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Abstract

The activities of neurons in primary visual cortex have been shown
to be significantly influenced by stimuli outside their classical receptive
fields. We propose that these contextual influences serve pre-attentive vi-
sual segmentation by causing relatively higher neural responses to impor-
tant or conspicuous image locations, making them more salient for percep-
tual pop-out. These locations include boundaries between regions, smooth
contours, and pop-out targets against backgrounds. The mark of these
locations is the breakdown of spatial homogeneity in the input, for in-
stance, at the border between two texture regions of equal mean luminance.
This breakdown causes changes in contextual influences, often resulting in
higher responses at the border than at surrounding locations. This proposal
is implemented in a biologically based model of V1 in which contextual in-
fluences are mediated by intra-cortical horizontal connections. The behav-
ior of the model is demonstrated using examples of texture segmentation,
figure-ground segregation, target-distractor asymmetry, and contour en-
hancement, and is compared with psychophysical and physiological data.
The model predicts (1) how neural responses should be tuned to the ori-
entation of nearby texture borders, (2) a set of qualitative constraints on
the structure of the intracortical connections, and (3) stimulus dependent
biases in estimating the locations of the region borders by pre-attentive vi-
sion.



1 Introduction

In early stages of visual processing, individual neurons respond directly only to stimuli
in their classical receptive fields (CRFs)(Hubel and Wiesel, 1962). These CRFs sample
the local contrast information in the input but are too small to cover visual objects at a
global scale. Recent experiments show that the responses of primary cortical (V1) cells
are significantly influenced by stimuli nearby and beyond their CRFs (Allman et al 1985,
Knierim and Van Essen 1992, Gilbert, 1992, Kapadia et al 1995, Sillito et al 1995, Lamme,
1995, Zipser et al 1996, Levitt and Lund 1997). These contextual influences are in general
suppressive and depend on the relative orientations of the stimuli within and beyond
the CRF (Allman et al, 1985, Knierim and Van Essen 1992, Sillito et al 1995, Levitt and
Lund 1997). In particular, the response to an optimal bar in the CRF is suppressed
significantly by similarly oriented bars in the surround — iso-orientation suppression
(Knierim and Van Essen 1992). The suppression is reduced when the orientations of the
surround bars are random or different from the bar in the CRF (Knierim and Van Essen
1992, Sillito et al 1995). However, if the surround bars are aligned with the optimal bar
inside the CRF to form a smooth contour, then suppression becomes facilitation (Kapa-
dia et al 1995). The contextual influences are apparent within 10-20 ms after the cell’s
initial response (Knierim and Van Essen 1992, Kapadia et al 1995), suggesting that mech-
anisms within V1 itself are responsible (see discussion later on the different time scales
observed by Zipser et al 1996). Horizontal intra-cortical connections linking cells with
non-overlapping CRFs and similar orientation preferences have been observed and hy-
pothesized to be the neural substrate underlying these contextual influences (Gilbert
and Wiesel, 1983, Rockland and Lund 1983, Gilbert, 1992). There have also been the-
oretical studies of the mechanisms and phenomena of the contextual influences (e.g.,
Somers et al 1995, Stemmler et al 1995). However, insights into the computational roles
of contextual influences have been limited to mainly contour or feature linking (Allman
et al 1995, Gilbert, 1992, see more references in Li 1998a).

We propose that contextual influences serve the goal of pre-attentive visual segmen-
tation by giving higher neural responses to potentially important locations in the input
image, making these locations perceptually more salient. We call these relatively higher
responses and the corresponding image locations, highlights. They can be caused by
boundaries between texture or luminance regions, smooth contours, conspicuous tar-
gets, or outliers against backgrounds. This proposal will be demonstrated in a simple
but biologically-based model of V1 with intracortical interactions between cells that are
purely local (ie within the distance of a few CRFs). Note that although the horizontal
intra-cortical connections are called long-range, they are still local with respect to the
whole visual field since the axons reach only a few millimeters, or a few hypercolumns
or CREF sizes, away from the pre-synaptic cells. Note also that finding the boundaries
of regions or locating targets against backgrounds are two of the most essential compo-
nents of segmentation, however they do not entail classifying or identifying the regions
or targets. In other words, highlighting the important locations serves to process the
“where” but not “what” of the underlying objects. We therefore propose that segmenta-
tion at its pre-attentive bare minimum is segmentation without classification (Li 1998b),
i.e., segmentation without explicitly knowing the feature contents of the regions (see
later discussion). This simplifies segmentation, making it plausible that it can be per-
formed by low level, pre-attentive, processing in V1. This paper accordingly focuses on
pre-attentive segmentation — additional processing is required to improve the result-
ing segmentation, e.g., by refining the coarse boundaries detected at the pre-attentive
stage, classifying the contents of the regions, and segmenting in difficult cases when



regions or targets do not pop out pre-attentively.

2 The principle and its implementation

Figure 1: An input image, and two examples of CRFs marked by two dashed
circles, which have the same stimulus within the CRFs but different contextual
surrounds. A cell tuned to vertical orientation experiences less iso-orientation
suppression in the left CRF than the right one.

The essential computational principle underlying our model is straightforward —
detecting important image locations by detecting the breakdown of homogeneity or
translation invariance in inputs. Consider a case in which the input is a large and ho-
mogeneous texture of equally and regularly spaced identical small bars. By symmetry,
the responses of cells whose CRFs cover one part of the texture will be no different
from responses of cells that cover another part, provided that the tuning properties of
the cells are the same from one part to another, and that there is no spontaneous pat-
tern formation (see later). Hence, no local input area will appear more salient than
any other. However, if the texture patch is of finite size, the response of a cell de-
pends on whether its CRF is near to or far away from the texture border, even if the
contents of the CRF are exactly the same. The contextual surround lies wholly within
the single texture region when the CRF is far from the border, but will include loca-
tions outside the texture region when the CRF is near the border (see Fig. (1)). The
different surrounds make for different stimuli in the ‘extra-classical’ receptive field, i.e.,
different contextual influences, and consequently different cell responses. By the same
argument, different cell responses are expected wherever one moves from one homo-
geneous region to another, i.e., wherever the homogeneity in input breaks down or the
input characteristics change. A homogeneous region could be a blank region, a regular
or even stochastic texture patch, or a region of characteristic input noise. A small target
or smooth contour against a texture or noisy backgrounds also breaks the image homo-
geneity. It is these nonhomogeneous parts of the images that are usually of particular
importance. Within the constraints of the existing experimental data, we construct in
our model intra-cortical interactions (see below) such that the activities of neurons near
region boundaries or isolated smooth contours will be relatively higher. This makes
these locations relatively more salient, allowing them to pop out perceptually, thereby
being pre-attentively segmented. Experiments in V1 indeed show that only 10-15 msec
after the initial cell responses, activity levels are robustly higher near or at simple tex-
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ture boundaries or segments of a contour than inside homogeneous regions (Nothdurft,

1994, Gallant et al 1995, Kapadia et al 1995).
Our model focuses on segmentation in the absence of cues from color, motion, lu-



Figure 2: (Caption for figure in previous page) A: Visual inputs are sampled
in a discrete grid by edge/bar detectors, modeling CRFs for V1 layer 2-3 cells.
Each grid point has 12 neuron pairs (see C), one per bar segment. All 12 pairs or
24 cells at a grid point share the same CRF center, but are tuned to different ori-
entations spanning 180°, thus modeling a hypercolumn. A bar segment in one
hypercolumn can interact with another in a different hypercolumn via monosy-
naptic excitation J or disynaptic inhibition W (see B, C). B: A schematic of the
horizontal connection pattern from the center (thick solid) bar to neighboring
bars within a finite distance (a few CRF sizes). J’s contacts are shown by thin
solid bars. W’s are shown by thin dashed bars. Each CRF has the same con-
nection pattern, suitably translated and rotated from this one. C: The neural
elements and connections for cells tuned to horizontal orientations only (to
avoid excessive clutter in the figure), and an illustration of the function of this
system. Only connections to and from the central pyramidal cell are drawn. A
horizontal bar, marking the preferred stimulus of the cell, is drawn on the cen-
tral pyramidal cell and all other pyramidal or interneurons that are linked to
it by horizontal connections. The central pyramidal sends axons (monosynap-
tic connections J) to other pyramidals that are displaced from it locally and
roughly horizontally, and to the interneurons displaced locally and roughly
vertically in the input image plane. The bottom plate depicts an example of in-
put image containing 5 horizontal bars of equal contrast, each gives input to a
pyramidal cell with the corresponding CRF (the correspondences are indicated
by the dashed lines). These 5 pyramidal cells give higher response levels to the
3 bars aligned horizontally but lower responses to the 2 bars displaced vertical
from them, as illustrated in the top plate. This is because the 3 horizontally
aligned bars facilitate each other via the monosynaptic connections .J, while
the vertically displaced bars inhibit each other disynaptically via W.

minance, or stereo. Since it focuses on the role of contextual influences in segmentation,
the model includes mainly layer 2-3 orientation selective cells and ignores the mech-
anism by which their CRFs are generated. Inputs to the model are images filtered by
the edge- or bar-like local CRFs of V1 cells (we use ‘edge” and ‘bar” interchangeably).
To avoid confusion, this paper uses the term ‘edge” only for local luminance contrast, a
boundary of a region is termed ‘boundary’ or ‘border’ which may or may not (especially
for texture regions) correspond to any actual ‘edges’ in the image. Cells are connected
by horizontal intra-cortical connections (Rockland and Lund 1983, Gilbert and Wiesel,
1983, Gilbert, 1992). These transform patterns of direct, CRF, inputs to the cells into
patterns of contextually modulated output firing rates of the cells.

Fig. 2 shows the elements of the model and the way they interact. At each sampling
location ¢ there is a model V1 hypercolumn composed of cells whose CRFs are centered
at ¢ and that are tuned to 12 different orientations 6 spanning 180° (Fig. 2A). Based on
experimental data (White, 1989, Douglas and Martin 1990), for each angle 8 at location
i, there is a pair of interconnected model neurons, an excitatory pyramidal cell and an
inhibitory interneuron (Fig. 2C), so, altogether, each hypercolumn consists of 24 model
neurons. Each model pyramidal cell or interneuron could model abstractly, say, 1000
pyramidal cells or 200 interneurons with similar CRF tuning (i.e., similar ¢ and 6) in the



real cortex, thus a 1:1 ratio between the numbers of pyramidal cells and interneurons
in the model does not imply such a ratio in the cortex. For convenience, we refer to the
cells tuned to 6 at location ¢ as simply the edge or bar segment 6.

Visual inputs are mainly received by the pyramidal cells, and their output activities
(which are sent to higher visual areas) quantify the saliencies of their associated edge
segments. The inhibitory cells are treated as interneurons. The input I;s to pyrami-
dal cell 46 is obtained by filtering the input image through the CRF associated with 6.
Hence, when the input image contains a bar of contrast jig at location 7 and oriented at
angle 3, pyramidal cells (i) are excited if 3 is equal or close to §. The value I;y will be
Ii3$(6 — B) where (8 — B) = e~19=81/(7/8) escribes the orientation tuning curve of the
cell (26).

Fig. 2C shows an example in the case that the input image contains just horizontal
bars. Only cells preferring orientations close to horizontal in locations receiving visual
input are directly excited — cells preferring other orientations or other locations are not
directly excited. In this example, the five horizontal bars have the same input strengths,
and so the input I to the five corresponding pyramidal cells are of the same strengths
as well. We omit cells whose preferred orientations are not horizontal but within the
tuning width from horizontal for the simplicity of this argument.

In the absence of long-range intra-cortical interactions, the reciprocal connections
between the pyramidal cells and their partner inhibitory interneurons would merely
provide a form of gain control mechanism on input I;9. The response from the pyrami-
dal cell 6 would only be a function of its direct input I;5. This would make the spatial
pattern of pyramidal responses from V1 simply proportional to the spatial pattern of
I;9 up to a context-independent (ie local), non-linear, contrast gain control. However, in
fact, the responses of the pyramidal cells are modified by the activities of nearby pyra-
midal cells via horizontal connections. The influence is excitatory via monosynaptic
connections and inhibitory via disynaptic connections through interneurons. The in-
teractions make a cell’s response dependent on inputs outside its CRF, and the spatial
pattern of response ceases being proportional to the input pattern I;9.

Fig. 2B,C show the structure of the horizontal connections. Connection J;¢ jo: from
pyramidal cell j6' to pyramidal cell i§ mediates monosynaptic excitation. Connection
Jig ;o0 > 01if these two segments are tuned to similar orientations 8 = 8’ and the centers
iand j of their CRFs are displaced from each other along their preferred orientation 4, 6'.
Connection Wi jgr from pyramidal cell j¢' to the inhibitory interneuron ¢f mediates
disynaptic inhibition from the pyramidal cell 56’ to the pyramidal cell 6. Connection
Wig jor > 0 if the preferred orientations of the two cells are similar 8 =~ 6', but the
centers ¢ and j of their CRFs are displaced from each other along a direction orthogonal
to their preferred orientations. The reasons for the different designs of the connection
patterns of ] and W will be clear later.

In Fig. 2C, cells tuned to non-horizontal orientations are omitted to illustrate the in-
tracortical connections without excessive clutter in the figure. Here, the monosynaptic
connections J link neighboring horizontal bars displaced from each other roughly hor-
izontally, and the disynaptic connections W link those bars displaced from each other
more or less vertically in the visual input image plane. The full horizontal connection
structure from a horizontal bar to bar segments including the non-horizontal ones is
shown in Fig. 2B. Note that all bars in Fig. 2B are near horizontal and are within a
distance of a few CRFs. The connection structure resembles a bow-tie, and is the same
for every pyramidal cell within its ego-centric frame.

In the top plate of Fig. 2C, different bar widths are used to illustrate the differ-



ent output activities in response to input bars of equal contrast. The three horizon-
tally aligned bars in the input induce higher output responses because they facilitate
each other’s activities via the monosynaptic connections J;9 jo-. The other two hori-
zontal bars induce lower responses because they receive no monosynaptic excitation
from others and receive disynaptic inhibition from the neighboring horizontal bars that
are displaced vertically (and are thus not co-aligned with them). Note that the three
horizontally aligned bars, especially the middle one, also receive disynaptic inhibitions
from the two vertically displaced bars.

In the case that the input is a homogeneous texture of horizontal bars, each bar
will receive monosynaptic excitation from its (roughly) left and right neighbors but
disynaptic inhibition from its (roughly) top and bottom neighbors. Our intra-cortical
connections are designed so that the sum of the disynaptic inhibition overwhelms the
sum of the monosynaptic excitation. Hence the total contextual influence on any bar in
an iso-orientation and homogeneous texture will be suppressive — iso-orientation sup-
pression. Therefore, it is possible for the same neural circuit to exhibit iso-orientation
suppression for uniform texture inputs and colinear facilitation (contour enhancement)
for input contours that are not buried (i.e., obscured) in textures of other similarly ori-
ented contours. This is exactly what has been observed in experiments (Knierim and
van Essen 1992, Kapadia et al 1995).

To understand how a texture boundary induces higher responses, consider the two
simple iso-orientation textures in Fig. (1). A bar at the texture boundary has roughly
only half as many iso-oriented contextual bars as a bar in the middle of the texture.
About half its contextual neighbors are oriented differently from itself. Since the hor-
izontal connections only link cells with similar orientation preference, the contextual
bars in the neighboring texture exert less or little suppression on the boundary bars.
Therefore, a boundary bar induces a higher response because it receives less iso-orientation
suppression than others. Similarly, one expects that a small target of one or a few bars
will pop out of a homogeneous background of bars oriented very differently (e.g., or-
thogonally), simply because the small target experiences less iso-orientation suppres-
sion than the background bars. These intuitions are confirmed by later simulation re-
sults.

The neural interactions in the model can be summarized by the equations:

dig/dt = —ouzio — gy(yie) — Y, Y(A0)gy(Yi,e+n0) + Joge(wio)
AOZ0
+ Z Jio,j0' 92 (xj9') + Lig + I 1
Jj#i,0’
dyiﬂ/dt = —Qay¥Yis + gm(xw) + Z Wia,je’gm(xjﬁ’) + 1. 2
J#i,0'

where ;9 and y;9 model the pyramidal and interneuron membrane potentials, respec-
tively, gz(x) and g,(y) are sigmoid-like functions modeling cells’ firing rates or re-
sponses given membrane potentials  and y, —azx;s and —ayy;¢ model the decay to
resting potentials, 1 (A#8) is the spread of inhibition within a hypercolumn, Jogz (¢ ) is
self excitation, and I and I, are background inputs, including neural noise and inputs
modeling the general and local normalization of activities (Heeger, 1992).

Depending on the visual stimuli, the system often settles into an oscillatory state
(Gray and Singer, 1989, Eckhorn et al 1988), an intrinsic property of a population of re-
currently connected excitatory and inhibitory cells. Temporal averages of the pyramidal
outputs g (z:s) over several oscillation cycles are used as the outputs, which coarsely



model the pre-attentively computed saliencies of the stimulus bars. If the maxima over
time of the responses of the cells were used instead as the model’s outputs, the effects
of differential saliencies shown in this paper would usually be stronger. That differ-
ent regions occupy different oscillation phases could be exploited for segmentation (Li,
1998a), although we do not do so here. The complete set of model parameters to re-
produce all the results in this paper are listed in Li (1998a), in which exactly the same
model is used to account for contour enhancement (Polat and Sagi 1993, Field et al 1993,
Kapadia et al 1995) rather than region segmentation.

The intra-cortical connections used in the model are consistent with experimental
observations in that they tend to link cells preferring similar orientations, and that they
synapse onto both the pyramidal cells and inhibitory interneurons (Rockland and Lund
1983, Gilbert and Wiesel, 1983, Hirsch and Gilbert 1991, Weliky et al 1995). To incorpo-
rate both co-linear excitation and iso-orientation suppression in the same neural circuit,
we have assumed that the connection structure has an extra feature — the bow-tie —
which is neither predicted nor contradicted by experiments. This extra feature corre-
lates monosynaptic excitation or disynaptic inhibition with the degree of colinearity
between two linked bars of similar orientations. We have found this structure to be
necessary for the network to perform the required computation, and, as such, is a pre-
diction of the model. We have also used dynamic systems theory to make sure that the
system is well behaved. This imposes two particular constraints. First, colinear exci-
tation has to be strong enough so that contours are enhanced, but not so strong as to
excite bars which lie beyond the end of a contour but do not receive direct visual in-
puts. Second, the response to an iso-orientation homogeneous texture should also be
homogenous, that is, the iso-orientation suppression should not lead to winner-take-all
competition leading to the hallucination of illusory inhomogeneities within single re-
gions (spontaneous pattern formation), so that no illusory borders occur within a single
region. The same synaptic weights and all other model parameters, e.g., neural noise
levels, cell threshold and saturation levels, are used for all simulated examples.

3 Performance of the model

The model was applied to a variety of input textures and configurations, shown in ex-
amples in figs (3 - 9). With a few exceptions (shown below), the input strengths I;
are the same for all visible bars in each example so that any differences in the outputs
9z (zi9) are solely due to the effects of the intra-cortical interactions. Using cell mem-
brane time constants of the order of 10 msec, the contextual influences are significant
after about 10 msec after the initial responses of the cells, agreeing with experimental
observations (Knierim and van Essen 1992, Kapadia et al 1995, Gallant et al 1995).

The actual values I;s used in all examples are chosen to mimic the corresponding
experimental conditions. In this model the threshold and saturating input values are
respectively fw = 1.0 and jig = 4.0 for an isolated input bar. Such a dynamic range,
given an arbitrary scale for the threshold input, is comparable to physiological findings
(Albrecht and Hamilton, 1982). Except for Fig. (9), all simulated examples in this paper
use Iig > 1.0 for all visible bars plotted in the input images and Is = 0 otherwise.
Hence, we use fw = 1.05 or 1.2 for low and near threshold input, and fw = 2.0 and
3.5 for intermediate and high contrast input conditions used in experiments. Low input
levels are used for all visible bars in Figs. (4B) and for the target bar in Fig. (3E, F, G, H)
to demonstrate contour enhancement (Kapadia et al 1995, Kovacs and Julesz 1993). In-
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Figure 3:

termediate levels are used for all visible bars in texture segmentation and figure-ground
pop-out examples (Figs. 4A, 5- 8). High input levels are used for all visible bars in Fig.
(8A,B,C,D) and the contextual (background) bars in Fig. (3E,FG,H) to model the high
contrast conditions used in the physiological experiments that study contextual influ-
ence from textured and/or contour backgrounds (Knierim and van Essen 1992, Kapadia



et al 1995). The output response strength g (z:¢) ranges in [0, 1].

The plotted regions in all the figures are actually only small parts of larger images.
In all cases, the widths of the bars in the figures are proportional to input or output
strengths. For optimal visualization, the proportionality factor varies from figure to
figure.

Fig. (3) shows that the model qualitatively replicates the results of physiological
experiments on contextual influences from beyond the CRFs (Knierim and van Essen
1992, Kapadia et al, 1995). The suppression from surrounding textures in the model is
strongest when the surround bars have the same orientation as the center bar, is weaker
when the surround bars have random orientations, and is weakest when the surround
bars have orthogonal orientations to the center bar. That the orthogonally oriented
surround should lead to the weakest suppression is expected since the intra-cortical

Figure 3: (Caption for figure in previous page) Simulating the physiological
experiments by Knierim and van Essen (1992) and Kapadia et al (1995) on con-
textual influences to compare the model behavior with the experimental data.
The model input stimuli are composed of a vertical (target) bar at the center
surrounded by various contextual stimuli. All the visible bars have high con-
trast input jig = 3.5 except for the target bar in E, E G, H where fig = 1.05
is near threshold. The input and output strengths are proportional to the bar
widths with the same proportionality factors (one for the input and another
for the output) across different subplots for direct comparison. A, B, C, D sim-
ulate the experiments by Knierim and van Essen (1992) where a target bar is
presented alone or is surrounded by contextual textures of bars oriented par-
allel, randomly, or orthogonal to it, respectively. The responses to the (center)
target barsin A, B, C, D are, respectively, 0.98, 0.23, 0.41 (averaged over differ-
ent random surrounds), 0.74. E, E, G, H simulate the experiments by Kapadia
et al (1995) where a low contrast (center) target bar is either presented alone or
is aligned with some high contrast contextual bars to from a line with or with-
out a background of randomly oriented high contrast bars. The responses to
the target bars in E, F, G, H are, respectively, 0.07,0.19, 0.30, 0.33. Note that the
response to the near threshold input target bar in H is much higher than that to
the high contrast target bar in B. Contour enhancement also holds in H when
all bars have high input values, simulating the psychophysics experiment by
(Field et al 1993). I: Comparing model behavior in A, B, C, D (see the horizon-
tal axis of the plot) with experimental data by Kinerim and van Essen (1992).
The experimental data points “o” are adopted from the figure 11 in Knierim
and van Essen (1992) which averaged over all recorded cells, whether they are
orientation selective or not, while data points “{” are adopted from fig. 4B for
a single cell in Knierim and van Essen (1992). J: Comparing the model behav-
ior in E, E G, H (see the horizontal axis of the plot) with experimental data
from Kapadia et al. (1995). The data “0” and “{” are adopted from the two
cell examples in the Figure 12B, C in Kapadia et al (1995). The model behavior
depends quantitatively on the input contrasts. In both I and J, the plotted cell
responses are normalized such that the responses to the isolated bar is 1.



interactions only link bars preferring similar orientations, and is also the neural basis for
pop out of a target bar among homogeneous background bars of a different orientation.
Note that the response to the target bar is lower in Fig. (3D) than in Fig. (3A). That
is, pop-out is manifested by having the responses to the target being higher than the
responses to the background. Pop-out is not dependent on the responses to the target
being higher in the face of one background than the responses to the target in the face
of a different background — a target pops-out against a blank background as well.

The relative degree of suppression in the model is quantitatively comparable to
physiologically measurements of orientation selective cells that are sensitive to orien-
tation contrast (Knierim and van Essen 1992; denoted by the ‘¢’s in Fig. (3I)). When
averaged over all cell types (the ‘0’s in Fig. (3I)), the suppression observed experimen-
tally is quantitatively weaker than that in our model. One possible explanation for this
discrepancy could be that the results in our model apply only to those pyramidal cells
that are orientation selective, whereas in the experiment many different cell types were
probably recorded, including some that are interneurons and some that are not even
orientation selective (Knierim and van Essen 1992). Using just the same neural circuit,
Figs. (3E,EG,H, ]J) compare contextual facilitation with the corresponding physiological
data (Kapadia et al 1995). This facilitation is expected on the basis of our “bow-tie” like
connection pattern. The quantitative degree of response enhancement is different for
the different cells recorded in the experiment, and varies with the input contrast level
in our model.

Given these results, we can then expect our model to perform appropriately on the
sort of contour detection and pop-out tasks that are typically used in psychophysical
studies (Fig. 4). Indeed, pop-out has recently been observed physiologically in V1
(Kastner et al 1997, Nothdurft et al 1998). Contour enhancement is built explicitly into
the connection structure of the model. However, the contours can also be seen as where
input homogeneity breaks down — here it is the statistical characteristics of the image
noise in the background that are homogeneous.

Fig. 5 shows how texture boundaries become highlighted. Fig. 5A shows a sam-
ple input containing two regions. Fig. 5B shows the model output. Fig. 5C plots the
responses (saliencies) S(c) to the bars averaged in each column ¢ in Fig. 5B, indicat-
ing that the most salient bars are indeed near the region boundary. Fig. 5D confirms
that the boundary can be identified by thresholding the output activities using a thresh-
old, thresh = 0.5, which is used to eliminates outputs that fire less strongly than the
fraction thresh of the highest output max;g{g.(zi¢)} in the image. Note that V1 does
not perform such thresholding, it is performed in this paper only for the purposes of
display. The value of the threshold used in each example has been chosen for optimal
visualization. To quantify the relative salience of the boundary, define the net salience
at each grid point ¢ as that of the most activated bar (maxs{g=(zi6)}), let Spear be av-
erage salience across the most salient grid column parallel to and near the boundary,
and S and o, be the mean and standard deviation in the saliencies of all locations. The
relative salience of the boundary can be assessed by two quantities r = Spear/ S and
2 = (Speak — S)/0s (although these may be psychophysically incomplete as measures).
r can be visualized from the thicknesses of the output bars in the figures, while z mod-
els the psychological z score. A salient boundary should give large values for (r, z). In
Fig. (5), (r,z) = (3.7,4.0).

Note that the vertical bars near the boundary are more salient than the horizon-
tal ones. This is because the vertical bars run parallel to the boundary, and are there-
fore specially enhanced through the contour enhancement effect of the contextual in-
fluences. This is related to the psychophysical observation that texture boundaries are
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Input (I}g) B Input (fia)

Figure 4: A: A small region pops out since all parts of it belong to the boundary.
The response to figure is 2.42 times of the average response to the background.
B: Exactly the same model circuit (and parameters) performs contour enhance-

ment. The input strength is [y = 1.2. The responses to the contour segments
are 0.42 £ 0.03, and to the background elements 0.18 % 0.08.

stronger when the texture elements on one side of them are parallel to the boundaries
(Wolfson and Landy 1995), cf. Fig (6A) and Fig. (5). In fact, the model predicts that
cells responding to bars near texture borders should be tuned to the orientation of the
borders, and that the preferred border orientation should be the same as the preferred
orientation of the bar within the CREF, as shown in Fig. (6L).

Fig (6) shows other examples demonstrating how the strength of the border high-
light decreases with decreasing orientation contrast at the border, increasing orientation
noise in the texture elements, or increasing spacing between the texture bars. When the
orientation contrast is only 15°, the boundary strength is very weak, with the bound-
ary measures (r, z) = (1.03,0.78) (Fig.(6C)) — here the input is nearly homogeneous,
making the boundary very difficult to detect pre-attentively. Stochasticity in the orien-
tations of the bars also makes the border difficult to detect. In the example of Fig.(6F),
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A: Input image (I;9) to model

B:

C:  Neural response levels
vs. columns above

D: Thresholded model output

Figure 5: An example of the segmentation performance of the model. A: In-
put I;p consists of two regions; each visible bar has the same input strength.
B: Model output for A, showing non-uniform output strengths (temporal av-
erages of g,(zi9)) for the bars. C: Average output strengths (saliencies) in a
column vs. lateral locations of the columns in B, with the heights of the bars
proportional to the corresponding bar output strengthes. D: The thresholded
output from B for illustration, thresh = 0.5.

an 90° orientation contrast at the texture border is more severely smeared by orientation
noise. A further result of the noise is that orientation contrasts are created at locations
within texture regions, making them compete with the border for salience. These be-
haviors of the model can be understood in terms of the properties of the contextual
influences. When the orientation contrast between two texture regions is small, a bar
near the border receives near-orientation suppression from bars in the other texture re-
gion, weakening its response. With larger bar spacing or orientation noise, the overall
iso-orientation suppression within a region is weaker, making less pronounced the dif-
ference in saliencies between bars near the border and bars within regions.
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A: Border ori. contrast = 90°.

B: Border ori. contrast = 30°.

C: Border ori. contrast = 15°.
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Figure 6:

In Fig.(6I), the texture elements are very sparse, and the boundary strengths are very
weak (r, z) = (1.02, 0.6). By comparison, the denser texture elements in Fig.(6H) give a
boundary with (r, z) = (1.1, 2.1). Even though the salience of the boundary is only 10%
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Figure 6: (Caption for figure previous page) Model’s segmentation perfor-
mance, comparison with psychophysical data, and a prediction. A, B, C, D,
E E G, H, I: Additional examples of model performance in different stimulus
configurations. Each is an input image as in Fig. 5A followed immediately
below by the corresponding thresholded (strongest) model outputs as in Fig.
5D, or unthresholded model output as in Fig. 5B. A, B, C show the effects of
orientation contrasts at the border. D, E, F show the effects of orientation noise
in regions. The neighboring bars within one texture region differ in orientation
by a random amount whose averages are respectively 13°, 25°, and 34°. G, H, I
show the effects of texture bar spacing. J: segmentation performance versas ori-
entation contrast at the border from the model, ‘+” and ‘x’, and psychophysical
behavior ‘¢” and ‘00’ from Nothdurft (1991). Data points ‘¢’ and ‘x’ are for cases
without orientation noise, ‘0" and ‘+’ cases when the orientation noise amounts
to 25° on average between neighboring bars within one texture region (as in E).
Given an orientation contrast, the data point "+’ or 'x” for the model is an aver-
age of all possible relative orientations between the texture bars and the texture
border. K: segmentation performance versas bar spacing from the model ‘+
and psychophysical behavior ‘¢’, ‘0", and ‘00’ (each symbol for a particular bar
length) from Nothdurft (1985). All data points are obtained from stimuli with
a fixed orientation contrast 90° at the border and without orientation noise. L:
Cell responses near a texture border versas relative orientations between the
border and the bars within the CRFs. The plot is based on a fixed orientation
contrast 90° at the border. The threshold used to obtain the output highlights in
A, B, C, G, H, I are, respectively, thresh = 0.77,0.902,0.8775,0.92,0.95,0.935.

higher than average, it has a high z score, i.e., the saliencies in the background are very
homogeneous, making a 10% difference very noticable. By contrast, (r,z) = (2.0,1.4)
for Fig.(6F) — although the average salience of the boundary column is 100% higher
than the average, this difference is less significant with a z score z = 1.4 because the
salience in the background is very inhomogeneous. To compare the performance of the
network with psychophysical data (Nothdurft 1985, 1991), we model human behavior,
in particular the measures of Percentage of Correct Responses or Detectability in locating
or detecting texture borders, as functions of the z score of the boundary strength.! Fig
(6],K) compares the behavior of the model with psychophysical data on how segmenta-
tion performance depends on orientation contrast, orientation noise, and bar spacing.
Note also that the most salient location in an image may not be exactly on the bound-

et P = \/%_W J2e e~t*/2dt, be the probability of getting a measurement below z from a

normal distribution. For psychophysical tasks in which subjects make binary judgements about
the texture border, e.g., whether the border is oriented horizontally or vertically, the percentage of
correct judgements is modeled by Percent correct = (0.5 + P™/2)100%, where n is a parame-
ter used to account for various human, random, and task specific factors, such as the number of
possible locations in an image for the texture border that a subject expects. For detectability tasks,
such as detecting and identifyng the shapes of texture borders, the detectability in the model is
modeled analogously by Detectability = P™. This ranges in [0,1]. Parameter values n = 18 and
n = 60 are used for the two conditions (with and without orientation noise) in Fig (6]); n = 10 is
used for Fig (6K).
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ary (Fig. 6B), or may be biased to one side of the boundary (Fig. (5B)). This should lead
to a bias in the estimation of the border location, and can be experimentally tested. This
is a hint that outputs from pre-attentive segmentation need to be processed further by
the visual system.
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Figure 7: A, B, C: Model performance on regions with complex texture ele-
ments, and D: regions with stochastic texture elements. Each plot is the model
input (I;5) followed immediately below by the output (g, (2)) highlights. For
A, B, C, D respectively, the thresholds to generate the output highlights are
thresh = 0.91,0.9,0.85, 0.56.

The model also copes well with textures defined by complex or stochastic patterns
(Fig. (7)). In both Figs. 7A and 7B, it segments the regions even though they have
the same bar primitives and densities. In particular, the two regions in Fig. 7A have
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exactly the same features and would naturally be classified as the same texture. Seg-
mentation in this case would be difficult if region boundaries were located by finding
where texture classifications differ, as in traditional approaches to segmentation. Fig.
7C demonstrates that the model locates the correct border without being distracted by
orientation contrast at locations within each texture region. The weakest boundary in
Fig. (7) is that in Fig. (7B) with (r, 2) = (1.1, 1.5), and the other three cases have z scores
close to or higher than z = 3.

The model works in these cases because it is designed to detect where input homo-
geneity or translation invariance breaks down. In the example of Fig. 7C, any particular
vertical bar within the right region and far enough away from the border, has exactly
the same contextual surround as any other similarly chosen vertical bar, i.e, they are all
within the homogeneous or translation invariant part of the region. Therefore none of
such vertical bars will induce a higher response than any other since they have the same
direct input and the same contextual inputs. The same argument applies to the oblique
bars or horizontal bars far away from the border in Fig. 7C as well as in Fig. 7A,B.
However, the bars at or near the border do not have the same contextual surround (i.e.,
contextual inputs) as those of the other bars, i.e., the homogeneity is truely broken. Thus
they will induce different responses. By design, the border responses will be higher. In
other words, the model, with its translation invariant horizontal connection pattern,
only detects where input homogeneity breaks down, and the pattern complexity within
a region does not matter as long as the region is homogeneous. Orientation (or feature)
contrasts often spatially coincide with the breakdowns of input homogeneity. However,
they should not be taken as the general basis for segmentation. The stochasticity of the
bars in Fig. 7D results in a non-uniform response pattern even within each region. In
this case, just as in the examples in Fig. (6)D,E, the border induces the highest responses
because it is where homogeneity breaks most strongly.

Our model also accounts for the asymmetry in pop-out strengths that is observed
psychophysically (Treisman and Gormican, 1988), i.e., item A pops out among a back-
ground of items B more easily than vice versa. Fig. (8) demonstrates such an example,
in which a cross among bars pops out much more readily than a bar among crosses.
The horizontal bar in the target cross (among background vertical bars) experiences
no iso-orientation suppression, while the vertical target bar among the crosses experi-
ences about the same amount of iso-orientation suppression as the other vertical bars
in the background crosses and therefore is comparatively weaker. This mechanism is
effectively a neural basis for the psychophysical theory of Treisman and Gelade (1980)
which suggests that targets pop out if they are distinguished from the background by
possessing at least one feature (e.g., orientation) that the background lacks, but that
they will not pop out if they are distinguished only by lacking a feature that is present
in the background. Other typical examples on visual search asymmetry in the literature
can also be qualitatively accounted for by the model (Li 1998b, 1999). Such asymmetry
is expected in our framework — the nature of the breakdown in homogeneity in the
input, i.e., the arrangement of direct and contextual inputs on and around the target
features, is quite different depending on which image item is the figure and which is
the background.

Fig. (9) shows the performance of the model on an input that is a photograph. The
photo is sampled by the CRFs, and the outputs from even and odd simple cell CRF
filters are combined to form phase insensitive edge/bar inputs to our model cells. Be-
cause of the sparse and single scale sampling of our current model implementation, the
input to the model is rather degraded compared with the original photo. Nevertheless,
the power of the model’s intracortical processing is demonstrated by the fact that the
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A: Cross among bars B: Bar among crosses
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Figure 8: Asymmetry in pop-out strengths. A: The response to the horizontal
bar in the cross is 3.4 times that to the average background. B: The area near
the central vertical bar is the most salient part in the image, but the neural
responses there are no more than 1.2 times that in the average background.
The target bar itself is actually a bit less salient than the average background.

texture border is correctly highlighted (together with some other conspicuous image
locations). It is important to stress that this paper isolates and focuses on the role of the
intracortical computation — the model’s performance, particularly on natural images,
can only be improved using better methods of front-end processing, such as denser and
multiscale sampling.

4 Summary and discussions

4.1 Summary of the results

We have presented a model which shows how contextual influences in V1 can play the
computational role of mediating pre-attentive segmentation. The model’s components
and behavior are based on, and are consistent with, anatomical and physiological ex-
perimental evidence (Rockland and Lund, 1983, White, 1989, Douglas and Martin, 1990,
Gilbert, 1992, Nothdurft, 1994, Gallant et al, 1995). This is the first model of V1 to cap-
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Figure 9: The model performance on a photo input. The photo is sampled by
even and odd CRFs whose outputs are combined to form the phase insensitive
edge/bar input signals to the model pyramidal cells. At each grid point, bars
of almost all K = 12 orientations have nonzero input values I;y. For display
clarity, no more than 2 strongest input or output orientations are plotted at each
grid point in model input and output. The model input is much degraded
from the photo through this sampling because of the sparse and single scale
sampling in the model. The locations of highest responses include the texture
border and some conspicous locations within each texture region. The image
space has wrap around boundary condition. Some highlights in the outputs
away from the boundary are caused by the finite size (of the texture regions)
effect.

ture the effect of higher neural activities near region boundaries, the pop-out of small
figures against backgrounds, and asymmetries in pop-out strengths between choices of
figure and ground. The mechanism underlying the model is the local intra-cortical in-
teractions that modify individual neural activities in a manner that is sensitive to the
contextual visual stimuli, detecting region boundaries by detecting the breakdown of
homogeneity in the inputs. The model is also the first to use the same neural circuit for
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both the region boundary effect and contour enhancement — individual contours in a
noisy or non-noisy background can also be seen as examples of the breakdown of homo-
geneity in inputs. Our model suggests that V1, as a saliency network, has substantially
more computational power than is traditionally supposed.

4.2 Relation to other studies

It has recently been argued that much texture analysis and segmentation are performed
at low levels of visual processing (Bergen, 1991). The observed ease and speed of solv-
ing many texture segmentation and target detection tasks have long led theorists to
propose that the computations responsible for this performance must be pre-attentive
(Treisman and Gelade 1980, Julesz 1981, Treisman and Gormician 1988). Correspond-
ingly, many relevant models using low level and autonomous network mechanisms
have been proposed.

To characterize and thus discriminate texture regions, some models use responses of
image filters resembling the CRFs of the V1 cells (Bergen and Adelson 1988); others use
less biologically motivated feature measures such as pixel correlations and histograms
(Haralick and Shapiro, 1992).

Another class of models goes beyond the direct responses from the image filters
and includes interactions between the filter or image units. The interactions in these
models are often motivated by their cortical counterparts. They are designed to charac-
terize texture features better and often help to capture context dependences and other
statistical characteristics of texture features. Some of these models are based on Markov
Random Field techniques (Haralick and Shapiro, 1992, Geman and Geman, 1984); oth-
ers are closer to neurobiology. For instance, Caelli (1988) suggests a dynamic model in
which the image filter units interact locally and adaptively with each other such that
the ultimate responses converge to an “attractor” state characterizing the texture fea-
tures. Interestingly, this dynamic interaction can make the feature outputs of a figure
region dependent on the features of background regions, and was used (Caelli 1993) to
account for examples of asymmetries between figure and ground observed by Gurnsey
and Browse (1989). Malik and Perona’s model (1990) contains neural based multiscale
filter (feature) units which inhibit each other in a form of winner-take-all competition
which gives a single final output feature at each image location.

Many of these models capture well much of the phenomenology of psychophysical
performance. They share the assumption that texture segmentation first requires char-
acterizing the texture features at each image location. These feature measurements are
then compared at neighboring locations (either by explicit interactions in the model,
or, implicitly, by some unmodeled subsequent processing stage) to locate boundaries
between texture regions.

By contrast, a recent model by Nothdurft (1997) directly locates the boundary be-
tween neighboring texture regions (of oriented bars) via local nonlinear inhibitory in-
teractions between orientation units tuned to similar orientations. Thus, borders of
textures of oriented bars are located as locations of comparatively stronger responses or
higher saliencies, just as in our model. Our model goes beyond Nothdurft’s model by
adopting a framework to include other conspicuous image locations where homogene-
ity in inputs breaks down and by explicitly including both intracortical excitation and
inhibition. Consequently, the neural circuit in our model can, in addition, detect borders
between complex textures, and account for other seemingly less related phenomena
such as pop-out, asymmetries between figure and ground, and contour enhancement.
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There are also various related models which focus on the computation of contour
enhancement. Li (1998a) presents a detailed discussion of them and their relation to
the present model. In particular, a model by Grossberg and coworkers (Grossberg and
Mingolla 1985, Grossberg et al 1997) proposes a “boundary contour system” as a model
of intra-cortical and inter-areal neural interactions within and between V1 and V2. The
model aims to capture illusory contours which link bar segments and line endings. Our
model is the only one to models both contour enhancement and region boundary high-
lights in the same neural circuit. Of course, its instantiation in V1 limits its power in
some respects — it does not perform computations such as the classification and smooth-
ing of region features and the sharpening of boundaries that are performed by certain
other models (e.g., Malik and Perona 1990).

Since it locates conspicuous image locations without using filters that are specif-
ically tuned to complex region features (such as the ‘+’s and ‘x’s in Fig. (7D)), our
model reaches beyond early visual processing using such things as center-surround fil-
ters (Marr, 1982). While the early stage filters code image primitives (Marr, 1982), our
mechanism should help in the representations of object surfaces. Since contextual in-
fluences are collected over whole neighborhoods, the model naturally accounts for the
way that regions are defined by the statistics of their contents. This agrees with Julesz’s
conjecture of segmentation by image statistics (Julesz, 1962) without imposing any re-
striction that only the first and second order image statistics are important. Julesz’s
concept of textons (Julesz, 1981) could be viewed in this framework as any feature to
which the particular intra-cortical interactions are sensitive and discriminatory. Given
the way that it uses orientation dependent interactions between neurons, our model
agrees with previous ideas (Northdurft, 1994) that (texture) segmentation is primarily
driven by orientation contrast. However the emergent network behavior is collective
and accommodates characteristics of general regions beyond elementary orientations,
as in Fig. 7. The psychophysical phenomena of filling-in (when one fails to notice a
small blank region within a textured region) could be viewed in our framework as the
instances when the network fails to sufficiently highlight the non-homogeneity in in-
puts near the filled-in area.

Our pre-attentive segmentation is quite primitive. It merely segments surface re-
gions, whether or not these regions belong to different visual objects. It does not char-
acterize or classify the region properties or categories. In this sense, this pre-attention
segmentation process is termed segmentation without classification (Li, 1998b). Hence,
for example, our model does not say whether a region is made of a transparent sur-
face on top of another surface, nor does the model facilitate the pop-out process based
on categorical informations such as the target being the only “steep” item in an image
(Wolfe and Friedman-Hill 1992).

Our model suggests that there might be experimental evidence that pre-attentive
segmentation precedes (and is dissociated from) visual classification or discrimination.
Recent experimental evidence from V1 (Lamme et al 1997, Zipser, private communica-
tion 1998) shows that the modulation of neural activities starts at the texture boundary
and only later includes the figure surface. While the response modulations at the figure
boundary take about 10-20 ms to develop after the initial cell responses, they take about
50 ms within the figure surface away from the boundary (Zipser et al 1996, Zipser, pri-
vate communication, 1998). Further, some psychophysical evidence (Scialfa and Joffe
1995) suggests that information regarding (figure) target presence is available before in-
formation about the feature values of the targets. Also, V2 lesions in monkeys are shown
to disrupt region content discrimination but not region border detection (Merigan et al
1993). These results are consistent with our suggestion. Furthermore, neural modula-
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tion in V1, especially those in figure surfaces (Zipser 1998, private communication), is
strongly reduced or abolished by anaesthesia or lesions in higher visual areas (Lamme
et al 1997), while experiments by Gallant et al (1995) show that activity modulation at
texture boundaries is present even under anaesthesia.

Taken together, this experimental evidence suggests the following computational
framework. Pre-attentive segmentation in V1 precedes region classification; region clas-
sification following pre-attentive segmentation commences in higher visual areas; the
classification is then fed back to V1 in the form of top-down influences which allows
the segmentation to be refined (for instance, by removing the bias in the estimation of
the border location in the example of Fig. 6B); this latter segmentation refinement pro-
cess might be attentive and can be viewed as segmentation by classification. Finally, the
bottom-up and top-down loop can be iterated to improve both classification and seg-
mentation. Top-down and bottom-up streams of processing have been studied by many
others (e.g., Grenander 1976, Carpenter and Grossberg 1987, Ullman 1994, Dayan et al,
1995). Our model studies the first step in the bottom up stream, which initializes the
iterative loop. The neural circuit in our model can easily accommodate top-down feed-
back signals which, in addition to the V1 mechanisms, selectively enhance or suppress
neural activities in V1 (see examples in Li 1998a). However, we have not yet modeled
how higher visual centers process the bottom up signals to generate the feedback.

4.3 Model predictions

The experimentally testable predictions of the model are: (1) cell responses should be
tuned to the orientation of nearby texture borders (Fig. (6L)), and the preferred border
orientation should be the same as that of the bar within the CRF; (2): the horizontal
connection should have a qualitative “bow-tie” structure as in Fig. 2B, with a dominant
monosynaptic excitation between cells tuned to similarly oriented and co-aligned bars
and a dominant disynaptic inhibition between similarly oriented but not co-aligned
bars; (3): there should be stimulus dependent biases in the border locations that could
be estimated on the basis of the neural responses (e.g., Fig. 6B) or by pre-attentive
vision.

Since the model is quite simplistic in the design of the connections, we expect that
there will be significant differences between the model and physiological connections.
For instance, two linked bars interact in the model either via monosynaptic excitation
or disynaptic inhibition, but not both. In the cortex, two linked cells often interact via
both excitation and inhibition, making the overall strength of excitation or inhibition de-
pendent on the input contrast (e.g., Hirsch and Gilbert, 1991; see Li 1998a for analysis).
Hence, the excitation (or inhibition) in our model could be interpreted as the abstraction
of the predominance of excitation (or inhibition) between two linked bars. Currently,
different sources of experimental data on the connection structure are not mutually con-
sistent regarding the spatial and orientation dependence of excitation and inhibition
(Fitzpatrick 1996, Cavanaugh et al 1997, Kapadia, private communication 1998, Hirsch
and Gilbert 1991, Polat et al 1998). This is partly due to different experimental condi-
tions, such as different input contrast levels and different stimulus elements (e.g., bars
or gratings). The performance of the model is also quantitatively dependent on input
strength. One should bear this fact in mind when viewing the comparisons between the
model and experimental data in Figs. (3, 6).
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4.4 Limitations and extensions of the model

Our model is still very primitive compared with the true complexity of V1. A particular
lacuna is multiscale sampling. This is important, not only because images contain mul-
tiscale features, but also because arranging for the model to treat flat surfaces slanted
in depth as “homogeneous” or “translation invariant” requires some explicit mecha-
nisms for interaction across scales. Merely replicating and scaling the current model to
multiple scales is not sufficient for this purpose. In addition to orientation and spatial
location, neurons in V1 are tuned for motion direction/speed, disparity, ocularity, scale,
and color (Hubel and Wiesel 1962, Livingstone and Hubel 1984), and our model should
be extended accordingly. The intra-cortical connections in the extended model will link
edge segments with compatible selectivities to scale, color, ocular dominance, disparity,
and motion directions as well as orientations, as suggested by experimental data (e.g.,
Gilbert 1992, Ts’o and Gilbert 1988, Li and Li 1994). The extended model should be
able to highlight locations where input homogeneity in depth, motion, color, or scale is
broken.

Other desirable extensions and refinements of the model include the sort of dense
and over-complete input sampling strategy that seems to be adopted by V1, more pre-
cisely determined CRF features, physiologically and anatomically more accurate intra-
cortical circuits within and between hypercolumns, and other details such as on and
off cells, cells of different CRF phases, non-orientation selective cells, end stopped cells,
and more cell layers. These details should help to achieve a better quantitative match
between the model and human vision.

Any given model, with its specific neural interactions, will be more sensitive to
some region differences than others. Therefore, the model sometimes finds it easier or
more difficult than humans to segment some regions. Physiological and psychophysical
measurements of the boundary effect for different types of textures can help to constrain
the horizontal connection patterns in an improved model. Experiments also suggest
that the connections may be learnable or plastic (Karni and Sagi, 1991, Sireteanu and
Rieth 1991, Polat and Sagi 1994).

We currently model salience at each location quite crudely, using just the activity
of the single most salient bar. It is essentially an experimental question as to how the
salience should best be defined, and the model can be modified accordingly. This will be
particularly critical once the model includes multiple scales, non-orientation selective
cells, and other visual input dimensions. The activities of cells in different channels
need somehow to be combined to determine the salience at each location of the visual
field.

In summary, this paper proposes that the contextual influences via intra-cortical in-
teractions in V1 serve the purpose of pre-attentive segmentation. It introduces a simple,
biologically plausible model which demonstrates this proposal. Although the model is
as yet very primitive compared to the real cortex, our results show the feasibility of the
underlying ideas, that simple pre-attentive mechanisms in V1 can serve difficult seg-
mentation tasks, that breakdown of input homogeneity can be used to segment regions,
that region segmentation and contour detection can be addressed by the same mecha-
nism, and that low-level processing in V1 together with local contextual interactions can
contribute significantly to visual computations at global scales.
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