1989)) silenced the retinal ganglion cells of kittens by injecting tetro-
dotoxin into both eyes. Then, between the ages of 2 and 6–8 weeks, they 
applied electrical stimulation using a chronically implanted electrode in 
the optic tract; because the optic tract contains ganglion cell axons from 
both eyes, this created a very high correlation in the activity of cortical 
inputs from the two eyes. As predicted by Li and Atick’s theory, this high 
interocular correlation resulted in more strongly binocular cells than in 
normally raised kittens. 

5.1.5. Orientation 
Because the two eyes are displaced horizontally rather than verti-

cally, the binocular disparities are mainly horizontal shifts between the 
eyes. For a neuron with left and right eye receptive fields, the horizontal 
image components within the two receptive fields will differ less be-
tween the two eyes than the vertical image components. This causes the 
interocular correlation to be higher for horizontally than vertically 
oriented components (Li & Atick, 1994). Li and Atick’s theory would 
therefore predict that horizontally tuned neurons should be more 
binocular than vertically tuned neurons. This prediction has been 
confirmed experimentally (see Zhaoping, 2014, Fig. 3.14). 

5.2. Predicted effects of binocular adaptation 

Viewing a distant scene will result in a high interocular correlation, 
while viewing objects at very close range will result in a lower inter-
ocular correlation. Thus, the optimal gains on the summation and dif-
ferencing channels will change from moment to moment as we look 
around the visual environment. The system would therefore be expected 
to adapt quickly to changes in the prevailing interocular correlations. 
The next subsections review experiments that we have carried out to 
investigate the effects of adaptation on the gains of the summation and 
differencing channels. 

5.2.1. A psychophysical paradigm that detects changes in gain ratio, g+/g−

The evidence outlined in Section 5.1 used indirect measurements of 
the ratio g+/g− : instead of measuring g+/g− directly, we looked at the 
level of binocularity, and used that to infer which condition had g+/g−

closer to 1. About ten years ago, we devised a novel psychophysical 
paradigm to measure effects on g+/g− more directly. The basic idea is to 
create a dichoptic test stimulus that delivers identifiably different 
stimuli to the summation and differencing channels – for example, the 
two channels could receive different directions of motion (May, 
Zhaoping, & Hibbard, 2012), different orientations (May & Zhaoping, 
2016), or even different face images (May & Zhaoping, 2019). So the 
summation channel receives one stimulus, S+, and the differencing 
channel receives a different stimulus, S− . On each trial, we ask the 
participant to report whether they saw S+ or S− . The proportion of times 
they report S+ is an index of the size of the ratio g+/g− . 

To make the dichoptic test stimuli, it is easiest to begin with the desired 
S+ and S− , which could each be any spatiotemporal stimulus. Then we 
make one eye’s stimulus (say the right eye) SR = (αS+ + βS− )/2, and the 
other eye’s stimulus (say the left eye) SL = (αS+ − βS− )/2, where α and β 
are scalar multipliers that control the image contrast. The two eyes’ 
stimuli then add together to give αS+ and subtract to give βS− . In one study 
(May & Zhaoping, 2016), we had α = β; in others (May & Zhaoping, 2019; 
May et al., 2012), we usually had α < β to compensate for a bias to 
perceive the binocular sum with foveal fixation (Zhaoping, 2017); this bias 
is thought to be nothing to do with gain control or efficient coding, instead 
being a bias in interpretation of the low-level signals by the subsequent 
perceptual decoding stage (see Zhaoping, 2017, for details). 
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To change the gain on each binocular channel, we present high- 
contrast adaptation stimuli that will strongly adapt either the summa-
tion channel or the differencing channel. To adapt the summation 
channel, we present the same adaptation stimulus in each eye (correlated 
adaptation), which gives a strong summation signal and a zero difference 
signal; to adapt the differencing channel, we reverse the contrast of the 
adaptation stimulus between the eyes (anticorrelated adaptation), so the 
difference signal is strong and the sum is zero. Because the adaptation 
stimuli are high-contrast (giving a high SNR), the predicted gains will 
vary inversely with the signal strength (see Fig. 2): anticorrelated adap-
tation should reduce sensitivity g− to the binocular difference image, S− , 
whereas correlated adaptation should reduce sensitivity g+ to the 
binocular sum, S+. As predicted, we find that participants report seeing 
S+ more frequently after anticorrelated than correlated adaptation (May 
& Zhaoping, 2016; May & Zhaoping, 2019; May et al., 2012). 

In our first study with this paradigm (May et al., 2012), our dichoptic 
stimulus was based on that of Shadlen and Carney (1986). Each eye 
received a counterphase flickering grating; the binocular sum, S+, was a 
grating drifting smoothly in one direction, and the binocular difference, 
S− , was a grating drifting in the opposite direction. In our second study 
(May & Zhaoping, 2016), the two eyes’ stimuli were plaids, formed from 
the sum of two sine wave gratings tilted clockwise or anticlockwise of 
vertical; S+ was a grating tilted in one direction, and S− was a grating 
tilted in the opposite direction. There is a formal equivalence between 
these two studies because a moving grating is tilted in space–time 
(Adelson & Bergen, 1985), and each eye’s plaid stimulus in our second 
study is essentially a space–time plot of the counterphase grating that we 
used in the first study. 

These experiments deliberately did not adapt the perceptual 
dimension being tested. When participants were asked to judge the 
direction of motion of the test stimulus (May et al., 2012), the adap-
tation stimuli were stationary. When participants were asked to judge 
the grating tilt (May & Zhaoping, 2016) or face identity (May & 
Zhaoping, 2019), the adaptation stimuli were untilted noise. Thus, the 
adaptation effects must have resulted from adaptation of the binocular 
channels, not adaptation of the perceptual mechanisms on which the 
judgements were being based. 

Many studies of perceptual aftereffects of adaptation are plagued by 
a fundamental difficulty: response bias can have effects indistinguish-
able from a genuine perceptual bias (Morgan, Dillenburger, Raphael, & 
Solomon, 2012). This is particularly problematic when the participant 
can see which adaptation condition they are currently in, and may be 
able to guess which response the experimenter is expecting them to 
make on each trial. Our paradigm does not suffer this problem. To un-
derstand why, consider our first study (May et al., 2012). Within each 
session, there were two types of trials, randomly interleaved: on one 
type of trial, S+ had upward motion and S− had downward motion; on 
the other type of trial, it was the other way round. This meant that any 
bias to respond “upward” or “downward” would have pushed perfor-
mance towards chance, weakening the measured effect of adaptation. In 
summary, we could be certain that any measured effects of adaptation in 
our paradigm were due to adaptation of the binocular channels, and not 
a response bias or adaptation of the mechanisms on which the percep-
tual judgements were being based. 

Because these adaptation effects were unequivocally due to adapta-
tion of the binocular channels, we were able to use this paradigm to 
answer a long-standing question about whether face adaptation inherits 
adaptation from earlier stages in the processing stream, as argued by 
some researchers (Dickinson & Badcock, 2013; Dickinson, Almeida, Bell, 
& Badcock, 2010; Dickinson, Mighall, Almeida, Bell, & Badcock, 2012). 
This had always been a plausible idea, but the evidence for it was un-
certain because all existing face aftereffects could conceivably had 
resulted from selective adaptation of the face processing mechanisms 
themselves (see May & Zhaoping, 2019 for a discussion of these issues). 
In our most recent study using this paradigm (May & Zhaoping, 2019), 
the S+ and S− stimuli were face images. For example, in one experiment, 

half the trials had Brad Pitt as the S+ stimulus and Matt Damon as the S−

stimulus; on the other half of trials, it was the other way round. We 
found that we could bias which face the participant perceived by 
selectively adapting the binocular channels using random noise stimuli 
that could not conceivably have selectively adapted the face processing 
mechanisms. This therefore provided the first completely conclusive 
evidence that face processing mechanisms can inherit adaptation from 
earlier processing stages. 

5.2.2. Effects of adaptation on perceived depth 
Elsewhere in this Special Issue, Kingdom, Yared, Hibbard, and May 

(2020) report the effects of correlated and anticorrelated adaptation on 
perceived depth. As shown in Figs. 6 and 7, the neuron’s preferred 
binocular disparity decreases as g+/g− increases. Thus, after correlated 
adaptation (which reduces g+/g− ), neurons would be tuned to larger 
disparities than normal, whereas, after anticorrelated adaptation (which 
increases g+/g− ), neurons would be tuned to smaller disparities than 
normal. If the change in the neuron’s preferred binocular disparity were 
the only effect of adaptation, one might expect perceived depth to be 
decreased after correlated adaptation because, post-adaptation, the 
neuron best tuned to the test stimulus disparity would be one that nor-
mally prefers smaller disparities; conversely one might expect perceived 
depth to be increased after anticorrelated adaptation because post- 
adaptation, the neuron best tuned to the test stimulus disparity would 
be one that normally prefers larger disparities. However, there is another 
effect at play. Correlated adaptation tends to reduce the sensitivity of 
neurons tuned to small disparities (since they are dominated by the 
summation channel), whereas anticorrelated adaptation tends to reduce 
the sensitivity of neurons tuned to large disparities (since they are 
dominated by the differencing channel). Thus, after correlated adapta-
tion, the neurons tuned to large disparities would be more sensitive than 
those tuned to small disparities, which would tend to increase perceived 
depth; conversely, after anticorrelated adaptation, the neurons tuned to 
small disparities would be more sensitive than those tuned to large dis-
parities, which would tend to decrease perceived depth. In summary, 
binocular adaptation has predicted effects on sensitivity and disparity 
tuning that work in opposite directions for depth perception. Kingdom 
et al. (2020) carried out modelling that showed that the effects on 
sensitivity would dominate; as predicted by the modelling, they found 
that perceived depth is increased after correlated binocular adaptation 
and reduced after anticorrelated adaptation. 

6. Discussion 

It is important to understand that Li and Atick’s theory does not 
propose a novel neuronal architecture: the neuronal model that it uses, 
outlined in Eq. (1), is the standard model of a linear binocular simple 
cell, which has considerable empirical support (Ohzawa & Freeman, 
1986). The novelty is in how this model is described, or conceptualised. It 
is conventional to describe the neuron in terms of its left and right eye 
receptive fields, KL(x) and KR(x), so that we can calculate its response 
directly from the left and right eye images (as in Eq. (1)); Li and Atick 
instead describe the neuron in terms of its binocular sum and difference 
receptive fields, K+(x) and K− (x), so that we can calculate its response 
directly from the sum and difference of the left and right eye images (as 
in Eq. (4)). This is analogous to the way in which we can switch between 
describing a simple cell in terms of its receptive field and describing it in 
terms of its spatial frequency tuning function (i.e., the Fourier transform 
of the receptive field): again, these are just two different descriptions of 
the same model, and if we know one description, we can derive the other 
(see Fig. 9 of Movshon, Thompson, & Tolhurst, 1978). This is a strong 
analogy because, for a particular point, x, in the image, the ordered pair 
(K+(x),K− (x)) is the discrete Fourier transform of (KL(x),KR(x)). Thus, 
the relationship between (K+(x),K− (x)) and (KL(x),KR(x)) is the same as 
the relationship between the spatial frequency tuning function and the 
receptive field (in both cases, one is the Fourier transform of the other). 

K. May and L. Zhaoping                                                                                                                                                                                                                      



Vision Research xxx (xxxx) xxx

14

The reason for describing the neuron in terms of K+(x) and K− (x) is 
that it helps us to understand how the parameters of the neuronal model 
are optimised. By conceptually switching from left and right eye chan-
nels to binocular summation and differencing channels, we move from a 
pair of (usually) correlated channels to a pair of uncorrelated channels. 
This greatly simplifies the optimisation process, because the optimal 
gains of the summation and differencing channels (g+ and g− , respec-
tively) can be calculated independently of each other (using Eq. (44)). 
Once the optimal gains have been applied to the summation and dif-
ferencing channels, Li and Atick propose a further transformation to 
produce two output channels that both have the same sensitivity to the 
binocular sum, and both have the same sensitivity to the binocular 
difference (the two output channels differ only in the sign of their 
response to the binocular difference – see Eqs. (57) and (58)). There are 
therefore three conceptually separate steps: decorrelation, gain control, 
and multiplexing. 

To implement this process, the three steps can be cascaded into a 
single linear transformation that gives the sensitivity of each output 
channel to the binocular sum and difference (Eqs. (57) and (58)). Each of 
the two output channels would be implemented by a neuron. The am-
plitudes of its K+(x) and K− (x) receptive fields are the g+/

̅̅̅
2

√
and g− /

̅̅̅
2

√

terms in Eq. (57) or (58); the phases of K+(x) and K− (x) (ϕ+ and ϕ− ) can 
be freely chosen to suit the task that the neuron will be used for. The 
neuron’s right and left eye receptive fields are found simply by adding 
and subtracting K+(x) and K− (x) (see Eqs. (6) and (7)). As mentioned 
above, there are two output channels. They are implemented with two 
neurons with identical K+(x) but opposite-sign K− (x); the two neurons 
have the same pair of left and right eye receptive fields, but they differ in 
terms of which eye has which receptive field. 

We have presented the theory as involving just a single pair neurons, 
because that is what is needed to represent the signals coming from the 
same retinal position in two eyes. In reality, there would be a whole range 
of different pairs of neurons, with different retinal positions, and also 
different receptive field characteristics, such as spatial frequency tuning 
and phases, ϕ+ and ϕ− . To allow accurate decoding of stimulus properties 
such as spatial frequency or binocular disparity, we need a population of 
neurons tuned to different values of these properties (Jazayeri & Mov-
shon, 2006; Kingdom et al., 2020; May & Solomon, 2015). 

A neuron’s preferred binocular disparity and level of binocularity are 
both functions of just two variables: the gain ratio g+/g− , and the extent 
to which |ϕ+ − ϕ− | differs from 90◦ (see Figs. 7 and 8). Since ϕ+ and ϕ−

can be freely chosen, Li and Atick’s theory cannot make strong pre-
dictions that depend on |ϕ+ − ϕ− |; the core of the theory is the predicted 
gain values, g+ and g− . 

Fig. 1 shows that, when the interocular correlation is low, the 
binocular summation and differencing channels will have similar SNR. 
Since the optimal gain is a function of the SNR (Fig. 2), Li and Atick’s 
theory predicts that, as the interocular correlation approaches zero, the 
gain ratio g+/g− approaches 1, and the neurons will become as monoc-
ular as possible (see Fig. 8). In Section 5.1, we describe several examples 
where a manipulation of interocular correlation has been shown to result 
in the predicted effect on binocularity. 

It is less easy to predict binocular disparity tuning. When the inter-
ocular correlation is low, g+/g− is close to 1, and in this vicinity, the 
theory predicts that the preferred binocular disparity can take any value 
(see Fig. 7 or Fig. 9). When the interocular correlation is high, the optimal 
g+ and g− will usually differ substantially but, depending on the SNR, g+/

g− may be above 1 (which predicts a low preferred binocular disparity), 
or below 1 (which predicts a high preferred binocular disparity). 

For much of this article, we have presented the binocular summation 
and differencing channels as abstract, conceptual devices that allow us to 
derive the optimal binocular coding strategy. In general, these channels 
are not separated into different neuronal pathways: most neurons will 
carry signals from both channels (multiplexing). Theoretically, these 
channels should act like classical psychophysical channels, in the sense of 

functionally independent mechanisms that process different aspects of 
the stimulus and are selectively adaptable (Mollon, 1974). To maintain 
optimal coding, the channels should adapt as the interocular correlation 
or luminance level changes, as these changes will both affect the optimal 
channel gains. Since the two channels are in general multiplexed on a 
single neuron, selective adaptation of one channel will affect not just the 
neuron’s sensitivity, but also its receptive field structure and its preferred 
binocular disparity (see Fig. 1 of Kingdom et al., 2020). 

Empirically, we have shown that these channels are indeed selectively 
adaptable. In our adaptation experiments, we used binocular adaptation 
stimuli that selectively stimulated either the summation or differencing 
channel, but could not cause selective adaptation of the perceptual 
dimension being tested: perceived motion direction was affected by 
adaptation to static stimuli (May et al., 2012), perceived tilt direction was 
affected by adaptation to untilted stimuli (May & Zhaoping, 2016), 
perceived depth was affected by adaptation to stimuli containing no 
depth (Kingdom et al., 2020), and perceived human face was affected by 
adaptation to random noise (May & Zhaoping, 2019). Since our adap-
tation effects cannot be explained by adaptation of the mechanisms 
processing the perceptual dimension being tested, that leaves selective 
adaptation of the binocular summation or differencing channel as the 
only explanation of these counterintuitive adaptation effects. 
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