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Abstract. The olfactory bulb of mammals aids in the 
discrimination of odors. A mathematical model based 
on the bulbar anatomy and electrophysiology is 
described. Simulations of the highly non-linear model 
produce a 35-60Hz modulated activity which is 
coherent across the bulb. The decision states (for the 
odor information) in this system can be thought of as 
stable cycles, rather than point stable states typical of 
simpler neuro-computing models. Analysis shows that 
a group of coupled non-linear oscillators are respon- 
sible for the oscillatory activities. The output oscilla- 
tion pattern of the bulb is determined by the odor 
input. The model provides a framework in which to 
understand the transform between odor input and the 
bulbar output to olfactory cortex. There is significant 
correspondence between the model behavior and 
observed electrophysiology. 

1 Introduction 

The olfactory system is a phylogenetically primitive 
part of the cerebral cortex (Shepherd 1979). In lower 
vertebrates, the olfactory system is the largest part of 
the telencephalon. This system also has a simple 
cortical intrinsic structure, which in modified form is 
used in other parts of the brain (Shepherd 1979). The 
olfactory system deals with a relatively simple computa- 
tional problem compared to vision or audition, since 
molecules of the distal object to be detected are bound 
to and crudely recognized by receptor proteins. Hav- 
ing phylogenetic importance and computational sim- 
plicity, the olfactory system is an ideal candidate to yield 
insight on the principles of sensory information 
processing. 

The olfactory system includes the receptor cells 
within the nasal cavity, the olfactory bulb, and the 
olfactory cortex which receives the inputs from the 

olfactory bulb (Fig. 1). Odorant molecules selectively 
increase the firing rates of the spontaneously active 
receptor cells (Sicard and Holley 1984), whose axons 
carry the odor information to the olfactory bulb. The 
olfactory bulb also receives inputs from the olfactory 
cortex and the "diagonal band" (Shepherd 1979) at the 
base of the brain. Both the bulb and the prepiriform 
cortex to which it sends its efferents exhibit similar 
35-90 Hz rhythmic population activity as seen in EEG 
recordings, modulated by breathing. 

The anatomy and physiology of the olfactory bulb 
are well studied. Efforts have been made to model its 
information processing function (Freeman 1979b, c; 
Freeman and Schneider 1982; Freeman and Skarda 
1985; Baird 1986; Skarda and Freeman 1987), which is 
still unclear (Scott 1986). The position of the bulb in the 
olfactory pathway makes it a likely location of informa- 
tion processing to increase the identifiability of odors. 
The linkage of the bulbar and cortical oscillatory 
activity with the sniff cycles suggests that the oscilla- 
tion plays an important role in the olfactory informa- 
tion processing (Freeman and Skarda 1985; Baird 
1986; Skarda and Freeman 1987). We will examine the 
way in which the bulbar oscillation pattern originates, 
and how this pattern, which can be thought of as the 
decision state about odor information, depends on the 
input odor. 

Fig. 1. Olfactory system and its environment 
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Fig. 2. Neuronal elements of the mammalian olfactory bulb. 
Inputs: olfactory nerves (above) from the receptors; central fibers 
(C, AON and AC) from the higher centers. Neurons: mitral cell 
(M), with primary (1 ~ and secondary dendrites (2 ~ and recurrent 
axon collaterals (re); tufted cell (T), a smaller version of mitral 
cells; granule cell (Gr); inhibitory cell (PG) in the input layer; 
deep short axon cells (SA) which are small in number. Outputs: 
LOT to olfactory cortex. Taken from Shephard (1979) 

2 Anatomical and Physiological Background 

The olfactory bulb has clearly differentiated types of 
neurons located on different parallel lamina. These 
lamina lie on a surface which is roughly a segment of a 
sphere or ellipsoid. Each receptor sends a single 
unbranched axon to the topmost layer, terminating in 
one of the spherical regions of neuropil termed glomer- 
uli (Fig. 2; Shepherd 1979). The receptor axons ramify 
inside it and synapse on the dendrites of the excitatory 
mitral cells and on dendrites of inhibitory short axon 
cells. The short axon cells make local dendrodendritic 
contacts with mitral cells. A few axons from the 
diagonal band also synapse on the mitral dendrites in 
this layer (Shepherd 1979). 

The main cell types of the bulb are the (excitatory) 
mitral cells, whose cell bodies lie below the input layer, 
and the (inhibitory) granule cells lying deep below the 
layer ofmitral cell bodies (Shepherd 1979). Each mitral 
cell sends an unbranched primary dendrite to one 
glomerulus. The granule cell upper dendrites receive 
excitation from the mitral cell secondary dendrites and 
send inhibition back to them by local dendrodendritic 
interaction on their dendritic connections. Most of 
these dendrodendritic connections are reciprocal and 
extend locally to other cells within a few hundred 
microns, the space below several glomeruli (Shepherd 
1979) in the input layer. The mitral cell axons also send 
collaterals to the local granule cell lower dendrites. The 
granule cells do not have a morphological axon. While 
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Fig. 3A and B. Cell non-linear input-output functions. A Three 
examples of experimentally measured functions in a mass of 
mitral and granule cells, relating the pulse probability of single or 
small groups of mitral cells to the EEG wave amplitude 
originated from the granule cells. Taken from Freeman and 
Skarda (1985). B The model functions for mitral and granule cells 
respectively 

they can produce action potentials (Moil and Kishi 
1982), their outputs are dominantly via granule-to- 
mitral dendrodendritic synapses activated by graded 
presynaptic depolarization (Shepherd 1979; Jahr and 
Nicoll 1980). There are also smaller excitatory cells 
called tufted cells, and inhibitory interneural short 
axon cells which are very few compared with the 
interneural granule cells. 

Most inputs from higher olfactory centers and 
other parts of the brain are directed to the dendrites of 
the granule cells. The outputs of the bulb are carried by 
the mitral cell axons. There are ,-~ 1000 receptor axons 
and dendrites from 25 mitral cells in each glomerulus, 
while there are ,,~ 200 granule cells for each mitral cell. 
A rabbit has about 50,000 mitral cells (Shepherd 1979). 
Both the mitral and granule cells have a non-linear 
input-output relationship, which can be qualitatively 
seen in physiological measurement done on a mitral- 
granule cell mass (Freeman 1975, 1979a; Fig. 3). Both 
the mitral and granule cells have a membrane time 
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Fig. 4. A Model of receptor cell response time course to odors in a 
sniff cycle. B Experimentally measured receptor firing frequency 
with an odor pulse delivered to the nose, two concentration 
examples of odor plotted, the line below the time axis indicates 
the odor pulse duration. Taken from Getchell and Shepherd 
(1978) 

constant of 5-10ms (Freeman and Skarda 1985; 
Shepherd, Private Communication). Very little is 
known about the functional strength of synapses in the 
olfactory bulb. 

The receptor cell firing rate increases from the 
spontaneous background level of 1-3 impulses/s with 
increasing odor concentration (Getchell and Shepherd 
1978), and may reach 1ff450 impulses/s. With odor 
pulses delivered to the mucosa, the receptor firing rate 
increases approximately linearly in time as long as the 
pulse is not too long, and then terminates quickly, 
sometimes as fast as lOOms, after the odor pulse 
terminates (Fig. 4). High resolution 2-deoxyglucose 
autoradiography experiment (Lancet et al. 1982) 
shows that for an input odor, different and even 
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neighboring glomeruli have different activity levels, 
while the activity is relatively uniform within a single 
glomerulus. Little is known about the input from the 
higher centers to the bulb. 

Stimulation with odors, depending on the animal 
motivation, causes an onset of a high-amplitude bulbar 
oscillatory activity, which is detected by surface EEG 
electrodes and returns to a low-amplitude oscillation 
on the cessation of odor stimulus (Freeman 1978). The 
oscillation is an intrinsic property of the bulb itself 
persisting after the central connections to the bulb is 
cut off (Freeman and Skarda 1985). Central inputs 
(Freeman 1979a; Freeman and Skarda 1985; Baird 
1986) influence oscillation onset; the oscillation exists 
only in motivated animals, and can be present without 
an input odor (Freeman 1978). However, the oscilla- 
tion disappears when the nasal air flow is blocked 
(Freeman and Schneider 1982). The granule cells are 
the generators of the surface EEG wave, for the mitral 
cells produce a closed monopole field which is negli- 
gible at bulbar surface (Freeman 1975). The EEG 
(Freeman 1978; Freeman and Schneider 1982) shows a 
high amplitude oscillation arising during the inha- 
lation and stopping early in the exhalation. The 
oscillation bursts have a peak frequency in the range of 
35-90 Hz, and ride on a slow background wave phase 
locked with the respiratory wave. Different parts of the 
bulb have the same dominant frequency but different 
amplitudes and phases. A specific odor input will set a 
specific EEG oscillation pattern across the olfactory 
bulb. 

3 Model Organization 

For comparisons between experiments and theory of 
the olfactory bulb, it is essential to model with realism. 
To do the mathematical analysis and simulation 
necessary to understand collective and statistical prop- 
erties, it is necessary to disregard superfluous details. 
Our model organization is a compromise between 
these two considerations. 

3.1 General Model Structure 

Only the mitral and granule cells are included in the 
bulb model. The glomerular layer structure is neglect- 
ed, and the receptor input is regarded as effectively 
directed onto the mitral cells. The tufted cells are 
considered as mitral cells, and the interneural short 
axon cells are neglected because they are very few in 
number compared with the granule cells. Both the 
receptor and central inputs are included. There are N 
(excitatory) mitral cells and M (inhibitory) granule cells 
in the model. Although the mathematical analysis puts 
no limit on the absolute cell numbers, the following cell 
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number reductions are used in the computer simula- 
tion because of the limited computer capability. The 
group of mitral cells connecting to the same glomer- 
ulus is simplified into one cell by assuming that the 
activity level changes little locally. Similarly, the ratio 
M:  N is taken to be much less than the 200: 1 in the real 
bulb. Excitation and inhibition are kept in balance by 
correspondingly increasing the strength of the granule 
cell (inhibitory) synapses. 

3.2 Inputs to the Bulb Model 

The inputs from outside bulb to a mitral cell i is 
described by the components I~ for 1 < i _< N. This input 
vector I is a superposition of a true odor signal and a 
background input, i.e., I =/odor + Ibackg . . . .  d" lbackg . . . .  d 
is the sum of the receptor background input and the 
central inputs to the mitral cell dendrites in the input 
layer. /odor ranges from zero to 10 or 20 times of 
Ibaekg . . . .  d, determined by odor pattern Podor, with 
c o m p o n e n t s  Podor, i for 1 < i < N ,  characterizing the 
odor concentration and the receptor ceils' sensitivity 
pattern to the odor. Each sniff cycle lasts for 
200-500 ms as that of a rabbit. All these inputs are 
taken to be excitatory. The odor concentration on the 
mucosa will rise rapidly at the initiation of inhale, and 
correspondingly drop at initial exhale because of 
absorption by the lungs. Odorant  diffusion through 
the mucous to the receptors should delay the increase 
in receptor activities. Thus we model the /odor to 
increase in time during inhale, as observed in experi- 
ment (Getchell and Shepherd 1978). Exhalation is 
modeled as an exponential return toward the ambient. 
Then for any mitral cell i exposed to odor, 

I P It t i n h a l e ' ~  A_ 1 { t i n h a l e ' ~  
l o d o r ,  i " ~t. - -  ~. ) ~ Jt o d o r  ' i~,~. ) ,  

�9 i n h a l e _ ~  _ _  e x h a l e . ,  if t - t < t  
I~176 I t  (fexhale- I , _ , _ ,  . . . .  1o)/~o~..,o (3.1) 

Z o d o r .  p J-  ! " ,.~ 

[ if t > t exhale, 

as illustrated in Fig. 4, where Ze~hale ---- 33 ms and t i~h"l~ 
and t enha~e are the on-set times for inhale and exhale 
respectively. 

The central input to the granule cells are described 
by the vector I e with components I~.~ for 1 < j  < M. For 
now, it is assumed that I~ and Ibaekgro,nd do not change 
during a sniff cycle. The scales of Iba~kg~o~ d = 0.243 and 
le=0.1 are set such that when Iodo~=0 , most of the 
mitral and granule cells have their cell internal state 
just below maximum slope points on their input- 
output function curves (Freeman 1979a). So there will 
be weak incoherent oscillatory activity when there is 
no odor input, as often observed (Freeman and 
Schneider 1982). 

3.3 The Model Cell Property 

Each cell is modeled as one unit since typical (dendro- 
dendritic) interactions take place locally on the den- 
drites with electrotonic length less than one (Shepherd 
1979). The internal state level of a neuron is described 
by a single variable resembling the cell membrane 
potential�9 Those of the mitral cells and granule 
cells are respectively X ~ { X 1 ,  X 2 . . . .  , xN} and 
Y={Yl,Y2, ...,Y~}. The cell output is described as a 
continuous function of the cell's internal state, and can 
be thought of as proportional to the cell firing 
frequency. They are G~(X)= {g~(xl), gx(X2) . . . . .  g~(xN) ) 
and Gy(Y) = {gr(Y0, gr(Y2) ..... gr(YM)} for the mitral and 
granule cells respectively, where g~ and gr are the 
neurons' output functions which have the following 
properties modeled after a real cell: 

1) gdgy) >0,  g'(g~) >0,  i.e., the output firing rate is 
non-negative and non-decreasing with increasing cell 
membrane potential. 

2) g~ and gr are non-linear, the strongest non- 
linear region occurs around the firing threshold region 
of the cell, and the outputs also saturate at high 
internal state level. 

Figure 3 shows the form of input-output relation 
used for mitral and granule cells. The complicated 
mathematical form was chosen for convenience, and is 
inessential to the behavior as long as the shapes are 
qualitatively preserved. 

The function formulae are: 

?-tq 
S ~ ' + S x t a n h \  S" J '  if x<th; S~=0.14, 

g~(x) = , f -- th 
S x + S ~ . t a n h t ~ - ) ,  if x>_th. Sx=l .4 �9  

M ~  

[ S'y + S'y - tanh ( ~ t h ) ,  

gr(Y) = { th , 
S',+S, t a n h \ ~ j  if y>th;  Sr=2.9 ,  

where th = 1. The granule cells were modeled with a 
larger linear range, reflecting the fact that granule cells 
do not have axons, and thus have a less strong non- 
linear threshold effect. The non-linear and threshold 
functions are essential for the bulbar oscillation dy- 
namics (Freeman 197%; Freeman and Skarda 1985; 
Baird 1986) to be studied. 

if y < th; S'y = 0,29, 

3.4 The Synaptic Connections and System Dynamics 

The geometry of bulbar structure, namely with cells 
sitting on two dimensional sheets shaped like a seg- 
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ment of a sphere, is simplified as cells sitting on a one 
dimensional ring. Each cell is specified by an index, e. g. 
i th mitral cell, and jth granule cell for all i,j which 
resemble the spatial location of the cells. The i th mitral 

i" M th 
cell is the neighbor of i+_ 1 t* mitral cells and - -  

N 
granule cell. The 1 ~t and the N th ( M  th) mitral (granule) 
cells are next to each other. This 1 - d  simplification is 
helpful for understanding but is not essential for the 
model (see discussion). 

The synaptic strength in the model is postsynaptic 
input: presynaptic output. An N • M matrix Ho and 
M x N matrix Wo are used respectively to describe the 
synaptic connection from granule cells to mitral cells 
and vice versa. For  instance, Ho.~j is the connection 
strength from the jr, granule cell to i t* mitral cell Since 
the synaptic connection in the bulb is local, Ho,~j 4:0 
only i f f  h granule cell and i th mitral cell are near each 

i . M  i . M  
other, i.e.,j,~ ~ o r j ~  ~ + M  because of the ring 

structure. This implies that H o will be a near diagonal 
matrix with most non-zero elements near the diagonal 
line. Here diagonal elements mean those Hoa j with 

i . M  
J = 7 '  because H o need not be a square matrix. Wo 

has a similar matrix structure. The matrices used in the 
computer simulations are (for N = M =  10): 

H o =  

Wo 

~0.3 0.9 0 0 0 0 0 0 

0.9 0.4 1.0 0 0 0 0 0 

0 0.8 0.3 0.8 0 0 0 0 

0 0 0.7 0.5 0.9 0 0 0 0 

0 0 0 0.8 0.3 0.8 0 0 0 

0 0 0 0 0.7 0.3 0.9 0 0 

0 0 0 0 0 0.7 0.4 0.9 0 

0 0 0 0 0 0 0.5 0.5 0.7 

0 0 0 0 0 0 0 0.9 0.3 

0.9 0 0 0 0 0 0 0 0.8 

t0.3 0.7 0 0 0 0 0 0 0.5 

0.3 0.2 0.5 0 0 0 0 0 0 

0 0.1 0.3 0.5 0 0 0 0 0 

0 0.5 0.2 0.2 0.5 0 0 0 0 

0.5 0 0 0.5 0.1 0.9 0 0 0 

0 0 0 0 0.3 0.3 0.5 0.4 0 

0 0 0 0.6 0 0.2 0.3 0.5 0 

0 0 0 0 0 0 0.5 0.3 0.5 

0 0 0 0 0 0.2 0 0.2 0.3 

0.7 0 0 0 0 0 0 0.2 0.3 

0 0.7' 

0 0 

0 0 

0 

0 

0 ' 

0 

0 

0.9 

0.3 
0.3\ (3.2) 

0.7 

0 

0 

0 

0 

0 

0 

0.7 

0.5 

Most of the non-zero elements are near the diagonal 
line and corners, reflecting the assumed ring geometry. 
Non-zero elements in Wo occur further from the 
diagonal line than those in Ho, reflecting the longer 
range mitral-to-granule than granule-to-mitral 
connections. 

The bulb model system has equation of motion: 

f (=  -- HoGy(Y ) -  ~ X  + I, 
= W o Gx(X) - ct r Y + I c , (3.3) 

where ~x=l/zx, ay=l/zr, and Zx=Zr=7ms are the 
time constants of the mitral and granule cells respec- 
tively. The minus sign in front of the matrix Ho 
represents the inhibitory nature of the granule cells. In 
simulation, weak random noise with a 9 ms correlation 
time is added to I and Ic to simulate the fluctuations in 
the system. 

The scales o f H  0 and W o are chosen to be about  the 
same, with values such that the oscillation frequency in 
the stimulated model bulb neural activity is about the 
same as in the real biological bulb (see Sect. 5.1). The 
individual elements of Ho and 141o in simulation are 
chosen such that there will be high amplitude oscilla- 
tions in the model bulb for certain kinds of odor  input 
/odor (see Sect. 6.1). 

4 Simulation Result 

Computer  simulation was done with 10 mitral and 
granule cells. The simulations start with initial cell 
internal states close to the background state when no 
odor  inputs are present. Different odor  input patterns 
are represented by the different vectors Podor" 

Figure 5 shows the simulation result of several sniff 
cycles of a certain odor  input Iodor. The rise and fall of 
oscillations with input and the baseline shift wave 
phase locked with sniff cycles are obvious. The surface 
EEG  wave is calculated using the approximation by 
Freeman (1980) as a weighted sum of each granule cell 
output  gy(yj). Physiologically measured EEG  waves 
are shown for comparison. 

The activities of individual cells in a sniff cycle 
across the whole bulb constitute an activity pattern for 
the particular odor  input Iodor (Fig. 6). All the cells 
oscillate coherently with the same frequency as physi- 
ologically observed (Freeman 1978; Freeman and 
Schneider 1982). The mitral cell output  pattern is the 
only output of the bulb. Physiological multi-channel 
measurement of surface EEG  waves (Freeman 1978), 
though originating in the granule cell activities, also 
displays a similar information pattern in multi- 
dimensions. For  comparison, both the simulated and 
measured (band-pass filtered) E E G  patterns are in- 
cluded in the figure. 
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Fig. 5. A Simulation result of bulbar response in several sniff 
cycles. B Experimentally measured EEG waves with odor inputs, 
taken from Freeman and Schneider (1982). Both the simulated 
and measured EEG waves are surface negative waves 

These simulation results show that the model bulb 
can capture the major  known effects of the real bulb. 
Furthermore,  the model shows the capability of a 
pattern classifier. Fo r  a sniffcycle lasting t~ = 370 ms in 
simulation with fixed inhale and exhale time, some 
input patterns Podo~ induce oscillation, while others do 
not, and different Podo~ induce different oscillation 
patterns (Fig. 7). Zero odor  input Podo~=0 induces 
little activity above background, which is the case 
observed when the nasal airflow is blocked (Freeman 
and Schneider 1982). What  patterns drive the bulb well 
is as yet arbitrary in our model, for there is no relation 
between the particular connections and the odors 
which are used. 

Some measures have been defined to describe the 
difference between different patterns. The mitral out- 
put Gx(X(O) were band-pass filtered above 20 Hz to 
obtain the oscillatory signal Sh(O, and low-pass below 
20 Hz for baseline shift Sl(t ). The oscillation period T is 
the time lag __>5 ms which gives the largest auto- 
correlation for Sh(t). Similarly, oscillation phase dif- 
ferences of the different mitral cells are calculated by 
cross-correlating the different components of Sh(t) after 
the higher frequency components ( f >  1.3/T) are re- 
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Fig. 6. A Simulated mitral cell output pattern in one sniff cycle 
with one odor input example. B Segment of a simulated surface 
EEG wave pattern during the oscillatory bursts with the same 
odor input as in A. C Multi-channel recorded bulbar surface 
EEG wave pattern during 100 ms of bursts, taken from Freeman 
(1978). Both signals in B and C are band-pass filtered 

moved. The phase differences are measured with 
respect to the first cell. The oscillation amplitude of i th 
cell is the root-mean-square of Sh, i(t) averaged in time. 
The results show that for each response, cells with 
substantial oscillation amplitudes have frequencies 
within 1 Hz of each other. Define 

Oosci: an N-dimensional complex vector describing 
the dominant frequency oscillation amplitudes and 
phases averaged over the sniff cycle; 

Om=a.: an N-dimensional real vector describing the 
baseline activities above the background level (Si(t) 
--St(t)leodor=O) averaged over the sniff cycle; 

Ore, ,  and Oo~ca: scalars describing the root-mean- 
square average of the components of Om~an and Oosci 
respectively. 

We can use these quantities to define the similarity 
or difference between response patterns. For  two 
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Fig. 7A-D. Mitral output response patterns for different inputs 
Iodo, of one sniff cycle lasting 370 ms. A, B Oscillatory responses 
for two different inputs. C Non-oscillatory response for an input. 
D Response for no odor inputs 

response  pa t te rns  a and  b deno ted  by  superindices,  
possible  dis tance measures  are: 

a b 

a b 
d 2 1 [(O~162176162 

= a b I0o~o~1100~od 

da = ~---ff----7 ~--~----, 
0~,~,  + 0 ~  

d4 = ~ ,  (4.1) 
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Table 1. Differences between two patterns. Data in each group is 
the average of three pairs of patterns. Group one: The two 
patterns in each pair have different odor inputs. Group two: The 
two patterns in each pair have the same odor input but different 
system fluctuations 

dx dz Idal Id,l dix ~ Id~"l 

Group one 0.3217 0.4243 0.1403 0.2840 0.0257 0.1657 
Group two 0.0007 0.0560 0.0050 0.0413 0 0 

where  ( ) and  [ [ denote  the do t  p roduc t  and  absolu te  
value respectively, dx and  d2 give differences in the 
response  pa t te rn  forms,  while d3 and  d 4 give differences 
in the response  ampli tudes .  

F o r  compar i son ,  d~", which is indicat ive of  the 
difference in fo rm (not ampl i tude)  of  the input  pa t te rns  
Podor, is calculated by replacing Omo,n with Podor in (4.1) 
for dx (similar calculat ion is done  for d~ n co r respond ing  
to da). Table  1 shows tha t  the bu lb  amplifies the 
differences in input  vec tor  Pooor to give ou tpu t  vectors  
Oosei and Omean (compare  dil n with d~ and  d2), while the 
responses  to same odo r  with different noise samples  
differ negligibly. The  noise ampl i tudes  are not  crucial  
for the s t ructure  of  the oscil lat ion pat terns .  

5 Mathematical  Analysis 

5.1 Olfactory Bulb as a Group 
of Coupled Non-Linear Oscillators 

An oscil lator  with f requency co can be descr ibed by the 
differential equat ions  

2 =  - c o y  
or  x--~ coEx = 0 ( 5 . 1 )  

) ) = c o X  

with solut ion:  

x = r o sin(cot + ~b) y = - ro cos(cot + ~b), 

where  r o and  ~b are a rb i t r a ry  real constants .  The  x(t), 
y(t) t ra jec tory  is a circle. Wi th  dissipation,  (5.1) 
becomes  

= - c o y -  ctx 
or  ~ + 20t~ + (o) 2 + ~2)x = 0.  (5.2) 

= cox - ~y 

The  solut ion becomes  

x = r o e -~t s in(cot+ ~b), 

where  ~ is the diss ipat ion constant .  I f  a mi t ra l  cell and  a 
granule  cell are connected  to each other,  with inputs  i(t) 
and  ic(t ) respectively, then 

= - h- g y ( y ) -  ~xx + i(t), (5.3) 

3~ = w. gx(X)-  c~ry + it(t). 
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This is the scalar version of (3.3) with each upper case 
letter representing a vector or matrix replaced by a 
lower case letter representing a scalar. It is assumed 
that i(t) has a much slower time course than x or y, 
because the frequency of sniffs is considerably lower 
than the characteristic neural oscillation frequency, 
and that i c, input from higher centers, will be kept fixed. 
We can then use the adiabatic approximation, and 
define the equilibrium point (Xo, Yo) as 

Xo ~ 0 = -- h. gr(Yo) - ~ + i ,  
(5.4) 

p ~ 0 = w"  g x ( X o ) -  ~yYo + ic. 

Define x' = x -- x o, y' -- y - Yo. Then 

-~' = - h(gr(Y) - gy(Y o) ) - axx '  , 

f;' = W(gx(X ) --  gx(XO)) --  O~yy' . 

This is already similar to (5.2). If we omitted the 
dissipation, ax = %. = 0, then, when x' and y' are small, 
they oscillate along the solution orbit 

X o + X '  y O + y  ' 

R -  S w(gx(s ) - -gx (Xo) )  d s +  ~ h(gy(s) 
X O  Y O  

-- gv(yo))ds = constant 

which is a closed curve in the original ( x , y )  space 
surrounding the point (Xo, Yo). This means (x, y) will 
oscillate around the point (Xo, Yo). The oscillation 
becomes strictly sinusoidal if g's are linear functions. 
When the dissipation is included, the orbit in (x, y) 
space will spiral into the point (xo, Yo): 

d R / d t  = - a x W ( g x ( X ) -  gx(Xo)) (x - Xo) 

- -  ayh(gy(Y) --  gy(Yo)) (Y -- Yo). 

Therefore, a connected pair of mitral and granule cells 
behaves as a damped non-linear oscillator, whose 
oscillation center (Xo, Yo) is determined by the external 
inputs i and ic. If the oscillation amplitude is small, then 
the system can be approximated by a damped sinus- 
oidal oscillator via linearization around the point 
(Xo, Yo): 

2 = --  h .  g ' r ( Y o ) Y -  ~ x x ,  (5.5) 
p = w. g ' ( xo )x -  %y, 

where (x, y) are now the deviation from (Xo, Yo). The 
solution is 

x = r o e-  ~' sin(cot + q~), 

where ~ = (~x + ay)/2 and 
r t 2 

co = ]/ /hwgx(Xo)gr(yo) + (~x-  ~y)/4. If ax = ay, which is 
about right in the bulb, then a = a x = a r ,  

co = h~g~(Xo)g'y(yo). Using the bulbar cell time con- 
stant and the oscillation frequency from the previous 
section, a~0.3co. The scale of synaptic connections 

strength was chosen so that the model bulb oscillation 
frequency agrees with the biological data (Sect�9 3.4). 
The effect of the input controlled equilibrium point 
(xo, Yo) on the frequency implies that the oscillation 
frequency is modulated by the receptor and central 
input in the real system. The equilibrium point (Xo, Yo) 
is always stable, i.e., the non-linear oscillation is always 
damped, and no sustained oscillation will exist unless 
driven by an external oscillating input. 

N such mitral-granule pairs without interconnec- 
tions between the pairs, represent a group of N 
independent damped non-linear oscillators�9 If the cells 
in one oscillator also connect to cells in the neighbor- 
ing oscillators, then these oscillators are no longer 
independent. This is exactly the situation in the 
olfactory bulb. A granule cell receiving inputs from a 
certain mitral cell gives outputs to other mitral cells as 
well. Similarly, a mitral cell has outputs also to granule 
cells which do not give outputs to this mitral cell. The 
locality of synaptic connections in the bulb implies that 
the oscillator coupling is also local. (That there are 
many more granule cells than mitral cells only means 
that there is more than one granule cell in each 
oscillator.) This situation can be quantitatively treated 
by including many neurons in the mathematical 
analysis. 

Proceeding as in the single oscillator case, 

f ( =  - H o G r ( Y  ) -  C~xX + I ( t ) ,  
(5.6) 

~Y = W o G x ( X )  - ay Y + I t ( t ) ,  

[cf. (5.3)]�9 Use the adiabatic approximation and define 
the equilibrium point (Xo, Yo) as 

X o  ~ 0 = - H o  Gy(Yo) - ~ x X o  + I ,  
(5.7) 

~'o ~ 0 =  WoGx(Xo)-~yYo+L, 
linearize around (Xo, Yo), 

f (  = - HoG'y(Yo) Y -  a ) , X ,  
�9 t Y = W o G x ( X o ) X  _ %, Y,  (5.8) 

where (X, Y) are now deviations from (X o, u and 
G'~(Xo) and G'y(Yo) are diagonal matrices with elements: 

! t [Gx(Xo)] u = g ' (x i ,  o), [Gy(Yo)]j~ = gy(Yj, o), for all i, j. De- 
_ ! t fine H = H o G y ( Y o ) ,  W = WoGx(Xo) ,  so 

) (  = - H Y - -  o:,,X , 

~Y = W X  - ay Y. (5.9) 

Eliminating Y, 

X + (C~x + ~ ) x  + (A + ~x~)X = 0, (5.10) 

where A =- H W  = HoG'y( Yo) W o G x ( X o ) .  This is the equa- 
tion for the system of N coupled oscillators [-cf. (5.2)]. 
The second term (~x+~y)X describes the dissipa- 
tio n, while the third term ( A + a x ~ y ) X  includes also 
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the indirect couplings between different mitral cells via 
the granule cells. The i th oscillator (mitral cell) follows 
the equation 

5~+(Otx+O~r)~ci+(Aii+O~x~r)xi+ ~ Aijxj=O. (5.11) 
j , i  

The first three terms are like a single (i ~h) oscillator [cf. 
(5.2)], while the last term describes the coupling to 
other oscillators. These oscillator couplings are local 
because the matrix A is near diagonal, which follows 
from the definition of A and the fact that both Ho and 
W o are near diagonal. The elements of matrix A are 
non-negative by the definition. The coupling from jth 
oscillator to i th oscillator goes through the connection 
path from jth mitral cell to i th mitral cell via all those 
intermediate granule cells. In particular, A, originates 
from the connection path from i th mitral cell back to 
itself via the intermediate granule cells. In our simu- 
lated example, the Ho and Wo used implies that each 
cell connects to about three neighboring cells, so from 
above argument each oscillator couples to about 5 
neighboring oscillators. 

The set of mitral and granule cells in the blub can 
thus be viewed as a group of locally coupled non-linear 
damped oscillators. The system can be approximated 
by linear oscillators if the oscillation amplitude is small 
enough. Non-linear effect will occur when the ampli- 
tude is large, and the oscillation wave form will then 
become non-sinusoidal. 

This model of the olfactory bulb can be generalized 
to other masses of interacting excitatory and inhibitory 
cells such as those in olfactory cortex, neocortex and 
hippocampus (Shepherd 1979) etc. where there may as 
well be connections between the excitatory cells and 
between the inhibitory cells, as is claimed by some for 
the olfactory bulb (Nicoll 1971; Freeman 1975, 
1979b, c). Suppose that Bo and C O are excitatory-to- 
excitatory and inhibitory-to-inhibitory connection 
matrices respectively, then (5.6) becomes: 

= - n o G y ( Y  ) - CtxX + BoGx(X ) + I(t) ,  

= WoGx(X ) - c t r Y -  CoGr(Y ) + It(t). (5.12) 

Consequently (5.10) becomes 

2 + ( o b , - B + c c y + C ) X  + ( A  + ( ~ x - n ) ( a y + C ) ) X = O ,  

(5.13) 

where B = BoG'x(Xo) and C -  HCoG'r(Yo)H- 1 ( H -  1 is 
the pseudo-inverse of H). If we replace 0~x by ctx- B, and 
~y by 0~ r + C, then (5.10) becomes (5.13). This means that 
if coupling B and C is local (i.e., almost diagonal), 
having excitatory connections Bo is like reducing 
dissipation for oscillators, while having the inhibitory 
connections is like adding some oscillator dissipation. 
Strong enough local excitatory-to-excitatory connec- 
tions B o can reduce the oscillator dissipations so much 

that the net can oscillate even without much odor input 
1odor as is simulated by Freeman (1979b, c). This is 
however not necessarily true if the connections B 0 are 
non-local (as in the olfactory cortex, Haberly 1985), 
since a negative dissipation introduced by a local 
excitatory-to-excitatory connection can become posi- 
tive non-locally when the two oscillators coupled by B 
are oscillating with opposite phases. 

5.2 Oscillation Pattern Analysis 

If X k is one of the eigenvectors of A with eigenvalue 2 k, 
(5.10) has N independent modes 

X oc X k e i~kt 

~ Xk exp ( (~ t-bi~ }tkd- 2 - (~ ~ 4 t) 
(5.15) 

for k = 1,2, ..., N, where o) k is the complex frequency of 
the oscillation mode. We will denote X k as the k th 
oscillation mode of the system. For simplicity, we set 
~x = ctr = 0~, then 

X OZ Xk  e - ' t  • iv~kt (5.16) 

for all k. Each mode has frequency ReV~k, where Re 
means the real part of a complex number. The relative 
phases and amplitudes of the individual oscillators in 
k th mode are described by the individual components 

of complex vector X k. If Re( - ~ _ i]/-~k) > 0 is satisfied 
for some k, then the amplitude of the k th mode will 
increase with time, i.e., it is a growing oscillation. 

Starting from an initial condition of arbitrary small 
amplitudes in linear analysis, the mode with the fastest 
growing amplitude will dominate the output. When 
there is a single dominating mode, the whole bulb will 
oscillate in the same frequency as observed physiologi- 
cally (Freeman 1978; Freeman and Schneider 1982) as 
well as in the simulation. When the non-linear effect is 
considered, the strongest modes will suppress the 
others, and the final activity output will be a single 
"mode" in a non-linear regime. 

The collective oscillation mode is a result of 
coupling. Each oscillator gets external driving "forces" 
from the neighboring oscillators. When they influence 
each other in harmony, a global oscillation mode 
results. The amplitude of an oscillator will increase 
when its driving "force" is larger than its damping 
"force". An oscillation mode with growing amplitude 
emerges when each oscillator with substantial ampli- 
tude in the mode has enough driving "force" through 
coupling with other oscillators. Recall that a single 
oscillator in our analysis is always damped, which 
means that the equilibrium point (Xo, Yo) is always 
stable. Because of coupling between the oscillators, the 
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equilibrium point (Xo, Yo) of a group of oscillators is no 
longer always stable with the possibility of growing 
oscillation modes. 

In order that some mode X k can be both a growing 
and oscillatory mode, 2k must be complex. For this, a 
necessary (but not sufficient) condition is that matrix A 
is non-Hermitian. It follows that systems of less than 
three oscillators will not have growing modes, since ifA 
is real and is of dimension 1 or 2, it will only have real 
eigenvalues. 

For illustration, for the symmetric matrix 00 0!) 
~ a b 0 ... 0 

A =  b a b 0 0 ... 0 . (5.17) 
�9 �9 � 9 1 4 9 1 4 9  � 9 1 4 9  

0 ... 0 b 
The N oscillation modes will be 

sin(kl)' c~ 
'cos(kl)\ 

sin!k2) . 

sin(k/) e-'~• cos(k/l] e-"• (5�9 

1 
;in(kN t :os ikN) /  

where k =  2n_ K_K K is an integer, 0<K<--N 2k=a  
N ' -- 2 '  

+2bcos(k). For b<a/2 ,  2k>0, all the modes will be 
damped oscillations with similar frequencies close to 
09 = ]/~. Notice that in each mode, all the oscillators 
have the same oscillation phase, but with different 
amplitudes. If we have a non-symmetric matrix 

/a b c 0 ... 0 0 ~ 

O a b c ... O 0  

O O  a b c 0 ... O 0  
A = (5.19) 

c O  �9 0 a b  

b c ... 0 0 a 

then the oscillation modes will be 

/ ei/~ 

e 2i# ] /3 = 27rK/N, 

/ e_,,+iv~#t K is an integer, (5.20) 
eirn# } O < K < N , 

2 ~ = a + b e i #  + c e  2~#. 

~emP/ 

Notice that in this case 2#'s are non-real complex 
numbers. It is possible to have growing modes if for 

some/3, R e ( - ~  + il/~p)> 0. Also notice that the indi- 
vidual oscillators in most modes have different oscil- 
lation phases. 

5.3 Explanation of  Olfactory Bulb Activities 

One prediction of this model is that the local mitral 
cells' oscillation phase leads that of the local granule 
cells by a quarter cycle, as is clear already from the 
single oscillator analysis. This is confirmed in experi- 
ments (Freeman 1975) in which the local mitral cell 
unit activity was compared with the granule cell 
generated surface EEG waves for phase difference. 
[Note that the orientation of the granule cell dipole 
field gives the surface EEG wave an opposite sign to 
that of granule cell activities (Freeman 1975). There- 
fore the sign of the EEG oscillation is to be reversed 
before comparing it with the local mitral cell oscill- 
ation for phase difference.] 

A second property of the model is that for any 
particular stimulus, oscillatory activity should have 
the same dominant frequency everywhere on the bulb. 
This is also true in experiments (Freeman 1978; 
Freeman and Schneider 1982). Furthermore, the range 
of oscillation frequencies possible should be narrow. 
The observed range covers 35-90 Hz. A damped 
oscillator will not have high amplitude response unless 
the frequency of the external driving force is close to the 
oscillator resonant frequency. Therefore, an oscillation 
mode will not be non-damping unless its frequency, 
which is the frequency of the driving force for the 
oscillators in the system, is close to the oscillator 
resonant frequencies. 

A third feature of the model is the non-zero phase 
gradient field across the bulb, as suggested by the 
examples in Sect. (5.2), which is also present in the 
physiologically observable oscillations�9 In order that 
the i th damping oscillator with frequency co sustains its 
oscillation amplitude, the external driving force 
F i = - - A i j x j  should be relatively in phase with the 
velocity ~i of the oscillator, so that the "energy" inflow 
from external force is no less than the dissipation�9 If all 
the coupling oscillators xj are in phase with x~, such 
"energy" transfer can not occur since Fi is per- 
pendicular to ~. An excited oscillator in a growing 
mode requires coupling to neighbors oscillating with 
phases different from its own. Only those oscillations 
with non-zero phase gradient field can be stable or 
grow. This will not be necessarily true if the excitatory- 
to-excitatory connections or other synaptic connec- 
tion types are present, since the nature of oscillator 
coupling will be different [see (5�9 

The fourth consequence of the model is that the 
oscillation activity will rise during the inhale and fall at 
exhale, and that the oscillatory wave rides on a slow 
wave of background baseline shift phase locked with 
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the sniff cycles. The oscillation equations 

J~ + 2~X + (A + 0~2)X = 0 (5.21) 

have solutions which depend on the matrix 
! t A = HoGy(Yo) WoGx(Xo), which in turn depends on the 

operation point (X0, Yo). From (5.7), (Xo, Yo) depends 
on the receptor input I as follows: 

dX ~ ~ (~2 + H W ) -  l(o~dI +dD, 

d Yo ~ (~2 AI - WH)- l (Wdl  - ~H- t d]). (5.22) 

It turns out that the d] terms are negligible except at 
the initial inhale and exhale instant. Thus the oscilla- 
tion center (Xo, Yo) or the baseline shift wave rises and 
falls with I, or is phase locked with the sniff cycles. 
Furthermore, the oscillation Eq. (5.21) will have grow- 
ing oscillation mode only if R e ( - ~ + i V ~ k ) > 0  for 
some k, which means that the eigenvalue 2k of A is large 
enough. This requires the gain G'~(Xo)G'y(Yo) be high 
enough to make A = HoG'r(Yo) WoG'~(Xo) large. Before 
inhaling, (Xo, I1o) is low on the input-output curve and 
the gain is too small. During the inhale, the increasing 
receptor input I raises (Xo, Yo) towards higher gain 
points. When at some point Re(--~__il/~k)>0 is 
satisfied for some mode k, the oscillation mode will 
emerge from noise. During the exhale, the receptor 
input decreases and the process reverses its direction, 
thus the oscillation decays away. 

6 Computations in the Olfactory Bulb 

6.1 Information Transmission and Extraction 
in the Olfactory Bulb 

Different odors I give different mean firing rates of the 
bulb output response. More importantly, since the 
operation point (Xo, Yo) also determines the oscilla- 
tion solutions of (5.21) through matrix 
A = HoG'y(Yo) WoG'(Xo), different receptor inputs I also 
give different oscillation pattern outputs indirectly 
through (X o, Yo). 

A surge of odor input due to inhalation raises 
(Xo, Yo) to a higher gain point (G'~(Xo) , G'y(Yo)). When ( / ,  h' 
there is no or little odor input Iodor, the point (Xo, Yo) is h 
still stable and no high amplitude oscillation burst h 
occurs because oscillation modes are damped. Increas- H o = h' 
ing/odor not only raises the mean activity level, but also . . 
slowly changes the oscillation modes by structurally 
changing the oscillation Eq. (5.21) through matrix A. If \ h '  0 
(Xo, Yo) is raised to such an extent that one of the 
modes can grow with time, the equilibrium point ( i  0 
(Xo, Ifo) becomes unstable and this mode emerges with w 
oscillatory bursts. In these cases, different oscillation W o = 0 
modes that emerge are indicative of the different odor 
input patterns which are controlling the system param- 
eters (Xo, Yo). When (Xo, Yo) is very low, all modes 0 

are damped, and only small amplitude oscillations 
occur, driven by noise and the weak time variation of 
the odor input. 

The stability change (bifurcation) of the equilib- 
rium point (X0, Yo) for the oscillation Eq. (5.21) has 
been suggested by others (Freeman and Skarda 1985; 
Baird 1986; Skarda and Freeman 1987) for olfactory 
processing. Baird (1986) has showed how single or 
double Hopf bifurcation in one or two oscillators can 
make stable (non-damping) cycles occur. Baird used 
excitatory-to-excitatory connections in the mitral cells 
to ensure the possibility of the stable cycles, which are 
otherwise impossible in systems with tess than three 
coupled oscillators. Our model shows the multiple (N 
oscillators) Hopf bifurcations with or without requir- 
ing excitatory-to-excitatory connections which are 
weak or absent in the olfactory bulb (Nicoll 1971; 
Shepherd 1979)�9 

Our larger system shows the relation between the 
odor input and the oscillation mode in terms of the 
eigenvectors and eigenvalues of matrix A. The oscil- 
lation modes which emerge from the bulbar activity 
with odor input can be thought of as the decision states 
reached for odor information. The bulb output clas- 
sifies the odor inputs by two stages. First, it fails to 
oscillate appreciably for weak odors (or some partic- 
ular stronger odors)�9 The absence of oscillation can be 
interpreted by higher processing centers as the absence 
of an odor (Skarda and Freeman 1987). Second, when 
the odor produces an oscillation, the particular pattern 
of mitral cell activity is specific to an input pattern and 
its minor variants, i.e., the pattern of oscillation 
classifies odors�9 This is chiefly apparent when the 
responses of individual mitral cells are studied, and 
tends to disappear in the EEG average�9 

High gain alone does not ensure the existence of 
non-damping modes. A symmetric A will not result in 
growing modes, as argued in Sect. 5.2. Two examples 
will illustrate how the bulb selectively responds (or 
doesn't respond) to certain input patterns. The matrix 
A in (5.17) might for example have the components 

0 0 

h' 0 

h h' 

0 0 

0 0 

w 0 

0 

0 0 

... 0 h ~  

�9 . � 9  0 

0 ... 0 

. . .  � 9  

0 h' 

~ 0 

. � 9 1 4 9  0 

0 0 
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i.e., each mitral cell gives output to its nearest granule 
cell neighbor only, while each granule cell connects to 
three nearest mitral cells�9 The connections are sym- 
metric and uniform. If the receptor input I and central 
input lc are also uniform across the bulb, then the 
matrix A = HoG'y(Yo)WoG'(Xo) will be symmetric, and 
there will be no growing oscillatory response in the 
bulb output. Such a bulb however, can respond to 
some non-uniform inputs I, which induce a non- 
uniform (Xo, Yo) and, ifgx and gy are non-linear, a non- 
symmetric matrix A. A decision state oscillatory 
output may be reached if the input I is sufficiently non- 
uniform, (i.e., the odor selectively excites different 
mitral cells�9 

On the other hand, if 

(i 00 0i) h h' 0 �9149 0 

Ho = 0 h h' 0 0 ... 0 
�9 � 9 1 4 9 1 4 9  � 9  

' 0 ... 0 0 (iW00 0i) w w' 0 ... 0 

Wo= 0 w w' 0 0 �9 0 
�9 . . .  ' � 9  

' 0 ... 0 0 

the synaptic connection is uniform but non-symmetric 
across the bulb. If everything else stays the same as in 
the previous example, matrix A will have the form in 
(5.19) with uniform receptor input I. A bulb with this 
connection structure can be responsive to a uniform 
receptor input pattern I if it is strong enough. These 
two examples demonstrate that the pattern of the 
synaptic connections in the bulb determines the input 
patterns to which the bulb selectively responds�9 

In the real olfactory bulb, the dendrodendritic 
connections between the mitral and granule cells are 
mostly reciprocal, suggesting that 14/o ,~ Ho r (the trans- 
pose of rio) if we ignore other connections and presume 
roughly equal connection strengths. This implies a 
near symmetric matrix A for uniform inputs if the 
synaptic connection structure is approximately uni- 
form across the bulb. But mitral cells also send axon 
collaterals to the granule cells, suggesting Wo~H~ 
+extra connections, which have less reason to be 
thought symmetric�9 

6.2 Performance Optimization in the Olfactory Bulb 

An active mammalian olfactory system samples the 
inputs by sniffs, each lasting 200 ms to I s in rabbits. 
The olfactory system should make itself ready for the 

next sniff which may contain different odor informa- 
tion from the previous sniff. If (X, Y) is the initial 
deviation of the system from the equilibrium point 
(Xo, Yo), then the degree to which the k th oscillation 
mode gets excited is proportional to (XXk) .  X = 0  
corresponds to no excitation of any modes, while a 
random X corresponds to equal chances of excitation 
for all the modes�9 Terminating the oscillation during 
the exhale leaves only random noise and minimum 
information contamination in the system and helps the 
bulb to reach an unbiased decision on the odor 
information for the next sniff. Furthermore, exhaling 
also changes the operation point (Xo, Yo) back to the 
original value before the inhale (Sect. 5.3), making the 
system ready for the next sniff�9 

The initial operation point (Xo, Yo) before a sniff 
input should be controlled by the motivation level of 
the animal. If (Xo, Yo) is very low initially, a strong 
input /odor is needed to raise the bias (Xo, Yo) high 
enough for an oscillation burst output. Less strong 
input /odor would be required for an initially higher 
bias. Since the initial bias (Xo, Yo) is determined by 
/rbackg . . . .  d and the central input I c by (5.7), it seems 
likely that the motivation level of the animal will be 
controlled through inputs from higher centers. Our 
simulation value for Ibackg . . . .  d and I c are set such that 
the (Xo, Yo) with Iodor = 0 is just below the maximum 
gain point on the non-linear input-output curves 
(Sect. 3.2). This corresponds to a motivated state; a 
small amount of odor input can raise the gain to 
maximum values�9 Physiologically, the bulbar oscilla- 
tory bursts are observed to occur only in motivated 
animals (Freeman 1978; Freeman and Schneider 
1982). And the experimentally measured gain (defined 
as the change in the mitral firing rate with respect to the 
change in EEG amplitude) for bulb neural mass is 
shown to be higher in the motivated states (Freeman 
1979a), which can be achieved by raising Ibackg . . . .  d 
through central inputs. Experiments even show the 
existence of oscillations without odor input with nasal 
breathing in motivated animals (Freeman and 
Schneider 1982). 

The central input I c is also likely to participate in 
other olfactory functions as odor masking or sensitiv- 
ity enhancing for particular odors (see also Freeman 
and Schneider 1982). These issues will be studied in a 
further paper. 

7 Discussion 

Our model of the olfactory bulb is a simplification of 
the known anatomy and physiology. The net of the 
mitral and granule cells simulates a group of coupled 
non-linear oscillators which are the sources of the 
rhythmic activities in the bulb. The coupling makes the 
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oscillation coherent across the whole bulb surface with 
a single frequency for each sniff but different ampli- 
tudes and phases for different mitral cells. The model 
suggests, in agreement with Freeman and coworkers, 
that stability change bifurcation is used for the bulbar 
oscillator system to decide primitively on the relevance 
of the receptor input information. Different non- 
damping oscillation modes emerging from the bifurca- 
tion are used to distinguish the different odors which 
are the driving source for the bifurcations. These 
oscillation modes are approximately thought of as the 
decision states of the system for the odor information. 
The coupling between the oscillators implies that 
information from different parts of the bulb is com- 
bined to produce a coherent output oscillation mode, 
and thus a unitary decision. A succeeding paper will 
use this basic model to study the ability to discriminate 
odors and to use input from higher centers to suppress 
or enhance sensitivity to particular target or masking 
odors. 

Our model bulb encodes the non-oscillatory input 
into oscillatory "AC" output. Since the oscillation is 
intrinsic to the bulb, the model amplifies the weak odor 
input by transforming it to the oscillatory output. 
Consequently, whether or not an oscillatory modc 
exists indicates whcther an odor is prescnt. With the 
extra information represented in the oscillation phases 
of the cells, the bulb emphasizes the differences bc- 
tween different input pattcrns (Sect. 4). Both the analy- 
sis and simulation show that the bulb is selectively 
sensitive, i.e., non-uniformly sensitive, to different 
receptor input patterns. This selectivity as well as the 
motivation level of the animal could also be modulated 
from higher centers (Sect. 6.2). The information encod- 
ing scheme suggests that to extract information from 
the oscillation amplitudes and phases, we should look 
at the mitral cells rather than the EEG waves in which 
the detailed amplitude and phase information tend to 
be averaged out. Within this model, the information is 
carried by the detailed pattern of activity of the 
individual mitral cells; the spatial EEG pattern is an 
information epiphenomenon. This model does not 
exclude the possibility that the information be coded in 
the non-oscillatory slow wave Xo, since as is shown in 
(5.22), X o is determined by the odor input. 

The chief behaviors do not depend on the number 
of cells in the model. The frequencies of the oscillation 
modes are close to thc resonant frequency of a singlc 
oscillator in the system, and thus independent of the 
size of the model. However, since the number of the 
possiblc oscillation modes is the same as the mitral cell 
numbers, the simulated model with a small cell number 
has few oscillation modes, i.e., the simulated model has 
less decision states or smaller memory capacity than 
the real bulb. Thereforc the simulated bulb does not 
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Fig. 8. Simulated bulbar mitral cell response pattern correspond- 
ing to Fig. 6A. Each cell is modeled to have discrete action 
potential firings of maximum rate about 300/s. Each cluster has 
about 310 mitrai cells, and thus a maximum firing rate 93,000/s 

respond oscillatorily to most randomly selected input 
patterns Pod~ 

Most of the analysis is done for the model bulb 
without excitatory-to-excitatory and inhibitory-to- 
inhibitory connections. When those extra connection 
types are included, the system (5.13) is still a group of 
coupled non-linear oscillators. This more complicated 
system is more difficult to analyze, but the solutions 
will still be oscillation modes which depend on the 
inputs. 

Our model uses a continuous input-output func- 
tion, instead of discrete spikes that real neurons 
generate, to describe the neuron outputs. Since the 
continuous output value is meant to simulate the 
average of the firing rate of the neurons, unaveraged 
discrete spike output should chiefly introduce more 
fluctuations in the system. If the biological system had 
approximately equivalent close by neurons, then a 
continuous output would be a good approximation to 
the group average. Simulation was also done on a 
model in which each cell in the original model is 
replaced by a group of cells which generate action 
potentials rather than continuous valued outputs 
(Fig. 8). Oscillatory behavior is obvious in the summed 
spike trains of groups of local cells. But the spike train 
of a single cell appear very noisy and sparse with barely 
recognized oscillatory behavior. In the physiological 
experiment, each mitral cell fires on the average about 
once in 100 ms (Freeman and Skarda 1985), making it 
hard to recognize an oscillation with a period of 25 ms 
in the spike train of a single cell. On the other hand, the 
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E E G  wave is c lear ly  osc i l l a to ry  since it is f rom the 
ave raged  act ivi t ies  of  m a n y  local  g ranu le  cells. 

O u r  s imu la t i on  has  been done  on a one-  
d imens iona l  r ing of  mi t r a l  and  granule  cells, while the 
real  bu lb  has  cells s i t t ing on two-d imens iona l  segments  
of  a sphere.  The  d imens ion  of  the  cell a r r angemen t  is 
no t  crucial  in the model .  One  s imula t ion  was done  on  a 
t wo-d imens iona l  surface of  the cells to  mimic  the real  
bulb ,  and  the bas ic  osc i l la t ion  p h e n o m e n a  were very 
s imi lar  to those  of  the  one  d imens iona l  rings. 
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