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Abstract

We explore the hypothesis that linear cortical neurons are concerned with building
a particular type of representation of the visual world — one which not only preserves
the information and the efficiency achieved by the retina, but in addition preserves
spatial relationships in the input — both in the plane of vision and in the depth di-
mension. Focusing on the linear cortical cells, we classify all transforms having these
properties. They are given by representations of the scaling and translation group,
and turn out to be labeled by rational numbers ‘(p + q)/p’ (p, q integers). Any given
(p, q) predicts a set of receptive fields which come at different spatial locations and
scales (sizes) with a bandwidth of log2[(p+q)/p] octaves, and, most interestingly, with
a diversity of ‘q’ cell varieties. The bandwidth affects the trade-off between preserva-
tion of planar and depth relations, and, we think, should be selected to match struc-
tures in natural scenes. For bandwidths between 1 and 2 octaves, which are the ones
we feel provide the best matching, we find for each scale a minimum of two distinct
cell types that reside next to each other and in phase quadrature, i.e., differ by 90o

in the phases of their receptive fields, as are found in the cortex, they resemble the
“even-symmetric” and “odd-symmetric” simple cells in special cases. An interest-
ing consequence of the representations presented here is that the pattern of activation
in the cells in response to a translation or scaling of an object remains the same but
merely shifts its locus from one group of cells to another. This work also provides a
new understanding of color coding changes from the retina to the cortex.

1Work supported in part by a grant from the Seaver Institute.



1. Introduction

What is the purpose of the signal processing performed by neurons in the visual path-
way? Are there first principles that predict the computations of these neurons? Recently
there has been some progress in answering these questions for neurons in the early stages
of the visual pathway. In Atick and Redlich (1990,1992) a quantitative theory, based on
the principle of redundancy reduction, was proposed. It hypothesizes that the main goal
of retinal transformations is to eliminate redundancy in input signals, particularly that
due to pairwise correlations among pixels — second-order statistics.2 The predictions of
the theory agree well with experimental data on processing of retinal ganglion cells (Atick
and Redlich 1992, Atick et al 1992).

Given the successes of this theory, it is natural to ask whether redundancy reduction
is a computational strategy continued into the striate cortex. One possibility is that cor-
tical neurons are concerned with eliminating higher-order redundancy, which is due to
higher-order statistics. We think this is unlikely. To see why, we recall the facts that make
redundancy reduction compelling when applied to the retina, and see that these facts are
not as relevant for the cortex.

First, the retina has a clear bottleneck problem: the amount of visual data falling on
the retina per second is enormous, of the order of tens of megabytes, while the retinal
output has to fit into an optic nerve of a dynamic range significantly smaller than that of
the input. Thus, the retina must compress the signal, and it can do so without significant
loss of information by reducing redundancy. In contrast, after the signal is past the optic
nerve, there is no identifiable bottleneck that requires continued redundancy reduction
beyond the retina.

Second, even if there were pressure to reduce data3, eliminating higher-order statistics
does not help. The reason is that higher-order statistics do not contribute significantly to
the entropy of images, and hence no significant compression can be achieved by eliminat-
ing them (for reviews of information theory see Shannon and Weaver 1949; Atick 1992).
The dominant redundancy comes from pairwise correlations.4

There is another intrinsic difference between higher and second-order statistics that
suggests their different treatment by the visual pathway. Fig. 1 shows image A and an-
other image B which was obtained by randomizing the phases of the fourier coefficients
of A. B thus has the same second-order statistics as A but no higher order ones. Contrary
to A, B has no clear forms or structures (cf. Field 1989). This suggests that second-order
statistics are useless, while higher-order ones are essential, for defining forms and for dis-

2Since retinal neurons receive noisy signals it is necessary to formulate the redundancy reduction hy-
pothesis carefully taking noise into account. In Atick and Redlich (1990,1992) a generalized notion of
redundancy was defined, whose minimization leads to elimination of pairwise correlations and to noise
smoothing.

3For example there could be a computational bottleneck such as an attentional bottleneck occuring deep
into the cortex — perhaps in the link between V 4 and IT (Van Essen et al 1991).

4This fact is well known in the television industry (see e.g. Schreiber 1956). This is why practical com-
pression schemes for television signals never take into account more than pairwise correlations, and even
then, typically nearest neighbor correlations. This fact was also verified for several scanned natural images
in our laboratory by N. Redlich and by Z. Li.
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criminating between images. Actually, eliminating the former highlights the higher-order
statistics which should be used to extract form signals from “noise.” 5

So what is the cortex then trying to do? Ultimately, of course, the cortex is concerned
with object and pattern recognition. One promising direction could be to use statistical
regularities of images to discover matched filters which lead to better representations for
pattern recognition. Research in this direction is currently underway. However, there
is another important problem that a perceptual system has to face before the recognition
task. This is the problem of segmentation, or equivalently, the problem of grouping features
according to a hypothesis of which objects they belong to. It is a complex problem, which
may turn out not to be solvable independently from the recognition problem. However,
since objects are usually localized in space, we think an essential ingredient for its suc-
cessful solution is a representation of the visual world where spatial relationships, both in
the plane of vision and in the depth dimension, are preserved as much as possible.

In this paper we hypothesize that the purpose of early cortical processing is to pro-
duce a representation that 1. preserves information, 2. is free of second-order statistics,
and 3. preserves spatial relationships. The first two objectives are fully achieved by the
retina so we merely require that they be maintained by cortical neurons. We think the
third objective is attempted in the retina (e.g. retinotopic and scale invariant sampling);
however, it is only completed in the cortex where more computational and organizational
resources are available.

Here, we focus on the cortical transforms performed by the relatively linear cells, the
first two requirements immediately limit the class of transforms that linear cells can per-
form on the retinal signals to the class of unitary matrices 6, U with U · U† = 1l. So the
principle for deriving cortical cell kernels reduces to finding the U that best preserves
spatial relationships. Actually, preserving planar and depth relationships simultaneously
requires a trade off between the two (section two). This implies that there is a family of
U’s, one for every possible trade off. Each U is labelled by the bandwidth of the resulting
cell filters and forms a representation of the scaling and translation group (section three).
We show that the requirement of unitarity limits the allowed choices of bandwidths, and
for each choice predicts the needed cell diversity. The bandwidth that should ultimately
be selected is the one that best matches structures in natural scenes. For bandwidths
around 1.6 octaves, which are the ones we feel are most relevant for natural scenes, the
predicted cell kernels and cell diversity resemble those observed in the cortex.

The resulting cell kernels also possess an interesting object constancy property: when an
object in the visual field is translated in the plane or perpendicular to the plane of vision,
the pattern of activation it evokes in the cells remains intrinsically the same but shifts its
locus from one group of cells to another, leaving the same total number of cells activated.
The importance of such representations for pattern recognition has been stressed repeat-

5Extracting signal from noise can achieve by far more significant data reduction than trying to eliminate
higher-order correlations.

6In this paper we use the term “unitary” instead of “orthogonal” since we find it more convenient to

use complex basis (e.g. eifx instead of cos(fx)). U
† ≡ U

∗T , where ∗ denotes complex conjugate. For real
matrices, unitary means orthogonal.
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edly by many people before and recently by Olshausen et al (1992). Furthermore, this
work provides a new understanding of color coding change from the single opponency
in the retina to the double opponency in the cortex.

2. Manifesting Spatial Relationships

In this section we examine the family of decorrelating maps and see how they differ in
the degree with which they preserve spatial relationships. We start with the input, repre-
sented by the activities of photoreceptors in the retina, {S(x

¯n)} where x
¯n labels the spatial

location of the n’th photoreceptor in a two-dimensional (2D) grid. For simplicity we take
the grid to be uniform. To focus on the relevant issues without the notational complex-
ity of 2D, we first examine the one-dimensional (1D) problem and then generalize the
analysis to 2D in section four. The autocorrelator of the signals {S(xn)} is

Rnm ≡< S(xn)S(xm) >, (1)

where brackets denote ensemble average. To eliminate this particular redundancy one
has to decorrelate the output and then apply the appropriate gain control to fit the signals
into a limited dynamic range. This can be achieved by a linear transformation

Oj =
N

∑

n=1

KjnS(xn), (2)

where j = 1, · · · , N and the kernel Kjn is the product of two matrices. Using bold-face to
denote matrices:

K = V · M. (3)

Mjn is the rotation to the principal components of R: (M · R · MT )ij = λiδij, where {λi}
are the eigenvalues of R. While V is the gain control which is a diagonal matrix with
elements Vii = 1√

λi
. Thus the output has the property

< OiOj >= (K ·R · KT )ij = δij . (4)

An important fact to note is that redefining K by K
′ = U · K where U is a unitary ma-

trix (U · U† = 1) does not alter the decorrelation property (4). (Actually U should be an
orthogonal matrix for real Oi, but since we will for convenience use complex variables,
unitary U is appropriate.) Therefore, there is a whole family of equally efficient represen-
tations parametrized by {U}. Any member is denoted by KU

KU = U · (V · M) ≡ U ·K(p), (5)

where K
(p) ≡ V · M is the transformation to the principal components. Without compro-

mising efficiency, this non-uniqueness allows one to look for a specific U that leads to KU

with other desirable properties such as manifest spatial relationships.7

To see this let us exhibit the transformation K
(p) more explicitly. For natural signals,

the autocorrelator is translationally invariant, in the sense that Rnm = R(n −m). One can

7It should be noted that this non-uniqueness in receptive field properties is due to the fact that the
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then define the autocorrelator by its fourier transform or its power spectrum, which in
2D is R(f

¯
) ∼ 1/|f

¯
|2, where f

¯
is the 2D spatial frequency (Field 1987, Ruderman 1992). For

illustration purposes we take in this section the analogous 1D “scale invariant” spectrum,
namely R(f) ∼ 1/f . In the 2D analysis of section four we use the measured spectrum
∼ 1/|f

¯
|2.

For a translationally invariant autocorrelator, the transformation to principal compo-
nents is a fourier transform. This means, the principle components of natural scenes or
the row vectors of the matrix M are sine waves of different frequencies

Mjn =
1√
N

e−ifjxn, (6)

where
j = (0, 1, 2, . . . , N − 1)

fj =











2π
N

j+1
2

if j is odd

−2π
N

j
2

if j is even

While the gain control matrix V is8 Vjj = 1/
√

R(fj) =
√

|fj|. The total transform then
becomes

K
(p)
jn =

1√
N

·
√

|fj|e−ifjxn . (7)

This performs a fourier transform and at the same time normalizes the output such that
the power is equalized among frequency components < O2

i >= const., i.e. output is
whitened. One undesirable feature of the transformation K

(p) is that it does not preserve
spatial relationships in the plane. As an object is translated in the field of view the locus
of response {Oi} will not simply translate. Also two objects separated in the input do not
activate two separate groups of cells in the output. Typically all cells respond to a mixture
of features of all objects in the visual field. Segmentation is thus not easily achievable in
this representation.

Mathematically, we say that the output {Oi} preserves planar spatial relationships in
the input if

Oi[S] = Oi−m[S ′] when S ′(xn) = S(xn+m), (8)

principle used is decorrelation. If one insists on minimization of pixel entropy (which for gaussian signals
is equivalent to decorrelation) this symmetry formally does not exist for ensembles of non-gaussian signals.
In other words some choice of U may be selected over others. However for the ensemble of 40 images that
we have considered we found that the pixel entropy varied only by few percent for different U’s. This is
consistent with the idea that natural scenes are dominated by second-order statistics which do not select
any particular U. In other systems it is possible that higher order statistics do select a special U, see for
example (Hopfield 1991). For another point of view see (Linsker 1992).

8In June 2010, a typo was discovered in this expression for Vjj and in the equation below. The expression
√

|fj| was mistakenly written as 1/
√

|fj|, and this typo was also in the published version in Neural Com-
putation and in the manuscript posted on my webpage before June 2010. I apologize for any inconvenience
caused by this typo.
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where Oi[S] ≡ ∑N
n=1 KinS(xn). In other words, a translation in the input merely shifts the

output from one group of cells to another. Implicitly, preserving planar spatial relation-
ship also requires, and we will therefore enforce, that the cell receptive fields be local, so a
spatially localized object evokes activities only in a local cell group, which shifts its loca-
tion when the object moves and is seperated from another cell group evoked by another
spatially disjoint object in the image plane. Technically speaking an {Oi} that satisfies (8)
is said to form a representation of the discrete “translation group”.

Insisting on (8) picks up a unique choice of U. In fact in this case U is given by

Unj = M∗
nj =

1√
N

eifjxn, (9)

which is just the inverse fourier transform. The resulting transformation K
(t) = U ·

V · U† gives translationally invariant center-surround cell kernels Knm = K(n − m) =
∑

j UnjVjjU
∗
mj ∝

∑

f cos(f(xn − xm))/
√

R(f). In two dimensions, taking into account opti-
cal properties of the eye medium and the noise, these kernels were shown to account well
for properties of retinal ganglion cells (Atick and Redlich 1992).

Although the representation defined by K
(t) is ideal for preserving spatial relation-

ships in the plane, it completely destroys spatial relations in scale or depth dimension.
The change in the patterns of activation in {Oi} in response to a change in the object
distance is very complicated. To preserve depth relations the output should form a repre-
sentation of another group, the so called “scaling group”. This is because when an object
recedes or approaches, the image it projects goes from S(x) to S(λx) for some scale factor
λ. The requirement of object invariance under scaling dictates that

Oi[S(λx)] = Oi+l[S(x)] (10)

for some shift l depending on λ. It is not difficult to see that K
(t), which satisfies (8) all the

way down to the smallest possible translation, violates this condition. Actually satisfying
(8) and (10) for the smallest possible translation and scale changes simultaneously is not
possible. A compromise between them has to be found.

The problem of finding the kernels that lead to {Oi} with the best compromise be-
tween (8) and (10) is equivalent to the mathematical problem of constructing simultane-
ous representations of the translation and scaling group, which is what we do next.

3. Representations of Translation and Scaling group

To satisfy (8) and (10) the cells must carry two different labels. One is a spatial position
label ‘n’ and the other is a scale label ‘a’. The idea is that under translations of the input
the output translates over the ‘n’ index while under scaling by some scale factor λ the
output shifts over the ‘a’ index. Such cell groups can be obtained from O = U ·K(p) using
a U that is block diagonal:
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U =

�

�

�

�

U0

U1

U2

. . .

Each submatrix U
a has dimension Na and gives rise to Na cells with outputs Oa

n lo-
cated at lattice points xa

n = (N/Na)n for n = 1, 2, . . . , Na. Since the block matrices U
a act

on K
(p) which are the fourier modes of the inputs, the resulting cells in any given block

a filter the inputs through a limited and exclusive frequency band with frequencies fj for
∑

a′<a Na′ ≤ j <
∑

a′≤a Na′

. Since Na < N these cells sample more sparsely on the original
visual field. Notice, the cells from different blocks a are spatially mingled with each other
and their total number add up to N =

∑

a Na. The hope is to have translation invariance
within each block and scale invariance between blocks, i.e.,

Oa
n[S] = Oa

n+δn[S ′] for S ′(x) = S(x + δx) and δx = (N/Na)δn (11)

Oa
n[S] = Oa+1

n [S ′] for S ′(x) = S(λx) (12)

Each block ‘a’ thus represents a particular scale, the translation invariance within that
scale can be achieved with a resolution δx ∝ N/Na, inversely proportional to Na. Larger
blocks or larger Na thus give better translation invariance, and the single block matrix
U = U

0 = M
† achieves this symmetry to the highest possible resolution. On the other

hand, a higher resolution in scaling invariance calls for a smaller λ > 1. As we will see
below, (λ − 1) ∝ Na/fa, where fa is the smallest frequency sampled by the ath block.
Hence a better scaling invariance requires smaller block sizes Na. A trade-off between
better translation and scaling invariance reduces to choosing the scaling factor λ, or the
bandwidth depending on it. This will become clearer as we now follow the detailed
construction of U . The unitarity condition now requires having U

a(Ua)† = 1 for each a,
resulting in output cells uncorrelated within each scale and between scales.

To construct U
a, one notices that the requirement of translation invariance is equiva-

lent to having identical receptive fields, except for a spatial shift of the centers, within each
scale a. It forces U

a
nj ∝ eifjxa

n . For a general λ, it turns out that the constraint U
a(Ua)† = 1

for a > 0 cannot be satisfied if one insists on only one cell or receptive field type within
the scale. However if one allows the existence of several, say ‘q’, cell types within the
scale, Ua(Ua)† = 1 is again possible. In this case, each cell is identical to (or is the off-cell
type of) the one that is q lattice spaces away in the same scale lattice (i.e. xa

n → xa
n+q). The

most general choice for real receptive fields is then

Ua
nj =















1√
Na ei(−φa n+fjxa

n+θ) if fj > 0

1√
Na e−i(−φa n+|fj|xa

n+θ) if fj < 0
(13)
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where θ is an arbitrary phase which can be thought of as zero for simplicity at the moment,
and

φa =
p

q
π, (14)

for two relatively prime integers p and q. This means the number of cell types in any
given scaling block will be q. The frequencies sampled by this cell group are fj = ±2π

N
j

for ja < j ≤ ja+1. Including both the positive and the negative frequencies, the total
number of frequencies sampled, and, since Ua is a square matrix, the total number of cells
in this scale, is Na = 2(ja+1 − ja).

The constraint of unitarity for a > 0 leads to the equation

2ja+1

∑

j=2ja+1

Ua
nj(U

a
n′j)

∗ =
ja+1

∑

j=ja+1

ei∆n( 2π
Na j−φa) + c.c. = 0, (15)

whose solution is

φa =
2ja + 1

ja+1 − ja
· π

2
. (16)

The condition φa = p
q
π then leads to the non-trivial consequence

ja+1 =
(q + p)

p
ja +

q

2p
. (17)

In a discrete system, the only acceptable solutions are those where q/2p is an integer. For
example the choice of q = 2 and p = 1 leads to the scaling ja+1 = 3ja + 1. This is the most
interesting solution as discussed below. Mathematically speaking, in the continuum limit
a large class of solutions exists, since in that limit one takes ja → ∞ and N → ∞ such
that fa = (2π/N)ja remains finite, then we are simply lead to fa+1 = fa(q + p)/p for any
q and p. Thus representations of the scaling and translation group are possible for all
rational scaling factors λ = (q + p)/p. The bandwidth, Boct, of the corresponding cells is
log2[(q + p)/p].

Interesting consequences follow from the relationship between cell bandwidth and
diversity:

Boct = log2[
q + p

p
]

Cell types = q

For example a bandwidth of one octave or a scaling factor (q+p)/p = 2 needs only one cell
type in each scale, when q = p = 1. If it turns out to be necessary to have Boct greater than
1 octave, then at least two classes of cells are needed to faithfully represent information
in each scale, with q = 2 and p = 1 giving scaling factor of 3 or Boct close to 1.6 octaves.

It is interesting to compare our solutions to the so called “wavelets” which, con-
structed in the mathematical literature, also form representations of the translation and
scaling group. In the standard construction of Grossman and Morlet (1984) and Meyer
(1985), the representations could be made orthonormal (i.e. unitary in the case of real ma-
trices) only for limited choice of scaling factors given by 1+1/m where m ≥ 1 is an integer.
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Such constructions need only one filter type in each scale and give scale factors no larger
than 2 (equivalently the largest bandwidth is 1 octave — e.g., the well-known Haar basis
wavelets (Daubechies 1988)). This agrees with what we derived above for the special case
of q = 1 where Boct = log2 (1 + 1/p). However, allowing q > 1 gives more bandwidth
choices in our construction. For example, q = 2 gives Boct = log2 (1 + 2/p), however no
larger than 1.6 octaves, and q = 3 gives log2 (1 + 3/p), no larger than 2 octaves, etc. These
results also agree with the recent theorem of Auscher (1992) who proved that multiscale
representations can exist for scalings by any rational number k/l, provided k − l filter
types are allowed in each scale. Our conclusion above yields exactly the same result by
redefining k = p + q and l = q. We arrived at our conclusion independently through the
explicit construction presented above.9

The connection between the number of cell types and the bandwidth that is possible to
achieve is significant. We believe the bandwidth needed by cortical cells is determined by
properties of natural images. Its value should be the best compromise between planar and
depth resolution preservation for the distribution of structures in natural scenes. Actually,
Field (1987, 1989) examined the issue of best bandwidth for filters that modelled cortical
cells and found that bandwidths between 1 and 2 octaves best matched natural scene
structures. Our results here show that cortical cells cannot achieve bandwidths more
than one octave without having more than one cell type.

Next we show what the predicted cell kernels look like. For generality, we give the ex-
pression for the kernels in the continuum limit for any scale factor λ = q+p

p
or equivalently

with any allowed bandwidth — although the ones we think are most relevant to the cor-
tex are the discrete p = 1, q = 2 kernels. The cell kernels are given by {Ka(xa

n − x), a > 0}
and {K0(x0

n − x)}. For any given a > 0, the kernels sample the frequency in the range
f ∈ (fa, λfa) = (fa, fa+1). For a = 0, K0 samples only frequencies f ∈ (0, f 1), and U

0

is given by U
0 = M

† in eqn. 9 with N replaced by N0. Including both the positive and
negative frequencies the predicted kernels are

Ka(xa
n − x) =

1√
Na

∫ fa+1

fa
df

√

f ei(f(xa
n−x)+ p

q
πn+θ) + c.c.

=
2√
Na

∫ fa+1

fa
df

√

f cos(f(xa
n − x) +

p

q
πn + θ) (18)

K0(xa
n − x) =

2√
N0

∫ f1

0
df

√

f cos(f(xa
n − x)). (19)

For any given p and q the kernels for a > 0 come in q varieties. Even and odd varieties
are immediately apparent when one sets q = 2, p = 1, and θ = 0 (Ka(xa

n − x) are even or
odd functions of xa

n − x for even or odd n). In Fig. 2 we exhibit the even and odd kernels
in two adjacent scales and their spectra. The a = 0 kernels, where θ = 0 is chosen, are
similar to the center-surround retinal ganglion cells (however they are larger in size), and
hence we need not to exhibit them here. In general, though, θ can take any value, and

9We thank Ingrid Daubechies for pointing out the result of P. Auscher to us.
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the neighboring cells will simply differ by a 90o phase shift, or in quadrature, without
necessarily having even or odd symmetry in their receptive field shapes.

From (18), it is easy to show that the kernels for a > 0 satisfy the following recursive
relations

Ka(xa
n − λx) =

1

λ
Ka+1(xa+1

n − x) (20)

Ka(xa
n − (x + xa

q)) = Ka(xa
n−q − x) (21)

To prove these one needs to use the following facts, fa+1 = λfa, Na+1 = λNa, and λxa+1
n =

xa+1
λn = xa

n. ((21) also applies for K0.) The above relations imply that, except shifted
in space, each cell has the same receptive field as its qth neighbor within the same scale
block, e.g., when q = 2 in the example above, all the even (or odd) cells are identical.
Furthermore, except for the lowest scale a = 0, the nth cell in all scales has the same
receptive field except for a factor of λ expansion in size and a λ reduction in amplitude.
Actually, since xa

n 6= xa+1
n , these cells are located at different spatial locations.

Now it is straight forward to see that the translation invariance (11) for δn = q and
scale invariance (12) are the direct consequence of the translation and scaling relation-
ships (21) and (20), respectively, between the receptive fields. This is exactly our goal of
object constancy. Notice that the scaling constancy would not have been possible if the
whitening factor

√
f was not there in eqn. (18). These results can be extended to 2D where

the whitening factor is 1/
√

R(f
¯
) = |f

¯
| as we will see next.

4. Extension to 2D and color vision: oriented filters and color opponent cells

The extension to two dimensions of the above construction is not difficult but involves a
new subtlety. In this case, the constraint of unitarity on the matrices U

a, a > 0 is hard to
satisfy even if we allow for the phase factor φ which lead ultimately to different classes of
cells. This constraint is considered in more detail in the appendix, here we only state the
conclusions of that analysis.

What one finds is that to ensure unitarity of U
a, one needs to allow for cell diversity

of a different kind — cells in the a’th scale need to be further broken down into different
types or orientations, each sampling from a limited region of the frequency space in that
scale. Three examples of acceptable unitary breakings are shown in Fig. 3A, B, C. In
A (B) filters are broken into two classes in any scale a > 0 — in addition to the q-cell
diversity discussed in 1D. One filter type is a lowpass-bandpass in the x-y direction and
the other is a bandpass-lowpass in the x-y direction which are denoted by ‘lb’ and ‘bl’. In
C there are three classes of filters, ‘lb’, ‘bl’ and finally a class of filters which are bandpass
in both x and y, ‘bb’. The ‘lb’ and ‘bl’ filters are oriented while the ‘bb’ ones are not 10.

10One notices that this extension to 2D requires a choice of orientations such as the x-y axes, breaking the
rotational symmetry. Furthermore, it is natural to ask if the object constancy by translations and scalings
should be extended to the object rotations in the image plane — requiring the cells be representations
of the rotation group. At this point, it is not clear whether the rotational invariance is necessary (noting
that we usually tilt our heads to read a tilted book or fail to recognize a face upside down), and whether
the rotational invariance can be incorporated simultanously with the translation and scaling ones without
increasing the number of cells. We will leave this outside the paper.
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Figs. 4, A and B, show the five cell types one encounters for the breaking in 3B and the
nine cell types for the breaking in Fig. 3C, respectively, for a choice of scaling factor 3.

Finally, the object constancy eqns. (11), (12) still hold since (20) and (21) extend to 2D

as

Ka(x
¯
a
n
¯
− λx

¯
) =

1

λ2
Ka+1(x

¯
a+1
n − x

¯
),

Ka(x
¯
a
n
¯
− (x

¯
+ x

¯
a
q
¯
)) = Ka(x

¯
a
n
¯
−q

¯
− x

¯
).

These relationships are understood to hold between cells belonging to the same frequency
sampling category (‘lb’, ‘bl’, or ‘bb’). The factor of 1/λ2, comes because the whitening

factor in 2D is 1/
√

R(|f
¯
|) = |f

¯
|.

From (18) and (19), it is clear that the cortical kernels Ka(x) ∝ ∫ fa+1

fa
df(1/

√

R(f))cos(fx+

φa) differ from the retinal kernel K(x) ∝ ∫ fmax
0 df(1/

√

R(f))cos(fx + φ) only by the range
of the frequency integration or selectivity. The cortical receptive fields are lowpass or
bandpass versions of the retinal ones. One immediate consequence of this is that most
cortical cells, especially the lowpass ones like those in the Cytochrome Oxidase Blob cells,
have larger receptive fields than the retinal ones. Second, when considering color vision,
the power spectrums Rl(f) and Rc(f) for the luminance and chrominance channels re-
spectively, differ in their magnitudes. In reality when noises are considered, the receptive

field filters are not simply 1/
√

R(f), which would have simply resulted in identical re-
ceptive field forms for luminance and chrominance except for their different strengths,
but instead, the filter for luminance is more of a bandpass and the filter for chrominance
a relatively lowpass. Since the retinal cells carry luminance and chrominance informa-
tion simultanously by multiplexing the signals from both channels, the resulting retinal
cells are of red-center-green-surround (or green-center-red-surround) types (Atick et al
1992). This is because at low spatial frequencies, the chrominance filter dominates, while
at higher spatial frequencies, the luminance one dominates. As we argued above, the
cortical cells simply lowpass or bandpass the signals from the retinal cells, thus the low-
pass version will carry mostly the chrominance signals while the bandpass or highpass
ones the luminance signals. This is indeed observed in the cortex (Livingstone and Hubel
1984, Ts’o and Gilbert 1988) where the large (lowpass) blob cells are more color selective,
while the smaller (higher-pass) non-blob cells, which are also more orientation selective
by our results above, are less color sensitive. Furthermore, since the luminance signals are
negiligible at low frequencies, hence when one only considers the linear cell properties,
the color sensitive blob cells are double-opponent (e.g. red-excitatory-green-inhibitory
center and the red-inhibitory-green-excitatory surround) or color-opponent-center-only
(type II), depending on the noise levels. This is apparent when one tries to spatially low-
pass the signals from a group of single-opponent retinal cells (fig. 5).

5. Discussion: Comparison with other work

The types of cells that we arrive at in constructing unitary representations of the transla-
tion and scaling group (see Figs. 2, 4) are similar to simple cells in cat and monkey striate
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cortex. The analysis also predicts an interesting relationship between bandwidths of cells
and their diversity as was discussed in sections three and four. One consequence of that
relationship is that for cells to achieve a representation of the world with sampling band-
width between 1 and 2 octaves there must be at least two cell types adjacent to each other
and differ by 90o in their receptive field phases (Fig. 2). This bandwidth range is the range
of measured bandwidths of simple cells (e.g. Kulikowski and Bishop 1981; Andrews and
Pollen 1979) and also, we think, is best suited for matching structures in natural scenes
(cf. Field 1987,1989). This analysis thus explains the presence of phase quadrature (e.g.,
paired even-odd simple cells) observed in the cortex, (Pollen and Ronner 1981): such cell
diversity are needed to build a faithful multiscale representation of the visual world.

The analysis also requires breaking orientation symmetry. Here we do not wish to
advocate scaling symmetry as an explanation for the existence of oriented cells in the
cortex. It may be that orientation symmetry is broken for a more fundamental reason
and that scaling symmetry takes advantage of that. Either way, orientation symmetry
breaking is an important ingredient in building these multiscale representations.

In the past, there has been a sizeable body of work on trying to model simple cells in
terms of “Gabor” and “log Gabor” filters (Kulikowski et al 1982; Daugman 1985, Field
1987, 1989). Such filters are qualitatively close to those derived here, and they describe
some of the properties of simple cells well. Our work differs from previous work in
many ways. The two most important differences are the following. First, the filters here
are derived by unitary transforms on retinal filters which reduce redundancy in inputs
by whitening. By selecting the unitary transformation that manifests spatial-scale re-
lationships in signals, one arrives at a representation that exhibits object constancy —
the output response to an input S(x) and its planar and depth translated version (i.e.,
S(x) → S(λ(x + δx)) are related by

Oa
n[S(x)] = Oa+1

n+δn[S(λ(x + δx))]. (22)

Hence a visual object moved in space simply shifts the outputs from one group of cells
to another. Second, we find a direct linkage between cell bandwidth and diversity. Such
linkage does not appear in previous works where orthonormality or unitarity was not
required.

More recently there has also been a lot of work on orthonormal multiscale represen-
tations of the scaling and the translation group, alternatively known as wavelets (Meyer
1985, Daubechies 1988, Mallat 1989). The relationship of our work to wavelets was dis-
cussed in section three. Here we should add that in this paper we provide explicit con-
struction of these representations for any rational scaling factor. Furthermore, our filters
satisfy Ka(λx) = 1

λd Ka+1(x) where d is the dimension of the space, e.g., d = 1 or 2, while
those in the wavelet construction satisfy Ka(λx) = 1

λd/2 K
a+1(x). This difference stems

from the fact that our filters are the convolution of the whitening filter and the standard-

type wavelet. The whitening filter — given by ∼ 1/
√

R(f) where R(f) is the scale invari-
ant power spectrum of natural scenes — is what ultimately leads to the object constancy
property which is absent from the standard-type wavelets.

The question at this stage is whether we could identify the pieces in our mathematical
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construction with classes of cells in the cortex. First, there is the class of lowpass cells a =
0, which have large receptive fields, and no orientation tuning (actually since their kernels
have a whitening factor, they are not completely lowpass but an incomplete bandpass–
weak surround). We think a good candidate for these cells are the cells in the Cytochrome
Oxidase Blob areas in the cortex. When we add color to our analysis, this class will come
out to be color opponent11. These cells, a lowpass version of the single opponent retinal
cells, turn out to be double opponent or color-opponent-center-only (see Fig. 5) from this
mathematical construction, in agreement with observations. Second, the representation
requires several orientation classes in every choice of higher scale, they are not as likely
to be color selective and, within each orientation and scale, there are two types of cells
— in phase quadrature (e.g., even and odd symmetric ) — if the bandwidth of the cells is
greater than one octave. These have kernels similar to simple cells’. Also, in some choices
of division of the two dimensional frequency space into bands (see Fig. 4) one encounters
cells that are very different from simple cells. These cells come from the bandpass region
in both the x and y directions (the ‘bb’ region in Fig. 3C) and as such possess relatively
small receptive fields in space. It is amusing to note their resemblance to the type of cells
that Van Essen discovered in V 4 (private communication).

It is important at this stage to look in detail for evidence that cortical neurons are
building a multiscale, translationally invariant representation of the input along the lines
described in this paper. However, in looking for those we must allow for the possibility
that these representations are formed in an active process starting as early as the striate
cortex, as was proposed recently by (Olshausen et al 1992). We also must keep in mind
that to perform detailed comparison with real cortical filters, our filters have to modified
to take noise into account.

Acknowledgments We would like to thank D. Field, C. Gilbert and N. Redlich for useful
discussions, and the Seaver Institute for its support.

Appendix

In this appendix we examine the condition of unitarity on the matrix U
a. The matrix

elements of U
a in the scale a > 0 are generalized from the 1D case simply as

Ua
n
¯
j
¯

= ei(φn
¯
+f

¯j
x
¯

a
n
) (23)

where n
¯

= (nx, ny), x
¯
a
n = (xa

nx
, xa

ny
), j

¯
= (jx, jy), f

¯j
= (fjx , fjy), and φ = (

fjx

|fjx |
φx,

fjy

|fjy |
φy).

A priori the cells in U
a sample from the frequency region inside the big solid box but

outside the dashed box in Fig. 3. The critical fact that makes the 2D case different from
1D is that there are (Na)2 = 4(ja+1)2 − 4(ja)2 cells in the a’th class, while the total number
of cells is (N)2, then (xa

nx
, xa

ny
) = ( N

Na nx,
N
Na ny).

11It is easy to see why: since they are roughly lowpass – large receptive fields – they have higher signal
to noise in space and hence they can afford to have a low signal to noise in color. While opponent cells in
space have low signal to noise and hence they need to integrate in color to improve their signal to noise
(see Atick et al 1992)
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The unitarity requirement U
a(Ua)† = 1 (a > 0) can be shown to be equivalent to

cos

[

(
ja+1 + ja + 1

Na
π + φx)∆nx

]

sin

[

ja+1 − ja

Na
π∆nx

]

= 0 (24)

where ∆nx is any integer 6= 0. A similar condition in the y direction should also hold. To
satisfy (24) one can only hope that the cosine factor is zero for odd ∆nx and the sine factor
is zero for the rest. This is impossible in 2D although possible in 1D. To see this difference,
note that in 1D, Na = 2(ja+1 − ja) and the argument of the sine is ∆nπ/2 which leads to
vanishing sine for even ∆n. One then makes cosine term zero for odd ∆n by choosing φ

such that ja+1+ja+1
Na π + φx = ±π

2
. This is exactly how equation (16) is reached. In 2D, Na =

2
√

(ja+1)2 − (ja)2, and hence the sine term is sin[∆nx(
√

(ja+1 − ja)/(ja+1 + ja)π/2] 6= 0 for
even ∆nx. Although we cannot prove that the negative result in 2D is not caused by the
fact that we have a Euclidean grid, we think it not possible to construct the representation
even when using a radially symmetric lattice.

To ensure unitarity of U
a, we need to allow for cell diversity of a different kind — cells

in ath scale need to be further broken down into different types or orientations, each type
sampling from, a limited region of the frequency space as shown for example in Fig. 3.
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A
B

Figure 1: A, B: Demonstration of the uselessness of second-order statistics for form defi-
nition and discrimination. Following (Field 1989), image B is constructed by first fourier
transforming A, randomizing the phases of the coefficients and then taking the inverse
fourier transform. The two images thus have the same second-order statistics but B has
no higher-order ones. All relevant object features disappeared from B.
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C D

Spatial Distance Spatial frequency

Receptive fields Sensitivity

Figure 2: Even-symmetric”, A, C, and “odd-symmetric”, B, D, kernels predicted for the
scale factor 3 (equivalently for Boct = 1.6 octaves) for two neighboring scales (top and
bottom rows, respectively), together with their spectra (frequency sensitivities or selec-
tivities).
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Figure 3: A − C: Proliferation of more cell types by the break-down of the frequency
sampling region in 2D within a given scale a. Ignoring the negative frequencies, the fre-
quencies f within the scale are inside the large solid box but outside the small dashed box.
The solid lines within the large solid box further partition the sampling into subregions
denoted by ‘bl’, ‘lb’, and ‘bb’, which indicate bandpass-lowpass, lowpass-bandpass, and
bandpass-bandpass, respectively, in x-y directions. A and B give asymmetric break
down between x and y directions, the ‘lb’ cells are not equivalent to a 90o rotation of the
‘bl’ cells. C gives symmetric break-down between x and y directions. The ‘bb’ cells are
significantly different from the others, see Fig. 4.
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A
B

Figure 4: Fig. 4 A, B: The predicted variety of cell receptive fields in 2D. The five cell
types in A and the nine cell types in B arise from the frequency partitioning schemes in
Fig. 3B and Fig. 3C, respectively. The kernels in the lower-left corner of both images
demonstrate the lowpass-lowpass filter K0 in 2D and they are non-oriented. All others
are bandpass in at least one direction. Those are actually significantly smaller but are
expanded in size in this figure for demonstration. The ‘bb’ cells in the upper-right part
of B come in four varieties (even-even, odd-odd, even-odd and odd-even when θ = 0 is
taken for both x and y directions) and should exist in the cortex if the scheme in Fig. 3C
is favored. All kernels are constructed taking into account the optical MTF of the eye.
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Figure 5: Change of color coding from retina to cortex. The top plot shows the visual
contrast sensitivities to the luminance and chrominance signals. The bottom plot demon-
strates the receptive field profiles (sensitivity to red or green cone inputs) of the color
selective cells in the retina (or ganglion) and the cortex. The parameters used for the gan-
glion cells are the same as those in Atick et al 1992. The blob cells are constructed by
lowpass filtering the ganglion cell outputs with a filter frequency sensitivity of e−f2/(2f2

low)

where flow = 1.5 c/deg. The strengths of the cell profiles are individually normalized for
both the ganglion and the blob cells. The range of the spatial distance axes, or the size, of
the blob cells is 3.7 times larger than that of ganglion cells. This means that each blob cell
sums the outputs from (on the order of) at least about (3.7)2 ∼ 16 local ganglion cells.
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