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In mammalian retina, the Y (or M) ganglion cells are significantly more transient in response, more
selective to stimuli of low spatial and high temporal frequencies and less selective to spectral information
than the X {or P) cells. It is shown that these differences in cell properties can be explained by a model
that assigns different functional goals to the different ganglion cell types. In this model, the goal of the Y
cells is to extract as fast as possible the minimum amount of information necessary for quick responses.
In contrast, the goal of the X cells is to extract as much information as possible. Temporal characteristics
of the information extraction by the two cell groups are also derived.

1. Introduction

Natural visual signals are corrupted with noise and
redundant due to strong spatio-temporal corre-
lations. It has been proposed that the cat or
monkey tetina is a general purpose processor that en-
codes light signals for efficient transmission down the
optic nerve. 11 Stated another way, the retinal gan-
glion cells are structured to transmit as much visual
information as possible to the brain at a given trans-
mission cost. Consequently, to remove the spatial
redundancy in inputs, the ganglion cells require the
center-surround structure in their receptive fields.
To average out the noise and thus to extract more in-
formation, the centers of the receptive fields expand
under low illumination or when stimulated at high
temporal frequencies. These results agree with the
physiological observations.®

These earlier works, however, discuss only the
ganglion X cells in cats or parvocellular cells (P
cells) in monkeys and do not explain the existence
of another major type of ganglion cell — the Y
cells in cats or magnocellular cells (M cells) in
monkeys. 5315172021 Ty the rest of the paper, state-
ments on the X-Y cells will be also applicable to the
P-M cells unless otherwise stated. Although the X-
Y and P-M cells do differ in some aspects such as
their contrast gains, we will leave such differences
outside the paper. Compared to X cells, Y cells are

* Work supported in part by a grant from the Seaver Institute.

significantly more sensitive to visual stimuli at lower
spatial frequencies (lower spatial resolution) and
higher temporal frequencies (transient responses).
These cells have larger dendritic fields, a smaller cell
density, thicker axons and thus a larger conduction
velocity. The X cells respond approximately linearly
to inputs while Y cells respond linearly only to stim-
uli of low spatial frequencies. In monkeys, where
color vision exists, P cells are color-opponent while
most M cells show little spectral selectivity. Both X
and Y cells have center-surround receptive fields and
send their outputs to the visual cortex. The Y cells
also project to the Superior Culliculus.

This study introduces a model to show that the
different properties of X and Y cells are designed
to achieve different functional goals. 1t is generally
believed that while the X channel does the analysis of
the fine structures in the visual image, the Y channel
does the initial analysis of the gross structure. %1922
In the present study, such different goals for X and
Y cells are formulated explicitly using the language
of information theory — while the goal of the X cells
is to extract as much visual information as possible,
the goal of the Y cells is modeled to extract as fast as
possible the minimum amount of information needed
for quick responses. Using optimization technique
and assuming that the cat or monkey retina is not
involved in any special visual tasks such as “bug
detection or recognition”, it will be shown that the
receptive field properties of the X and Y cells are
optimal to achieve their respective goals.
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This model is motivated by the following consid-
erations. For cats and monkeys, the visual tasks are
first to locate and then to identify visual objects,
To quickly locate objects relevant for survival and to
give visual feedbacks for motor tasks or body orienta-
tion, it is necessary to have fast visual responses with
a minimum necessary extraction of information. The
X cells do not serve this purpose. In order to extract
accurate information, they integrate the signal over
time to improve the signal-to-noise ratio using tem-
poral correlations in visual inputs. Such temporal
integration sacrifices speed, Therefore, the Y cells
instead are modeled to extract visual information as
fast as possible or within a shortest time after the
information arrives. Furthermore, they are assumed
to extract only a minimum amount of information
needed to reach a fast decision in the brain. Denot-
ing the X pathway as the “most” pathway (referring
to extracting as much information as possible), then
the Y pathway is the “fast” pathway. Roughly, the Y
path detects “where” and then the X path recognizes
“what” the visual objects are.

One should note that the speed of information
extraciion differs from the rate of information trans-
mission which is more of a concern in the practice
of communication engineering. Here, a slower ez-
traction (for X cells) means a longer latency for any
information to go from the photoreceptors to the
ganglion cells whereas a slower fransmission indi-
cates that a smaller amount of information is trans-
mitted from one to the other per unil time. A
slower eztracting ganglion cell receives the visual
information later than a faster one but the rete or the
amount of the information transmitied to it can still
be higher. The “fast-most” model can also be stated
as follows. The Y cells aim to eriract quickly the
minimum necessary information, while the X cells
aim to {ransmit the visual information at a high rate
to the brain. A cell has to eziract information by
a larger amount, although possibly with a longer
latency, in order to fransmit the information at a
higher rate to the brain.

This “fast-most” model suggests that extracting
as much information as possible is not necessarily
the goal for every pathway in the sensory systems
— even at the early processing stages. Fast extrac-
tion of minimum necessary mformation is an im-
portant goal as well. Note that the X-Y pathways
remain segregated in the visual cortex.?"?* Feeding
the fast information back to the “most” path at lower

visual levels can enhance the extraction of “more”
information through attention and gain control. The
“fast-most” model is consistent with the higher ax-
onal conduction velocity of Y cells and the earlier
arrival of their signals in the cortex®® (see Ref. 13
for counter views),

The paper is organized as follows. In Sec. 2, it
will be shown that the temporal course of informa-
tion extraction by a cell depends on the form of its
impulse response to visual inputs. Therefore, the
“fast” and “most” goals, expressed as different con-
ditions on the temporal structure of information ex-
traction, require different impulse response forms.
Section 3 shows that the goals of “fast” and “most”
information extraction cause transient and sustained
responses, respectively. In Sec. 4, the requirement
on the Y cells to extract only the minimum infor-
mation needed is shown to cause their selectivity to
stimuli of low spatial frequencies and their color-
insensitivity. These response properties required
by the functional goals agree with those observed
physiologically and thus suppert the model. The
different goals are further illustrated by the respec-
tive temporal courses of information extraction from
stimuli of various spatial frequencies. Discussion fol-
lows in Sec. 5. The main line of argument in this
paper should be comprehensible without following
all the mathematical details which are provided for
interested readers.

2. Formulation

Before studying the consequences of the “fast-most”
model, we first formulate the approach explcitly. To
keep the study more tractable, only linear response
properties of the cells are considered. We shall show
that the linear model can already account for the
qualitative differences between the two paths in the
linear regions, which dominate the X responses and
the low spatial frequency region of the Y responses.

Concentrating first on the temporal aspect of
visual inputs, describe a visual scene at time ¢ by
a scalar signal S(¢). This signal is received by
the photoreceptor with intrinsic noise N(t) which
includes quantum and transduction noises. The re-
ceptor output is L(t) = S(f) + N(t). The gan-
glion cell with impulse response A(t) has an output
O(t) = >, A(t — ¢')L(t') 4+ Ns(t). Here the intrin-
sic ganglion cell noise Ns({) includes the effects of
spike generation in the optic nerves. The function



A(t), with A(t) = 0 for ¢ < 0 can be viewed as the
retinal temporal filter. Time t is discretized since
the photoreceptor output L(t) has a limited tempo-
ral resolution (about 20-30 ms for humans) ie. a
temporal frequency cutoff which is set to weyrog=1
for convenience.!!

Without loss of generality, we assume that all
the signals and noises have zero means. Both N
and Njs are assumed uncorrelated with S and are
Gaussian white noise with variances N2 and NZ,
respectively. The signal S is temporally correlated
and has an autocorrelator R,(t — t') = (S(¢)S(t')).
Here {---) indicates the average over the ensemble
of visual scenes; time translation invariance of R, is
assumed because of the temporal homogeneity of the
visual inputs. The receptor output L has a correlator
Rr(t —t') = R,{t - ¢/} + N26(t — t'). Quantities
u = 5, N, Ns, O, L are approximated as Gaussian
distributed with probabilities

P(u) o e_%Eiu.f u(i)ﬂ:‘(i,j)u(j) (1)

where R 1(4, j) is the {i, j}th element of the inverse
of the matrix R, whose elements® are [R,]; =
Ry(i — j). The matrix R, has dimension d which
is the input duration. In usual visual activities,
d -~ 00,

Let /(a;8) = ¥,; P(a,b) log prasshy be the
amount of information carried by a about .1% Then
the total amount of information at the ganglion
cell level about the visual inputs is J(O; S) =
1 log M—’;&:—f}:% where A is a matrix with el-
ements A;; = A(f — j} and T on the superscripts
denotes the transpose of a matrix. Here O and S
are the outputs and inputs received over all time.
I{0; S) provides no temporal characteristics of the
information extraction speed. In principle, one needs
to wait till ¢ — oo before all outputs O(t) are received
to get the total I1{O; S).

To access the speed of information extraction, the
following question is asked. For new visual infor-
mation brought in at time ¢’ by S(t'}, how much of
this information is extracted by the ganglion cell out-
puts O = {O(t), O(t — 1), O(t = 2), ..., O(—0)}
over all time up to ¢ > t'.The answer is Iy (¢, t)
= I(0%; S*')— [{O%; §¥'~') where S* is defined anal-
ogously to O* and I(O*; S* 1) is the total extracted
information up to ¢ about the input signals arrived
before t'. Because of the temporal translation invari-
ance, Ioue(t, ') = Iou(t — ¢') depends only on time
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differences. Therefore I,,¢(¢) is® the information ex-
tracted by the ganglion cell from the new input in-
formation that arrived exactly ¢ time steps earlier.

The longer one waits after a stimulus, the more
information I,.(t) is accumulated about it. This
is because of a finite convolution time from input
to output and because of the fact that measuring
a later input signal gives extra information about
an earlier one due to their correlations. fm,t(t) =
Iout(t) = Ioue(t — 1) > 0 is the additional information
extracted at exactly { time steps after the arrival of
the information. With finite durations of impulse
responses and input correlation time, I,u(¢) satu-
rates or fout(t) =0, ast — oo. A larger (1)
or Iou(t) at small ¢, particularly a larger Joyu(0) =
fout(O), implies faster extraction. On the other hand,
a larger Ioye(0o)=tnformation rate=I1(0; S)/d indi-
cates a larger amount of total output information
whether it is extracted quickly or slowly. A fast ex-
traction can be recognized by a large 15, (0)/ Ioue(c0)
or a short saturation time for I, (t).

The photoreceptor level counterpart of Iy () is
Iin(t), which® has the same properties as I, () and
In(t) > Ioui(t) since ganglion cells cannot extract
more information than the photoreceptors {Fig. 1).

Let T be some time window for the animal’s fast
responses. Then a fast extracting Y cell should have
large Iou(t) or Loui(t) for t 3 T. At timet > T
after the arrival of a stimulus, it is no longer the
goal of Y cells to continue increasing f,,¢(t) or hav-
ing nonzero fcut(t), since such a task is assigned to
the X cells, Roughly, the Y cells are to enhance the
fast information

F=Y " Tu(t)e T,
t>0

which attributes less importance to the information
extracted later via a weight e~*T. The weighting
function (and T} depends on animal needs and may

1 det[A(R.(t + 1) + N?)AT + N2
Iout(t) - = 108 r 5
2 det[A(R.{£) + N2)AT+N5]
where ﬁ.,(n)~ is a square matrix of same dimension d as
Ry, 30 Racntidentk[Ry ldmntk,dont; = &; and
[Rs],'j =0iftorj<d—n.

b
En(t —t') = Eolt, t') = I{L%; S¥'} = I(L*; §¢'~1)
where L' is defined analogously to O°.
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Fig. 1. Simulation results for a “fast” cell (with T=0.5, plotted with thin solid line), an uncooperating “most” cell (dashed
line) and a cooperating “most” cell {(dotted line). R,(t}/N* = 1.0e~*/*° d = 100. The lower right graph plots Lin () (thick
solid line), 7125 (¢) (thin solid line), IDS* (1) (dashed line), ITni***(¢) (dotted line) and It (1) (thick dot-dashed line). All
of them are plotted by using fin(co) as a unit for convenience. They are respectively the temporal courses of information
extraction by the photoreceptor, the “fast” cell, the uncooperative “most™ cell, the cooperative “most” cell and the “fast”
and cooperative “most” cells together. The left graph plots the impulse responses A(t), obtained by gradient descent
simulation. Note that all the impulse responses approach 0 as ¢+ — 0o. The upper right graph plots the temporal frequency
sensitivities |A(w)|, calculated from Eq. 7 except for the “fast” cell. Both graphs are normalized such that the highest

amplitude is 1. The cost ¢ for the uncooperative “most” cell is 2.28, for the cooperative “most” cell 1.12 and for the “fast”
cell 2.55. The two Lagrange multipliers are A™* = 433 and 2™ = 150.

take another form, provided that it decreases with
t and diminishes for ¢ > T. When T — 0, F =
Tout(0) and the Y cells attend only to the information

The temporal course of information extraction
Iout(t) is different from, although dependent on, the
temporal course of cell impulse response A(t). For
extracted instantaneously. In the opposite limit, a stimulus S(0) at time 0, both its evoked response
T — oo disregards the information extraction speed A(t} and its transmitted information Tout(t) are zero

and gives F' = I,,{oc) — the extraction goal of the before ¢ = 0 by causality. For t > 0, the response

X cells. A(t) can be positive or negative and decays to zero



as t — oo. In contrast, the accumulated information
Iout(t) is non-negative and always nondecreasing.
The main aim of this study is to understand the
cell response properties A(t) from the information
extraction goals expressed by the requirements on
Lut(t). Such requirements are stated by the values
of F. The impulse response 4 from a Y cell should
lead to a large F' at its output for small T', i.e. fast
information extraction. But F will also increase
by raising the dynamical range or output power
(0%(1)) = % 3 [ARLAT}iy + N}. For instance,
passing inputs S directly to the brain without retinal
filtering would extract the input information most
quickly but the optic fiber would require high power
or large channel capacity due to redundancies and
noises in visual inputs. For convenience, let us narne
C(A) = {O%(t))/N} the cost to the animal.® Then
an optimal A should maximize F' at a given C{A}.
Equivalently, the optimal A minimizes

E=C(A) - Atp, (2)

where the constant A" weighs the importance of
maximizing F as opposed to minimizing the cost
C(A). The value of A'* can be adjusted such that
only the minimum necessary information is extracted
as we will see in Sec. 4. Therefore, impulse response
A(t) for the “fast” cell (or the “most” cell when
T = o0) should satisfy

oFE

aA—(t):O fort:O,l,Q,(d-—l)—>oo

(3)

3. The Temporal Properties of the “Fast”
and “Most” Cells

We examine here whether the impulse responses
required by the “fast” and “most” cells agree with
those observed physiologically. The responses from
the solutions of Eq. 3 have the form A = §& -
g( Ry /N?) where g(-) is some function. They depend
on the ensemble of the visual scenes via the input
correlator R,. No available experimental data give

R,. Thus a simple choice is made by assuming that

R,(t St .
L) - B e, (4)

where 7 approximates the correlation time among
visual inputs and S? is the average input signal
power.

The optimal A are obtained approximately by
gradient descents in a d-dimensional space {A(0),
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A(1), ..., A(d—1)} to reach a minimum E ford >» 7
and 7. Thus, the impulse response is modelled with
d degrees of freedom denoting its value at d time
steps. d should be large enough that at the last
time step, the impulse response A(d — 1) should
have reduced sufficiently to zero. The descents are
smooth and the final results are robust and easily
reproducible. The descents start at A(0) = 1 and
A(i # 0) = 0, corresponding to ganglions passing
the photoreceptor inputs with no temporal filtering.
For comparison, the impulse responses for “most”
cells are cbtained by taking T — oo for F in E or
equivalently (and enacted for practical reasons} by
minimizing

EMot = C(A) — A [(0; S)/d. (5)

Figure 1 shows an example of the impulse re-
sponse solutions A(t) of the “most” and “fast” cells
(dashed and solid lines) respectively. Also shown are
Iin(t), Loue(t) and the temporal frequency sensitivi-
ties of the cells — the Fourier transform A(w) of A(t)
at frequency w. Both the “most” and “fast” cells are
shown to be excited at short time delays and inhib-
ited at long delays by inputs. (Such a temporal struc-
ture is analogous to spatial center-surround receptive
fields, e.g. excitation from short distances and inhi-
bition from long distances, The opposite polarity
— inhibition at short delays and excitation at long
delays — can arise from initializing the gradient de-
scent with A(0) = —1 and A(i # 0) = 0). However,
compared to the “most” cell, the “fast” cell has a
shorter excitation followed rapidly by brief inhibition
and thus a shorter response duration. Consequently,
the “fast” cell is more sensitive to the higher frequen-
cies than the “most” cells. These results indicate
that the “fast” cell responds more transiently than
the “most” cell, in agreement with the temporal re-
sponse properties of the physiological Y and X cells.
(One should note that A(w) = 0 for w > 1 by the
definition of this discrete system. In real systems,
ﬁ(u) quickly drops outside its temporal frequency
band limit). The temporal course of information ex-
traction Ioy(t) demonstrates the differences in the
functional goals. At about the same cost, the “fast”
cell extracts information faster (I23(0) > I5e™(0))
while the “most” cell eventually extracts more infor-
mation (I (c0) < IM$*(c0)).

Intuitively, the sustained response is a strategy to
average out noise and integrate or enhance the signal
using temporal correlations in the input. It ensures
more information extraction, especially when the
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signal is small. But obviously, such temporal integra-
tion sacrifices speed. In a transient response, a brief
excitation followed by quick inhibition removes the
average or the temporally redundant input and ex-
tracts any new features or information quickly. But
it is susceptible to visual noise and leads to less or
“Inaccurate” information. Therefore, in a visual en-
vironment with redundancy and noise, the transient
and sustained responses arise from the “fast” and
“most” goals respectively.

This conclusion still holds when cooperation be-
tween the two paths are considered. For an efficient
design, one expects the “most” path to utilize the
information already extracted by the “fast” path. It
should cooperate by simply attending to the infor-
mation that is missing or requires slow extractions.
Mathematically, the problem can be posed as follows.
Given the temporal filter AT of the “fast” cell, find
the filter A™% of the cooperating “most” cell such
that the total output information from the two cells
together is maximized at a given cost to the “most”
cell. {The superscripts fast, most and mosi, are used
to denote quantities corresponding to the “fast”, the
uncooperative “most” and the cooperative “most”
cells, respectively.) Explicitly, one modifies Eq. (5)
to minimize

Emost - C(Amnstc) _ Amotl({of&st, Omaatﬁ}; S)/d,
(6)

det(AR; AT+ N}

where I({O17, Omste}; §) = 1 log SeARLAZ4Y
with 4 = (AA,:::IC) is the total output information

extracted by the iwo pathways together. If A™t
minimizes Eq. (5) and A™%% minimizes (), then®

A" (w))]

\/Mmost(w)iz — |Afast ()2
= if [Amost(w)|2 _ I‘/_it'ast(w)l? =0 ,
0 otherwise .
(M

l/imost(w”Z

Ny Ra{w}) f1 o zamestnz
wr {2(R,(w)+N2) (1 1t Ry{w) ) - 1}
ifjAmest ()2 > 0,

0 otherwise ,

where A™*% (W) and R, (w) are Fourier transforms of A3 (t)
and R.(t), respectively.

Here A™%¢(w) and A™%(w) are the frequency sensi-
tivities of the (cooperative) “most” and “fast” cells,
respectively. They are the Fourier transforms of the
corresponding impulse responses.

Cooperation reduces the sensitivity from A
to A™oste significantly at high w where A™* is large
and negligibly at low w where A™* is small. It makes
the “most” cell respond in a more sustained manner
by expanding its excitation duration at the expense
of its inhibition duration (Fig. 1). This causes
longer temporal averages over inputs and thus slower
information extraction. Such a change is affordable
since a faster extraction is covered by the “fast”
cell via cooperation. These complimentary roles can
be seen in the I,y plot. The “fast” cell is almost
solely responsible for the information output within
the initial response phase whereas the cooperating
“most” cell significantly picks up information only
when the extraction by the “fast” cell is saturating.
Although the coaperative “most” cell alone extracts
less information than the “fast” cell in this example,
together they extract more information than the
uncooperative “most” cell at a smaller cost to the
cooperative one.

Therefore, the impulse responses required by the
“fast-most” model agree qualitatively with those
observed physiologically, whether or not the cells co-
operate in extracting information. This conclusion
does not depend crucially on the exact form of the
cotrelator R, (Eq. (4)) and can be obtained from
modified correlators such as R,(t) o« e~/ with
o = 0.5, 1.5. Here, by concentrating on the tempo-
ral domain, we have been ignoring the spatial aspects
of the inputs and the response. If the temporal signal
S(t) (and N(¢) etc.) denotes the temporal evolution
of a particular spatial Fourier component of the vi-
sual image, then the derived A(t) are the impulse
responses to the sin wave grating stimuli of the cor-
responding spatial frequency (see Sec. 4).

most

4. Ganglion Cell Properties in the
Spatial and Spectral Domain

This section shows that the “fast-most” model also
explains the different receptive field properties of X
and Y cells observed in the spatial and speciral do-
main. Physiologically, the receptive fields of both
cell types have the center-surround structure.® Their
sensitivities increase with the spatial frequency f
of the stimuli at small f, reach the peak sensitiv-
ity at fpeak and then decrease with f to zero at
fmax. As the temporal frequency of the stimuli



increases, fpeak decreases and the cells adapt from
spatial band-pass to low pass filters, i.e. the recep-
tive field center expands and/or surround shrinks.
However, compared to the X cells, the Y cells have
smaller foeak and fmae and have higher sensitivities
at small f. In other words, the Y cells have larger
receptive fields and a selectivity to stimuli of lower
spatial frequencies. Furthermore, the P cells are
color-opponent while the M cells show little color
sensitivity, Here we extend the model to account for
these observations.

Extending to the spatial domain, visual inputs
are temporal signals arriving parallel at different spa-
tial locations on the retina. These parallel signals
cannot be treated independently due to their corre-
lations in the natural visual environment. However,
such spatial correlations roughly depend only on the
distances between spatial locations. Consequently, if
we view the visual signals as arriving simultanecusly
through channels of different spatial frequencies, they
are uncorrelated with each other up to the second
order. Each spatial frequency channel f has a par-
ticular input signal S(f, {) with correlator R,(f, t)
and requires particular impulse responses A(f, ¢} for
both the “fast” and the “most” paths. Therefore, the
former optimization problem, Egs. 2 and 6, should
be applied simultaneously to minimize the following
quantities for all f;

ETH(f) = CA™N(F) = A= AP (8)

Emost(f) = C(Amostc(f)) _ Amost(f)

x I({O™*(f), O™==(f)}; S(f))/d.
(9)

The costs C, outputs O and extracted information,
etc. consequently all depend on f. Cooperation
between “fast” and “most” paths is assumed.

In Egs. (8) and (9), A™°*t(£) and A™(f) are dif-
ferent functions of f. This is because the information
from each f plays a different role in the “most” and
“fast” pathways which are to identify and to locale or
detect the visual objects, respectively. First, signals
from the channel f provide visual features with spa-
tial scale of order 1/ f. Therefore, a higher f channel
is less important to the Y path since it adds a smaller
correction to the location of the objects. In contrast,
all the f channels are equally important to the X
path since signals at each spatial scale can give new
features to identify objects. Second, because the Y
cells focus only on the minimum information needed
to detect objects, it is reasonable to expect that there
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exist a fimax above which the information extracted is
considered more than the minimum needed. Third,
since a lower spatial resolution is needed to detect
than to recognize objects, the fyax for the Y cells
should be smaller than that for the X cells. All these
differences arise from the different goals of the Y and
X paths. The former is to extract minimum needed
information and the latter is to extract most infor-
mation. It is sufficient for the present understanding
to model such effects by having e.g.

Mo (f)y ox e/ 1e, (10)

where f. is a constant. Another choice could be, for
example, A% o 1/f. Both choices attribute less
significance to higher f channels for the “fast” path.
In contrast, A™°! is taken to be independent of f.

Guided by the available experimental” result
R,(f) x ITIF’ one models the correlation function
of signals from each f channel as

52 52
Ro(f t) = e/t = e 70D,
H |1 (11)

where ¢ is a constant and 7(f) = 1/(cf). Spatial
and temporal correlations are coupled by having a
shorter correlation time +(f) for inputs of higher
spatial frequency. This is expected since the details
of visual images usually vary faster than the large
scale features. The qualitative results shown below
do not depend crucially on the exact form of R,(f, t}.

From Eqs. (8) and (9), impulse responses to
all spatial frequency f can be derived. One can
thus obtain A™%(f w) and A™%(f, w), the sen-
sitivities of the “fast” and “most” cells to stimuli
of spatial frequency f presented at temporal fre-
quency w. We assume that, except translated from
each other, the receptive fields of the cells are the
same within the same class, at least within a small
region on the retina. The spatial forms of the re-
ceptive field can thus be derived by noticing the fol-
lowing. At a particular temporal frequency w, the
receptive field is simply the cell output patten at the
ganglion cell layer to a point source input at spatial
origin. Such an input has spatial Fourier compo-
nent S(f, w) = 1 independent of f and the spatial
Fourier component of output cells activities is thus
O(f, w) = A(f, w)S{f, w)+noise = A(f, w)+noise.
The receptive field at temporal frequency w is thus
the inverse Fourier transform of .ri(f, «) in the spa-
tial variable f.

Figure 2 shows that as w Increases, both cell types
change from spatial band-pass to low-pass filters and
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Fig. 2. Simulation results in the spatio-temporal domain. The left column shows the spatial frequency sensitivities
of the “fast” cells (T = 0.5, solid line) and the cooperative “most” cells (dotted line) at three different temporal
frequencies w. The cell receptive fields at the respective temporal frequencies are shown in the insets. To make the
center-surround structure more apparent, the receptive field is integrated in the second dimension. Note that Y cells have
larger receptive fields and that the receptive field center expands and/or the surround shrinks, with increasing w (except
for the physiologically unrealistic X cells are high w, see text). The expansion of receptive field center for the “most”
cell from w = 0 to w = 0.1 is not significantly visible from the plot but is nevertheless present. The plots are normalized
such that ma,xU,w'a:mos,c,fm}|f"i°(f, w)] = 1. The temporal courses of the information extraction at three different spatial
frequencies f are illustrated at the right column. In each graph, there are curves Tespectively for the photoreceptors fiy ()
(thick solid line), the “fast” cells I5' () (thin solid line), the cooperative “most” cells Imoste (1) (dotted line) and the “fast”
and cooperative “most” cells together I:33*'(¢) (thick dot-dashed line). All of them again plotted in the unit of Ijn(o0).
Note that at f = 1 the thin solid line and the dot-dashed line are almost superposed onto each other. This indicates
that the “fast” cells are responsible for almost all cutput information. At f = 14 where the dotted and dot-dashed line
almost superpose onto each other, the “most” cells are responsible for almost all output information. Other parameters
are: APt(f) = 800e /7%, A™5 () = 400, d = 100. R,/N* = (20/17]2)e=7**°. The A™°**<(f, w) in left column is obtained
by Eq. (7) while the information curves are calculated by using A(f, ¢) from simulated data.



the receptive fields adapt from a center-surround
structure to that of expanded center and/or faded
surround. Cooperation reduces A™®t(f, w) at low
f where the “fast” cell is dominating while Eq. (10)
leads to a smaller AP at higher f. Consequently,
compared to the “most” cells, the “fast” cells have a
smaller slope of sensitivity at low f, a lower f,a, and
a lower fi..x and thus a larger receptive fields. At
very high w where the “fast” cell dominates, A™ste
vanishes at low f by cooperation and increases only
at higher f where the “fast” cell performs poorly.
If, as in physiology, the “most” cells have a lower
temporal frequency cutoff than the “fast” cells whose
Weutoff = 1, then the area under the dotied curve in
the lower left graph of Fig. 2 cannot be covered by
the X cells. Nor can the Y cells cover it linearly
with their smaller cell densities {(lower fyax). This is
probably the reason for the nonlinearity in the Y cells
to average the signals of high f values spatially.!®
Such averaging multiplexes the information at high
f and high « from the X pathway.

The different cell properties derived from the
model agree qualitatively with those observed exper-
imentally. The I,y plots in Fig. 2 further illustrate
the different goals of the cells. The “fast” cells carry
almost all the output information at low f. They are
still faster at intermediate f where the “most” cells
start to extract more total information. But at high
f, the “most” cells carry almost all (i.e. both fast
and slow) information if no multiplexing from X to
Y happens. Therefore, the different cell properties
can be understood from the “fast-most” model.

Similarly, this model can be extended to the
spectral domain to account for the color insensitivity
of the M cells. Here we ignore the spatial domain and
consider luminance and chrominance channels giving
parallel inputs to the retina. The luminance signal
is defined as the integrated signals from all the input
color cones while the chromatic signal measures the
difference between inputs from the different cones.
Both channels can provide information to detect
visual objects for the magnocellular (or M) path.
Since the M path extracts only a minimum amount
of information needed for fast responses, one of the
channels can be neglected when the other one alone
can already detect the objects. It is shown below why
the chrominance instead of the luminance channel is
neglected.

The luminance and the chrominance signals are
assumed to have the same spatiotemporal properties
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and to be uncorrelated with each other up to the
second order. However, the signal power in the lu-
minance channel is much larger.®2* It can be shown
that for a temporal signal with correlator R,(t) =
$%e=t/7 and T > 1, Iin{00) & L log(l + S57) and
In(0) ~ Llog(l + &5 - a) where @ ~ 1. Thus
the luminance channel, characterized by a larger
52, has more total information Iin(o0). Moreover,
since the ratio between the information arriving in-
stantly and accumulatively, Iin(0)/fin(00), increases
with 5%, the luminance channel also carries faster
information. Slower information in the chrominance
channel makes a “fast” path less useful and is more
suited for the “most” path which has no time limits
for extraction. Figure 3 shows that the (uncoopera-
tive) “most” path compensates for the smaller signal
in the chrominance channel by longer temporal aver-
aging. But the “fast” path exiracts a much smaller
fraction of the fast information (fou(0)/ i, (0)) in the
chromatic than in the luminance channel. Thus for
the M pathway, the chromatic channel is inefficient
and negligible when the luminance channel already
supplies the minimum information needed. This con-
clusion does not depend crucially on the exact form
of R,. In passing, let me remark that the results
do not imply that the M path in low illumination is
useless. Rather, a channel with a lower signal power
is negligible for the M path when another channel
of a higher signal power exists. In fact, the M path
is believed to be the predominant conveyor of visual

information in low illumination.!®

5. Summary and Discussions

The present study shows that the differences in the
receptive field properties of the retinal ganglion cells
are due to their different functional goals. The goal
of Y cells is to quickly extract a minsmum amount
of visual information needed for fast responses while
the goal of the X cells is to extract as much visual
information as possible. The “fast-most” model ex-
plains the physiclogically observed properties of the
two ganglion cell types. Explicitly, the faster ex-
traction by the Y cells causes them to respond more
transiently or selectively to stimuli of higher tem-
poral frequencies than the X cells. Furthermore, the
requirement of minimum information extraction
makes the Y cells more sensitive to stimuli of larger
sizes or lower spatial frequencies. The color insen-
sitivity of the M cells can be similarly explained
by their “fast” goal. Cooperation between the two
cell groups enhances the sustained nature of the



246 Z. L:

l e [ I’jjjllll [ T[T
1 m — E”,/ \\/\’\" S. _
s
.8 Impulse Response (\2/
2 Temporal \—
Frequency Sensitivityk
6 — ™
3 1 Ll Ll
<1 01 .02 05 1 2 o 1
A Temporal frequency
. ' /]
)
"
\ 1.2 l l
\ i
21 — &
LN +F
1N ™~
(. =
1 T~ z
0 1 — == .
1 - —
\\ ’/’ 8
_E
X
—.2 — 3 2= -]
: e -
l | I - 0 e ! i
0 5 10 15 0 5 10
t t

Fig. 3. Simulation results of the “fast” and “most” cells for luminance and chromatic channels. In all plots, the thicker
lines are for luminance, the thinner lines for chrominance, the dashed lines for (unccoperating) “most” cells, the solid lines
for “fast” cells (T' = 0), and the dashed-dotted lines for Iin(t). The information plot is in the wnit of I}, (c0) of luminance
input. The correlators of luminance and chromatic signals are R, and RS with RS/N? = 0.05R,/N? = 0.2¢7%2°, Other

parameters are d = 50, A™**" = 300 and afast — 360,

responses by the X cells and their selectivity to stim-
uli of higher spatial frequencies. {The degree of the
cooperation in physiology is yet to be assessed.)
This model also provides the temporal character-
istics of information extraction by the two ganglion
classes in the visual input ensemble (Fig. 2). The Y
cells are shown to extract input information faster
especially from low spatial frequency (large) stimuli
where they also exiract more total information than
the X cells. This is particularly true for monkey M

cells which have much higher sensitivity than the P
cells.’® At higher spatial frequencies (smaller stim-
uli), the X cells extract more total information than
the Y cells. However, they may still be slower in
extraction, especially when they are band-limited in
temporal frequency and when Y cells multiplex some
information from them in regions of high spatio-
temporal frequencies. To improve and test the
model, quantitative statistical properties of the vi-
sual inputs (e.g. R,(f, t)) and accurate knowledge



of the photoreceptor and ganglion noises are needed.
While an experimental measurement of the output
information under the whole ensemble of natural
scenes would be formidable, such measurements can
be performed in an ensemble of limited input stim-
uli. If the receptive fields adapt to the new ensem-
ble quickly enough, then these measurements can
provide a partial test of the present model.

An alternative view of X-Y division has been
proposed by van Essen and Anderson.?* They argued
that X-Y division is to reduce the cost to animals
by having different cells specializing on different
spatio-temporal regions while achieving a unified
goal of most information extraction. Here such a cell
division is argued to be caused by the cooperation
between cells of different functional goals.

1t is conceivable that different animal needs of
“fast” and “most” information may explain why X-
Y cells in cats have comparable sensitivities while M
cells are much more sensitive than P cells in monkeys.
Also, more detailed modeling is needed to implement
the nonlinearity in the Y cells in the high spatial
frequency region.!®2® Although nonlinearity plays
an important role in the function of Y cells, the
“fast” goal has been shown to be already manifest
in the linear part of the cell properties.

The “fast-most” model suggests that extracting
as much information as possible is not necessarily
the goal for every pathway in the sensory system —
even at the early processing stages. Fast extraction
of minimum necessary information is an important
goal as well. The projeciion of the two paths to
higher visual centers provides a different perspective
when looking at the visual cortex. This perspective
can hopefully shed some light on the segregation,
interaction and cooperation between the two paths
at each visual level. For example, the “fast” goal
of the Y path has potential implications for vi-
sual attention, gain control and visual feedbacks to
motor tasks, etc. Such studies can in turn test and
improve the present model and will lead to a bet-
ter understanding of the information processing for
visual tasks.
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