
Network: Comput. Neural Syst.11 (2000) 83–102. Printed in the UK PII: S0954-898X(00)11131-5

Odour recognition and segmentation by a model olfactory
bulb and cortex

Zhaoping Li† and John Hertz‡
† Gatsby Computational Neuroscience Unit, 17 Queen Square, UCL, London WC1N 3AR, UK
‡ NORDITA, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark

E-mail: zhaoping@gatsby.ucl.ac.uk andhertz@nordita.dk

Received 1 March 1999, in final form 7 October 1999

Abstract. We present a model of an olfactory system that performs odour segmentation. Based
on the anatomy and physiology of natural olfactory systems, it consists of a pair of coupled modules,
bulb and cortex. The bulb encodes the odour inputs as oscillating patterns. The cortex functions as
an associative memory: when the input from the bulb matches a pattern stored in the connections
between its units, the cortical units resonate in an oscillatory pattern characteristic of that odour.
Further circuitry transforms this oscillatory signal to a slowly varying feedback to the bulb. This
feedback implements olfactory segmentation by suppressing the bulbar response to the pre-existing
odour, thereby allowing subsequent odours to be singled out for recognition.

1. Introduction

An olfactory system must solve the problems of odour detection, recognition, and
segmentation. Segmentation is necessary because the odour environment often contains two
or more odour objects. The system must be able to identify these objects separately and signal
their presence to higher brain areas. An odour object is defined as an odour entity (which, e.g.,
the smell of a cat, often contains fixed proportions of multiple types of odour molecules) that
enters the environment independently of other odours. Therefore, two odour objects usually do
not enter the environment at the same time although they often stay together in the environment
afterwards. In cases when different odours do enter the environment together as a mixture,
human subjects have great difficulty identifying the components [1]. In this paper we present a
model which performs odour segmentation temporally. First one odour object is detected and
recognized, then the system adapts to this specific odour so a subsequent one can be detected
and recognized.

The odour specificity of this adaptation is the key feature of the operation of the system.
This specificity cannot be achieved with simple single-unit fatigue mechanisms [2,3] because of
the highly distributed nature of odour pattern representations in the olfactory system: fatiguing
neurons that respond to one odour would strongly reduce their response to another one, thereby
distorting the pattern evoked by the second odour. In our model a delayed inhibitory feedback
signal is directed to the input units in such a way as to cancel out the current input, leaving the
system free to respond to new odours as if the first one were not there.

Our model is not intended as a faithful representation of any particular animal olfactory
system. Present anatomical and physiological knowledge does not permit such detailed
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modelling. Rather, our focus is on the computations performed by different groups of neurons,
based on general biological findings, which we review briefly here.

In animals, different odour molecules produce different, distributed activity patterns across
the neurons of the olfactory nerve, which provide the input to the olfactory bulb [4,5]. We do
not model this part of the processing. We will simply represent different odours as different
but overlapping input patterns to the bulb. They are temporally modulated by the animal’s
sniff cycle (typically 2–4 sniffs per second), i.e., active only during and immediately after
inhalation.

The main cell types of the mammalian bulb are the excitatory mitral cells and the inhibitory
granule cells. The mitral cells receive the odour input and excite the granule cells, which in
turn inhibit them. The outputs of the bulb are carried to the olfactory cortex by the mitral cell
axons. In vertebrate animals, odours evoke oscillatory bulbar activity in the 35–90 Hz range,
which may be detected by surface EEG electrodes [6, 7]. Different parts of the bulb have the
same dominant frequency but different amplitudes and phases [7,8], and this oscillation pattern
is odour-specific [8,9]. These oscillations are an intrinsic property of the bulb, persisting after
central connections to the bulb are cut [10, 11]. (In invertebrates, oscillations exist without
odour input but are modulated by odours [12].) Upon repeated presentation of a conditioned
odour stimulus, the bulbar oscillations weaken markedly [13]. Since olfactory receptor neurons
exhibit only limited adaptation [14,15], this adaptation must originate either in the bulb or in
cortical structures.

The pyriform or primary olfactory cortex receives bulbar outputs via the lateral olfactory
tract, which distributes outputs from each mitral cell over many cortical locations [4]. The
signals are conveyed to the (excitatory) pyramidal cells of the cortex, both directly and via
feedforward inhibitory cells in the cortex. The pyramidal cells send axon collaterals to each
other and to feedback interneurons which, in turn, inhibit them. There is thus excitatory–
inhibitory circuitry as in the bulb, and oscillatory responses to odours are observed in the
cortex, too. However, the cortex differs from the bulb in the much greater spatial range of
the excitatory connections and in the presence (or at least the greater extent) of excitatory-to-
excitatory connections. This anatomical structure has led a number of workers to model the
olfactory cortex as an associative memory for odours [16–21]. Furthermore, the oscillations
in the cortex require input from the bulb; they do not occur spontaneously. Cortical output,
including the feedback to the bulb, is from pyramidal cells [4]. Some of the feedback is direct,
while some of it is via other cortical centres, notably the entorhinal cortex. Most central
feedback to the bulb is to the granule cells [5]. Cooling the cortex, presumably reducing or
removing the central feedback, enhances the bulbar responses [22].

The basic features outlined here constrain our model: we employ coupled excitatory
and inhibitory populations in both bulb and cortex, we wire the network so that odours
evoke oscillations in the bulb, which drive similar cortical oscillations through excitatory
and inhibitory connections, and we send the central feedback to reduce the bulbar responses.

We will neglect many known features of animal olfactory systems, such as (to name a
few) the patterns of connectivity from receptors to mitral cells, the dendrodentritic character of
the mitral–granule synapses, and the differing spatial range of connectivity in bulb and cortex.
Indeed, the model has no geometry: ‘location’ and ‘distance’ have no meaning here. We retain
only the basic elements necessary to illustrate the basic operation of the system, in order not
to obscure the functions we focus on (detection, recognition, and segmentation).

We will also hypothesize features of the system, in particular the nature of the feedback
signal from the cortex to the bulb, for which there is not yet experimental evidence (though
they are not incompatible with present knowledge). These assumptions will be necessary
in order to make an explicit model that can be tested computationally. Some details of its
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Figure 1. The model. Odour inputsI are fed into the mitral units (x) in the bulb. These interact
with the inhibitory granule units (y), both locally (vertical connection lines) and nonlocally, via the
connection matricesH andW (diagonal connection lines). The mitral units project their outputs
to the cortex via the feedfoward matrixCb→c. The excitatory units in the cortex (u) receive these
inputs both directly and indirectly via the feedforward inhibitory units (z). In addition to the
local excitatory–inhibitory connections (vertical lines) between the excitatory (u) and the feedback
inhibitory units (v), there are nonlocal connections among the excitatory units (J, solid lines) and
from excitatory to inhibitory units (̃W, dotted lines). The outputs of the excitatory units are fed
back through a matrixCc→b to the granule units in the bulb after rectification and low-pass filtering.
(Details of the rectification/filtering operation are shown in figure A1.)

implementation are neither crucial to the computational function of the model nor intended as
explicit neurophysiological predictions. However, the basic framework of the model and the
dynamical properties we find for it are subject to experimental test.

In the next section we present the model: its equations of motion and how it detects,
recognizes, and segments odour inputs. The following section demonstrates how it works in
simulations. In the final section we discuss the implications of our work, including potential
experimental tests for this and related models and how they can help us understand the
functioning of the olfactory system.

2. The model

Our model consists of two modules, a bulb and a cortex, with feedforward and feedback
connections between them. It is depicted schematically in figure 1. The bulb encodes odour
inputs as patterns of oscillation. These form the input to the cortex, which acts as an associative
memory for odour objects, recognizing them by resonant oscillation in an odour-specific
pattern when the input from the bulb matches one of its stored odour memories. The odour-
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specific resonant cortical activity pattern is transformed to a feedback signal to the bulb, which
approximately cancels the effect of the odour input that elicited it. The system is then able
to respond to a newly arrived odour superposed on the previous one. In this way it segments
temporally the different odour objects in the environment.

The model is a rate-model network [23], in which we associate each unit with a local
population of cells that share common synaptic input (mitral cells for the excitatory units,
granule cells for the inhibitory ones). The output (activation) of a unit, representing the
average firing rate within the corresponding population, is modelled as a sigmoidal function
of the net synaptic input.

In both the bulb and cortex modules, the units occur in pairs, one unit excitatory and the
other inhibitory. In the absence of coupling between different such pairs, they form independent
damped local oscillators. The coupling between pairs leads to oscillation patterns across
the modules, with specific amplitudes for the individual local oscillators and specific phase
relations between them. The odour input makes these oscillatory patterns different from odour
to odour; thus, these patterns form the internal encoding of the odours. The sizes of the local
populations corresponding to our formal units are different for excitatory and inhibitory units;
this difference is accounted for in the model by appropriate scaling of the synaptic strengths.

We turn now to the explicit mathematical description of the two modules and the coupling
between them.

2.1. The bulb

The bulb model we employ was introduced by Li and Hopfield (1989) [24, 25]. For
completeness, we review it here.

The odour input to (mitral) uniti is denotedIi . (We will also use a vector notation, in
which the entire input pattern is denotedI.) Adding to this the synaptic input from granule
cells within the bulb, we obtain an equation of motion

ẋi = −αxi −
∑
j

H 0
ij gy(yj ) + Ii (1)

for the (local population average) membrane potentialxi . Hereα−1 is the membrane time
constant,gy(·) is the (sigmoidal) activation function of the granule units,yj is the membrane
potential for granule unitj , andH 0

ij is the inhibitory synaptic strength from granule unitj
to mitral unit i. All the H 0

ij are non-negative; the inhibitory nature of the granule cells is
represented by the negative sign in the second term on the right-hand side. The signal the bulb
sends on to the cortex is carried by the mitral unit outputsgx(xi) (with gx(.) their activation
function). We have not included mitral–mitral connections here, because the experimental
evidence for them is weak, but including them would not change the properties of the model
qualitatively.

For the inhibitory units, representing local populations of granule cells, we have, similarly
to (1),

ẏi = −αyj +
∑
j

W 0
ij gx(xj ) + I c

i , (2)

with the mitral-to-granule synaptic matrixW 0
ij . Here the external inputI c

i represents the
centrifugal input (from the cortex), which contains the feedback signal that implements the
odour-specific adaptation. In describing the response to an initial odour, it can be neglected or
taken as a constant background input.

To see how this network produces oscillatory excitation patterns in response to an odour,
start by taking the inputI to be static. It determines a fixed pointx̄i andȳi of the equations,
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i.e., ẋi = ẏi = 0 at x̄i andȳi , which increase with odour inputI. Taking the deviation from
this fixed point asxi − x̄i → xi andyi − ȳi → yi , linearizing and eliminating theyi leads to

ẍi + 2αẋi + α2xi +
∑
j

Aij xj = 0, (3)

where the matrixA = HW, with Hij = H 0
ij g
′
y(ȳj ) and Wij = W 0

ij g
′
x(x̄j ). This

equation describes a coupled oscillator system, with a coupling matrixA. Denoting the
eigenvectors and eigenvalues of this matrix byXk and λk, respectively, (3) has solutions
x = ∑

k ckXkexp[−αt ± i(
√
λkt + φk)], with ck andφk the amplitude and phase of thekth

mode. IfA is not symmetric (the general case),λk is complex, and the mode has oscillation
frequenciesωk ≡ Re(

√
λk). The amplitude for modek will grow exponentially (in this

linearized theory) if±Im (
√
λk) > α. Its growth will be limited by nonlinearities, and it

will reach a steady-state saturation value. In this spontaneously oscillating state, the fastest-
growing mode, call it the 1st mode, will dominate the output. The whole bulb will oscillate
with a single frequencyω1 (plus its higher harmonics), and the oscillation amplitudes and
phases may be approximated by the complex vectorX1. Thus, the olfactory bulb encodes the
olfactory input via the following steps: (1) the odour inputI determines the fixed point(x̄, ȳ),
which in turn (2) determines the matrixA, which then (3) determines whether the bulb will
give spontanous oscillatory outputs and, if it does, the oscillation amplitude and phase pattern
X1 and its frequencyω1.

Strictly speaking, this description only applies to very small oscillations. For larger
amplitudes, nonlinearities make the problem in general intractable. However, we will suppose
that the present analysis gives a decent qualitative guide to the dynamics, checking this
assumption later with simulations of the network.

In this model, oscillations arise strictly as a consequence of the asymmetry of the matrix
A. The model could be generalized to add intrinsic single-unit oscillatory properties, and these
might enhance the network oscillations. However, a model with symmetricA and intrinsic
oscillatory properties only at the single-unit level cannot support oscillation patterns in which
the phase varies across the units in the network. We will return to this point in section 4.

A word about timescales: the odour input varies on the timescale of a sniff: 300–500 ms.
The oscillations are in the 40 Hz range, so the inputI hardly changes at all over a few oscillation
periods (∼25 ms). We may therefore treat periods of several oscillations as if the input were
static within them, and perform the above analysis separately for each such period (adiabatic
approximation).

With inhalation, the increasing inputI pushes the fixed-point membrane potentialsx̄i
from their initial values (where the activation functiong(x) has low gain) through a range of
increasing gains, thereby increasing the size of some of the elements of the matrixA (recall
the definition ofA above). This increases the magnitude of both the real and imaginary parts
of the eigenvaluesλk, until the threshold where|Im (

√
λk)| = −α, where oscillations appear.

These oscillations increase in amplitude as the input increases further, until the animal stops
inhaling and the inputI decreases. Then the oscillations shrink and disappear as the system
returns toward its resting state. This rise and fall of oscillations within each sniff cycle give
the bulb outputs both a slowly varying component (2–4 Hz) and a high-frequency (25–60 Hz)
one, as observed experimentally [7].

It is not known how the synaptic connections represented in the model by the matricesH0

andW0 develop in the real olfactory bulb, and we do not attempt to model this process here. It
is possible that the real bulb acts, to some degree, as an associative memory as a result of this
learning. However, our conclusions will not depend on this. Similarly, our analysis does not
depend on details of the synaptic matrices, such as their range and degree of connectivity. We
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require only that the connections lead to distinct oscillation patterns for different odours, with
dissimilar patterns evoked by dissimilar odours.

2.2. The cortex

Our cortical module is structurally similar to that of the bulb. However, there are the following
significant differences: (1) the cortex receives an oscillatory input from the bulb, while the
bulb receives non-oscillatory (at the timescale of the cortical oscillation) input; (2) the cortex
has excitatory-to-excitatory connections, while our bulb module does not.

We focus on the local excitatory (pyramidal) and feedback inhibitory interneuron
populations. The units that represent them obey differential equations similar to those for
the mitral and granule units of the bulb:

u̇i = −αui − β0gv(vi) +
∑
j

J 0
ij gu(uj )−

∑
j

H̃ 0
ij gv(vj ) + I b

i , (4)

v̇i = −αvi + γ 0gu(ui) +
∑
j

W̃ 0
ij gu(uj ). (5)

Hereui represent the the average membrane potentials of the local excitatory populations
andvi those of the inhibitory populations. The synaptic matrixJ0 is excitatory-to-excitatory
connections,H̃0 is inhibitory-to-excitatory connections, and̃W0 is excitatory-to-inhibitory
connections. For later convenience, we have written the local terms (the effect ofvi onui and
vice versa) explicitly, sõH0 andW̃0 have no diagonal elements. We also assumeJ 0

ii = 0. I b
i

are the net inputs from the bulb, both directly and indirectly via the feedforward inhibitory
units (see later for the description of this pathway). Like the bulb activity itself, these contain
in general both a slow partI b0

i , varying with the sniff cycle, and an oscillating (γ -band) part
δI b
i , i.e.,I bi ≡ I b0

i + δI b
i .

We can carry out the same analysis as in the bulb, taking the fixed point as(ū, v̄), which
are determined byIb0, i.e., u̇ = v̇ = 0 at (ū, v̄) when I bi = I b0i with δI bi = 0. Taking
u→ u− ū, v→ v − v̄, linearizing and eliminating thevi , we obtain

üi +
∑
j

[2αδij − Jij ]u̇j +
∑
j

[(α2 + βiγi)δij − αJij + γiH̃ij + βiW̃ij +
∑
k

H̃ikW̃kj ]uj

= (∂t + α)δI b
i . (6)

Hereβi = β0g′v(v̄i), γi = γ 0g′u(ūi), Jij = J 0
ij g
′
u(ūj ), H̃ij = H̃ 0

ij g
′
v(v̄j ), andW̃ij = W̃ 0

ij g
′
u(ūj ).

Thus this is a system of driven oscillators coupled by connectionsJ, H̃, andW̃ and driven by
an external oscillatory signalδİb + αδIb, which is proportional toδIb for a purely sinusoidal
oscillation. A single dissipative oscillator driven by an oscillatory force will resonate to it if
the frequency of the driving force matches the intrinsic frequency of the oscillator. A system
of coupled oscillators has its intrinsic oscillation patterns—the normal modes determined by
the coupling. Analogously, it will also resonate to the input when the driving force, a complex
vector proportional toδIb, matches one of the intrinsic modes, also a complex vector, in
frequency and in its pattern of oscillation amplitudes and phases.

It is apparent from equation (6) that the matricesH̃ andW̃ play the same roles. Therefore,
for simplicity, we will drop the inhibitory-to-excitatory couplings̃H from now on, thinking of
the fact that the real anatomical long-range connections appear to come predominantly from
excitatory cells.

Odour selectivity and sensitivity.In our model, the olfactory cortex functions as an associative
memory, as described and modelled by a number of authors [16–21]. It is similar to a Hopfield
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model, but instead of stationary patterns it stores oscillating patterns which vary in phase as well
as magnitude across the units of the network. The memory pattern for theµth odour is described
by a complex vectorξµ, whose componentξµi describes both the relative amplitude and phase
of the oscillation in theith unit. The cortex stores the memories about the odours in the synaptic
weightsJ0 andW̃0, or, effectively, the coupling between oscillators. It then recognizes the
input odours, as coded by the oscillating input patternsδIb (which are linearly related to the
bulbar oscillatory outputs), by resonating to them, giving high-amplitude oscillatory responses
itself. If, however, the inputδIb does not match one of the stored odour patternsξµ closely
enough, the cortex will fail to respond appreciably.

In the present model the memory patternξµi for odoursµ = 1, 2, . . . are designed into
the synaptic connectionsJ andW̃. Letω be the oscillation frequency,δI b

i ∝ e−iωt . Once the
oscillation reaches a steady amplitudeui ∝ e−iωt , we haveu̇i = −iωui , üi = −iωu̇i , so we
get

u̇i =
[
−2α − i

ω
(βiγi + α2)

]
ui +

∑
j

[
Jij − i

ω
(βiW̃ij − αJij )

]
uj +

i

ω
(−iω + α)δI b

i . (7)

The second term [. . .] on the right-hand side gives an effective coupling between the oscillators.
From now on in this analysis we will make the approximation that the different local oscillators
have the same natural frequencies, i.e.βiγi is independent ofi. Assuming further that the
oscillation frequencies for different odours are nearly the same, the odour patterns can then be
stored in the matrices in a generalized Hebb–Hopfield fashion as

Mij ≡
[
Jij − i

ω
(βW̃ij − αJij )

]
= J

∑
µ

ξ
µ

i ξ
µ∗
j , (8)

or, with ξµi expressed in terms of amplitudes and phases as|ξµi | exp(−iφµi ),

Jij = J
∑
µ

|ξµi ||ξµj | cos(φµi − φµj ) (9)

βW̃ij = J
∑
µ

|ξµi ||ξµj |[ω sin(φµi − φµj ) + α cos(φµi − φµj )]. (10)

Note that here both kinds of connections,J (excitatory-to-excitatory) and̃W (excitatory-to-
inhibitory), are used to store the amplitude and phase patterns of the oscillation.J is symmetric,
while W̃ is not.

These connections can be obtained by an online algorithm, a simplified version of the full
Hebbian learning treated by Liljenström and Wu [20, 21]. Suppose the cortex has effective
oscillatory inputδIb = ξµe−iωt + ξµ∗eiωt during learning of theµth pattern. Here we
make explicit the real nature of the signals. Suppose also that theJ and W̃ connections
inactive, consistent with the picture proposed by Wilson, Bower and Hasselmo [17, 19], who
suggested that learning occurs when the long-range intracortical connections are weakened by
neuromodulatory effects. Then the linearized (4) and (5) are simply

u̇i + αui = −βvi + ξµi e−iωt + ξµ∗i eiωt

v̇i + αvi = γ ui,
(11)

with solution

ui(t) = −iω + α

−ω2 + α2 + βγ − 2iαω
ξ
µ

i e−iωt + c.c.

vi(t) = γ

−ω2 + α2 + βγ − 2iαω
ξ
µ

i e−iωt + c.c.
(12)
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where c.c. denotes complex conjugate. In other words, the cortical activities are clamped by
the inputs.

For Hebbian learning,J̇ij ∝ ui(t)uj (t), and, after time averaging,δJij ∝∫ 2π/ω
0 ui(t)uj (t) dt , leading to

δJij ∝ ω2 + α2

| − ω2 + α2 + βγ − 2iαω|2 (ξ
µ

i ξ
µ∗
j + ξµ∗i ξ

µ

j )

= 2
ω2 + α2

| − ω2 + α2 + βγ − 2iαω|2 |ξ
µ

i ||ξµj | cos(φµi − φµj ). (13)

Similarly, δWij ∝
∫ 2π/ω

0 vi(t)uj (t) dt leading to

δWij ∝ γ

| − ω2 + α2 + βγ − 2iαω|2 [(iω + α)ξµi ξ
µ∗
j + (−iω + α)ξµ∗i ξ

µ

j ]

= 2γ

| − ω2 + α2 + βγ − 2iαω|2 [ω|ξµi ||ξµj | sin(φµi − φµj ) + α|ξµi ||ξµj | cos(φµi − φµj )].
(14)

Then, if the relative learning rates forJ andW̃ are tuned appropriately, we simply recover the
formulae (9) and (10). In actual online learning, we can use high-pass versions ofu andv to
learnJ andW̃ to remove the baseline value, i.e., the operation pointū andv̄, which does not
contain odour information.

To see the selective resonance explicitly, suppose that different patternsξµ are orthogonal
to each other. Let us denote the overlap(1/N)

∑
i δI

b
i ξ

λ∗
i of the inputδI b

i with the stored
patternξλi by δIλ. Then, multiplying (7) byξλ∗i and summing oni, we find that at steady
oscillatory state, the responseuλ ≡ (1/N)∑i uiξ

λ∗
i to patternξλ obeys

u̇λ = −(2α − J )uλ − i

ω
(βγ + α2)uλ +

i

ω
(−iω + α)δIλ. (15)

This is like an oscillator with oscillation frequency(βγ + α2)/ω and an effective oscillation
decay rate 2α− J . It resonates to external oscillatory input of frequencyω ≈

√
βγ + α2 with

a steady state amplitude

uλ = (−iω + α)δIλ

βγ + α2 − ω2 − iω(2α − J ) ≈
(1 + iα/ω)δIλ

2α − J , (16)

However, for an inputδI b
i orthogonal to all the stored patterns,δIλ = 0 for all λ, and the

resonance will be washed out whenJ < 2α. ForJ > 2α, the network will support spontaneous
oscillations analogous to those in the bulb, but not as observed in the cortex. The effect of the
long-range couplings, through the parameterJ , is to reduce the damping in the circuit from
2α to 2α − J when the input matches a stored pattern, thereby sharpening the resonance as
J → 2α while we keepJ < 2α. On the other hand, the resonant driving frequency depends
only on the single-oscillator parametersα, β andγ .

This oscillatory associative memory enjoys the usual properties that characterize Hopfield
networks [26], including rapid convergence (a few oscillation cycles if the presented pattern
has reasonable overlap with a stored one), robustness with respect to noise and corrupted input,
and a storage capacity of the order ofN random patterns, whereN is the network size.

2.3. Coupling between bulb and cortex

The model has both feedforward (bulb–cortex) and feedback (cortex–bulb) connections. The
former transmit the bulbar encoding of the input odours to the cortex for recognition, while
the latter permit segmentation by producing adaptation to recognized odour objects.
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Bulb to cortex. As mentioned in the introduction, in the real cortex, the excitatory cells
receive input from the bulb both directly from the fibres of the lateral olfactory tract and in a
slower pathway via feedforward inhibitory interneurons in the cortex. We model this in the
following way. The synapses from local bulb populationsj to local cortical populationsi are
specified by a matrixCb→c

ij . The values of these connections are not important in the model,
and very little is known about them, so we will take them to be random. The resulting signals
are then fed to the excitatory cells, both directly and, with the opposite sign, through a parallel
low-pass filter, representing the effect of the feedforward inhibitory cells; see figure 1. Details
are given in the appendix.

The combination of the direct excitatory and low-pass filtered inhibitory signals makes
the feedforward pathway act as a high-pass filter, partially cancelling the slow partIb0 of the
bulb output from the cortical input. Consequently, the net input to the cortical excitatory units
is dominated by the oscillatory component of the bulb activity, which encodes information
about the odour input. (We do not know how well such a cancellation is actually achieved in
real olfactory systems, but this could be tested experimentally.)

Cortex to bulb. The odour-specific adaptation that forms the basis for odour segmentation
in our model is implemented using a feedback signal from the cortex to the granule units of
the bulb. We do not know how such a signal is generated in animals, or even whether it is,
although anatomically such a pathway exists. If the signal does exist, it likely also involves
areas such as entorhinal cortex, which contributes to the centrifugal input to the bulb. These
areas lie outside the scope of the present model, so we will simply construct a suitable signal
and explore the consequences.

In exploratory computations, we have found that this form of feedback control only works
if the signal is slowly varying in time (on the order of the sniff-cycle time or slower). Merely
feeding back the oscillating cortical activities does not appear to permit any kind of robust
stimulus-specific adaptation.

Thus, we generate the feedback signal in the followingad hocfashion: first each excitatory
cortical outputgu(ui) is run through a threshold-linear element to remove its non-oscillatory
part, which carries no odour information. Then the output of this element is run through a
low-pass filter. The time constants of this filter are on the order of the sniff cycle or longer. The
net result is a signal pattern which takes a sniff-cycle time or so to grow to full strength. The
signal component from excitatory uniti will be proportional to the amplitude of the oscillation
of that unit, so this signal will contain information about the odour that evoked the cortical
oscillation pattern. The explicit form of the equations used to generate the feedback signal in
the simulations is given in the appendix.

Since we rectify and low pass only the excitatory cortical outputsgu(ui), the feedback
signal includes only the odour information coded in the amplitude but not in the phase pattern
of the cortical oscillation. Phase information could be included by (for example) feeding the
difference signalsgu(ui)−gu(uj ) through the rectification and low-pass processes. However,
we have not explored such mechanisms in this work.

The granule units in the bulb respond to the feedback signals by changing their activities
proportional to it. These changes are then transmitted to the mitral cells by the synaptic matrix
H. As shown by Li [25], a feedback signal

F ∝ H−1I, (17)

will, when transmitted onward to the mitral units, cancel the odour inputs to the bulb (in linear
approximation).

In our model we want to make this cancellation work for all the odour patterns stored in
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the cortex. Denoting byGµ

j the rectified and low-passed cortical output when the system is
stimulated by odour patternIµk , this can be achieved by a Hebbian feedback connection matrix
Cc→b that mapsGµ to feedback signalF µ for each odourµ in a single layer network:

Cc→b
ij ∝

∑
µ

F
µ

i G
µ

j =
∑
k

H−1
ik

∑
µ

I
µ

k G
µ

j . (18)

3. Simulations

We have simulated a network with bulb and cortical modules each consisting of 50 excitatory
and 50 inhibitory units. They were coupled as described in section 2.3 and the appendix. The
coupled differential equations were integrated using a fourth-order Runge–Kutta routine from
Numerical Recipes[27].

We used three random odour input patternsI
µ

i . Their elements were drawn independently
for eachi andµ from a uniform distribution on (0,1]. The elements of the granule-to-mitral
synaptic matrixH were taken to have the formHij = const. · δij . We designed the mitral-
to-granule matrixW so as to make the bulb oscillate in response to the three input patterns,
takingWij ∝ Im

∑3
µ=1 ζ

µ

j ζ
µ∗
j . Here theζµi are complex, with amplitudes resembling the

input odour patternsIµi and with random phases. SinceW should have non-negative elements,
we simply zeroed out the negativeWij in the construction†. This dilution did not affect the
bulb oscillations qualitatively. Other parameters were set as in [24], so the evoked oscillations
were in the 40 Hz range.

The cortical design followed section 2.2. The local couplingsβ0 andγ 0 were chosen so
that the cortical oscillation frequency roughly matched the bulbar one, i.e.,β0γ 0 + α2 ≈ ω̄2

(see equation (16), wherēω is the average oscillation frequency in the bulbar outputs). The
inhibitory units had the sigmoidal activation function used in the model of the bulb [24]. In
some of our simulations, the activation function of the excitatory units also had this form. In
obtaining the results presented here, however, we used a piecewise linear activation function
with gains of 1 and 2, respectively, in the low- and high-input regions above threshold. This
choice was made only for convenience in analysing the nonlinear dynamics and is not essential
for the function of the network.

The cortical synaptic matricesJ and W̃ were designed to store oscillation patterns for
two of the three odour input patterns, in the following way. For each of the two odours,
we stimulated the bulb with its input patternIµi and fed the resulting oscillatory bulb output
through the bulb-to-cortex matrixCb→c

ij and the subsequent high-pass filtering operation to

the cortex, with the intracortical connectionsJ0 andW̃0 set to zero. The resulting oscillation
patterns in the cortical units for the two odours were then used asξµ in constructingJ andW̃.

We modified the Hebb rule (equation (8) or equations (9) and (10)) slightly, using, instead,
a pseudoinverse formula

Mij = J
∑
µ

ξ
µ

i η
µ∗
j , (19)

where
∑

i η
µ∗
i ξ

ν
i = Nδµν . This was done only to reduce finite-size effects due to mutual

overlaps (of order
√
N ) between patterns, and would be inessential in sufficiently large

networks.

† In the bulb model of Li and Hopfield [24,25], the idea was that extensive asymmetric random synapses would, for
a large network, automatically generate a distributed encoding of odours in the amplitudes and phases of oscillation
patterns in the network. Here we will be more concerned with how these patterns are processed by the cortex, so,
for convenience, we have engineered particular amplitude patterns in through the bulbarW matrix in this fashion.
However, the particular forms used forH andW are not important for the problem that we are studying here, as long
asA ≡ HW is sufficiently asymmetric.
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Figure 2. Panels (A)–(C): bulbar and cortical oscillation patterns for odours A, B (stored in the
associative memory in the cortex) and C (not stored). In each pattern, we plot temporal traces of
outputs from five of the 50 mitral or cortical excitatory units during one sniff cycle lasting 370 ms,
roughly the first half of which is inhalation. Note the modulating of oscillation by the sniff cycle,
and the different oscillation amplitudes for different units. Oscillation phases also differ between
units, though they are not apparent in the figure. The same format is used to display bulbar and
cortical responnses in the following figures. Cortex-to-bulb feedback is turned off for the results
shown in this figure. Note that the cortex responds little to odour C, since the input does not match
any of the stored oscillation patterns.

As explained in section 2.3 and the appendix, the slowly varying feedback signal used for
the odour-specific adaptation was generated by a threshold-linear rectification, followed by a
pair of simple linear filters. The time constants of these (3 and 0.3 s, respectively) would made
it take 10–12 256 ms sniff cycles to generate a full strength feedback signal if the cortical signal
were held constant. Similarly, the adaptation takes just as long to wear off after the stimulus
is removed.

Like the intracorticalM matrix, the cortex-to-bulb matrixCc→b was modified using the
projection-rule algorithm to eliminate finite-size overlap effects between the cortical oscillation
patterns of different odours. Thus, in formula (18), we replaced the rectified and low-pass-
filtered cortical patternsGµ

j by G̃µ

j , whereG̃µ are vectors such that̃Gµ ·Gν = Nδµν .
Figure 2 shows the bulbar and cortical oscillatory response patterns evoked on five of the

50 mitral or cortical excitatory units by three odours: A, B, and C. Only odours A and B are
stored in the cortical memory in theJ andW̃ matrices. Different amplitude response patterns
to different odours are apparent. The cortex resonates appreciably to only odours A or B, but
not to C, demonstrating the selectivity of the cortical response.

Figure 3 demonstrates odour adaptation to odour A. The response amplitudes decay quicky
in successive sniffs, although the oscillation patterns do not change appreciably before the
amplitudes decay to zero. The way this comes about is that the feedback signal generated by
A, when relayed by the granule cells to the mitral ones, creates an effective extra input signal
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Figure 3. Demonstrating the adaptation to odour A, with the feedback from cortex to bulb active.
Plotted are the responses to odour A alone during three successive sniffs. Note that the response
magnitudes decay in successive sniffs, but the response pattern, in particular the relative amplitude
pattern, stays roughly the same from the first to second sniff before responses disappear at the third
sniff.

Ā (anti-A), and by the third sniff A +Ā ≈ 0.
To quantify the similarity between oscillation patterns, we extract an(N = 50)-

dimensional complex vectorO from the temporal Fourier transform of the activity of the
cortical excitatory units during the sniff cycle, with the componentOi specifying the amplitude
and phase of the oscillations in excitatory uniti. We can measure the similarity betweenO
andO′ by the normalized overlapSOO′ = |〈O|O′〉/(|O| · |O′|), which is 1 forO ∝ O′ and
near zero (O(1/

√
N)) for two unrelated patterns. Calling the pattern vectorsA0, A1, A2,

andA3 for cortical response to odour A without adaptation and during the first, second, and
third sniff cycles of the adaptation respectively, we findSA0A1 = 0.9997,SA0A2 = 0.992, and
SA0A3 = 0.74, with response amplitudes|A1|/|A0| = 0.97, |A2|/|A0| = 0.3, |A3|/|A0| =
0.08. Thus, the strength of the response is already significantly weakened after one sniff, but
its cortical pattern of variation remains undistorted through several sniffs.

The way this adaptation varies in successive sniffs depends on both the time constants
in the feedback circuitry (as discussed above) and the strength of the filtered signal fed back
to the bulb. In the simulations shown here, the latter was strong enough that even after one
sniff, a large fraction of the input signal is cancelled by the feedback, and after two sniffs the
cancellation was nearly complete. A smaller feedback strength and a correspondingly longer
time constant of the feedback circuitry would make it take longer for the adaptation to set in.
Similarly, the time it takes for the adaptation, once established, to wear off is set by the same
time constants (for the values used here, around 3 s or 12sniff cycles).

Figure 4(a) demonstrates the segmentation capability of the system. The responseBseg
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(a) (b) (c)

Figure 4. (a) Segmenting odours A and B. After two sniffs of A as in figure 3, odour B is added,
so the net input is A + B. The response is almost the same as that to B alone (figure 2, middle).
(b) Cross-adaption: response to odour B after odour A was present in two previous sniffs and then
withdrawn. The response is weak and distorted. (c) Same as (b), except that an odour B 1.5 times
as strong is used. This strength is sufficient to evoke a stronger, less distorted response.

to the odour mixture A + B at the third sniff after the first two sniffs of odour A is quite similar
to that,B0, to odour B alone:SBsegB0 = 0.993, and|Bseg|/|B0| = 0.91. Thus, although A
is still present, so is the anti-A, so the net signal to the mitral units is A +Ā + B ≈ B. This
demonstrates odour-specific adaptation in the model. The system responds with the activity
pattern characterizing the new odour, essentially undistorted by the existing odours in the
environment, thus effectively achieving odour segmentation. Odour B can be segmented as
long as it enters after the adaptation to A is established, in this model at the third or any
subsequent sniff.

However, if odour A is suddenly withdrawn at the start of the third sniff, when odour B
is introduced, the system response to odour B is weakened and distorted (this is particularly
noticable in the bulbar responses). The reason for this is that the effective total input is
now B +Ā ≈ B − A, which is not at all like B (figures 4(b) and (c)). This corresponds to
the psychophysically observed cross-adaptation—after sniffing one odour, another odour at
next sniff smells less strong than it normally would and may even smell different [14]. In the
normal olfactory environment, however, such sudden and near complete withdrawal of an odour
seldom happens. LetBcrossandB̃crossbe the cortical response vectors to cross adapted odour
B and odour 1.5B. Comparing with the response to odour B alone, we findSB0Bcross = 0.94,
|Bcross|/|B0| = 0.23;SB0B̃cross= 0.97, |B̃cross|/|B0| = 0.74. We can understand these results in
the following way. The feedback input̄A ≈ −A acts to move the bulb operating pointx̄i to
lower gain values (for units whereIA

i is strong), thereby weakening the overall response. For
normal-strength B, most of the mitral units in the bulb do not respond much, so the cortical

zhaoping
Highlight



96 Zhaoping Li and J Hertz

Figure 5. This figure illustrates how adaptation in the model is not effective for the mixture odour
(A + B)/2. Responses to this odour are shown for three successive sniff cycles. The cortical
response, although initially weaker than that to pure A or B (figure 2) is still appreciable at the third
sniff (compare with adaptation to odour A in figure 3).

response is correspondingly weak and distorted relative to that to B in the absence of adaptation.
The stronger input 1.5B evokes a stronger bulb response, however, and the cortical response
is stronger and better (but still imperfectly) correlated with the unadapted pattern.

Since the olfactory bulb is nonlinear, the odour mixture A + B does not induce a bulbar
response equal to the sum of the responses to A and B individually. Consequently, the
unadapted cortical response to it (figure 5, left panel) is weaker than that to A or B (the
bulb response to the mixture is not embedded in the cortical connections) and not strongly
correlated with the responses to the pure odours. The situation is similar to that for any other
unstored odour, such as C (figure 2, (C)), to which there is almost no adaptation in the bulb
because there is almost no cortical signal to feed back. The unadapted cortical response to
A + B is stronger than that to C because the nonlinearity in the bulb here is not strong enough
to completely destroy correlations between its reponses to the individual odours A and B and
that to their mixture. Nevertheless, the weakness of the cortical response reduces the feedback
to the bulb significantly, and the system does not adapt to the mixture as effectively as to
individual odours, as shown in the middle and right panels of figure 5. We also note that
because the feedback is weak, the attenuation of the signals in both bulb and cortex is also
weaker than for pure stored odours (cf figure 3). Thus, the cortical response to the mixed
odour, while initially weaker than that to pure stored ones, lasts longer.
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4. Discussion

We have presented a computational model for an olfactory system that can detect, recognize
and segment odours. Detection is performed in the bulb, which encodes odours in oscillatory
activity patterns. Recognition is carried out by the cortex using a resonant associative memory
mechanism. Finally, segmentation is implemented by a slowly varying feedback signal which
acts to cancel the specific input that evoked the resonant cortical response.

The model is constrained by a few basic anatomical and physiological facts: odours evoke
oscillatory activity in populations of excitatory and inhibitory neurons in both bulb and cortex,
these two structures are coupled by both feedforward and feedback connections, reducing
the cortical feedback enhances the bulbar responses, and the system exhibits odour-specific
adaptation. Within these constraints, we have tried to build a minimal model. We have taken
the bulb module from earlier work by one of us [24, 25] and augmented it with a model
of the pyriform cortex and with feedforward and feedback connections between it and the
bulb. We have ignored many further known details of real olfactory systems that do not bear
directly on the fundamental property of stimulus-specific adaptation, and when we have had
to go beyond current knowledge (as in constructing the feedback signal) we have done so
in a purely phenomenological way, avoiding hypothesizing specific details unrelated to the
function of the system. From the analysis of the model and the simulations we can see how the
basic computations necessary for olfactory segmentation might be carried out by the neural
networks of the bulb and cortex.

But do real olfactory systems actually function in this way? This can be tested at the level
of both the assumptions we put into the model and the properties we find for it. First of all, we
have assumed that the feedback from cortex to bulb is slowly varying (i.e. that firing rates for
the feedback fibres vary on the timescale of the sniff cycle, but not of the oscillations found in
both the bulb and cortex). Furthermore, we have assumed that this feedback is odour-specific.
While the existence of some feedback is well established, neither of these specific hypotheses
has been tested experimentally. However they both could be.

Properties we find in the model, beyond the fact that it successfully implements
segmentation, can also be tested. These include the following.

First, the fact that the feedback signal requires strong cortical activity to drive it means
that unfamiliar (unlearnt) odours will not be adapted to as strongly as familiar ones, so they
will not be so easily segmented from subsequently presented ones. As we saw in figure 5,
this expectation also applies to unfamiliar mixtures of familiar odours. Furthermore, as we
also noted, we expect the weakening of the (initially weaker) responses with adaptation to be
slower for such mixtures than for familiar odours.

Second, cross-adaptation, as illustrated in figure 4, is a necessary consequence of the
slow feedback: the effective bulb inputĀ ≈ −A, from the previous presence of the adapting
stimulus, will be present for some time (depending on the time constants of the feedback
circuitry) whether odour A remains in the environment or not. Thus the total input to the
bulb with A still present will be very different from that with A suddenly removed. If
there is odour-specific adaptation of the kind necessary to perform segmentation when A
remains in the environment (A cancelled byĀ), then a different response must occur when
A is withdrawn. Present evidence on cross-adaptation is rather limited, but psychophysical
and electrophysiological investigation of this phenomenon would be helpful in pinning down
quantitatively the time constants of the circuitry involved in segmentation.

If odour-specific adaptation is not implemented using our cortical feedback mechanism,
how else might it be done? One possibility to consider is single-unit-level adaptation (or
fatigue), which can be implemented in a network like ours by making the threshold for each
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unit dependent on its own recent activity. In a model with the structure of ours (with bulb
and cortical modules) but without feedback, such fatigue would have to be implemented in the
bulb; otherwise the activity there would not exhibit adaptation. This presents a problem if the
activity patterns of different odours overlap significantly—it is not evident that one can avoid
changing the response to a new odour when some of the units active in the normal response to
it are to be fatigued. Indeed, in investigations of simple oscillatory associative memories with
such adaptation [28], temporal segmentation has been found only for patterns with rather weak
mutual overlap. This overlap will be weak for sparse patterns, but it is not clear how sparse
real evoked bulb and cortical activity patterns are, when looked at at the level of resolution of
the units in our model.

This problem is not present for the mechanism we propose, in which bulb units themselves
are not fatigued. Rather, the mechanism cancels the input to bulb units in exactly the degree
that they receive input from the adapting odour. It is as if every receptor activated by an odour
became adapted by an amount exactly equal to its initial response.

In our model, the feedback connections to the inhibitory bulb units have to have just the
right values to produce the necessary cancellation. In real olfactory systems, the strengths
of the centrifugal synapses on granule cells are presumably determined by some learning
mechanism, and for our model to apply it is necessary that this mechanism find the right values
for them. As we know nothing about this mechanism, here in our model we just assumed the
necessary form. This form has a degree of plausibility because it is Hebbian, but very little is
known yet about learning in these synapses. Investigations could shed important light on the
validity of this key element of the model.

Another plausible mechanism, which could implement odour-specific adaptation in the
bulb in more or less the right manner, is adaptation of receptor–bulb synapses in such a way
that the inputs to bulb capture mainly the transient but not static odour inputs. This would
reduce the input signal for the adapting odour directly, at just the right places, and so does
not suffer from the problems that single-unit fatigue in the bulb does. However, there is a
simple difference between the predictions of such a model and ours, since in ours the cortex,
functioning as an associative memory, only sends its feedback to the bulb (or only sends it at
full strength) for learnt odours. The receptor–mitral synaptic adaptation model would exhibit
the same degree of odour-specific adaptation for all odours, learnt or not. Of course, both
mechanisms could be present, and the difference could be large or small according to the
relative size of the two contributions.

The fact that we have employed both excitatory-to-excitatory (J) and excitatory-to-
inhibitory (W̃) cortical connections enhances the associative memory function by permitting
oscillation patterns which differ in phase as well as amplitude. This is of no help for selective
adaptation in the model as described here, since phase information is lost in the generation of
the feedback signal, but this information could be retained using more elaborate mechanisms,
as mentioned in section 2.3.

It is not clear whether real olfactory systems code odours in the phases of their oscillation
patterns. However, in any case, a restricted version of our cortex, withoutW̃, could function
with only amplitude-modulated patterns, similarly to the model of Wanget al [28]. The
addition of intrinsic oscillatory properties for individual units or, implicitly, the individual
neurons in the populations they represent, would not change the properties of such a network
qualitatively.

The three tasks carried out by the system—detection, recognition, and segmentation—are
computationally linked. For example, even if an ambiguous or weak odour is ‘recognized’ by
the pyriform cortex in the sense that a characteristic oscillatory response is evoked there, that
response may be too weak to suppress further bulbar response. Then the system will continue
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to respond to the odour in the same way as if it had not recognized it; that is, the odour-specific
adaptation necessary for segmentation can be seen as part of the recognition process.

While our units correspond to functional groups of neurons in real olfactory systems, our
model is of higher resolution than that of Ambros-Ingersonet al[18]. While we emphasize the
coding of odour information in distributed oscillation patterns, their model contains no explicit
treatment of dynamics on the 40 hz timscale or of the temporal segmentation problem. They
address instead a higher-level problem (hierarchical odour classification) with a higher-level
model. In such more complex situations, cortex-to-bulb feedback could be a more general,
active phenomenon than in the limited-scope problem we consider, but we do not address such
issues here.

Our network performs what might be called ‘the simplest cognitive computation’. It is
natural to expect that evolution has employed elaborations on this structure in other sensory
systems and in central processing. For example, hippocampal processing also employs oscilla-
tions, long-range intra-area associative connections, and feedback [29,30]. In another context,
work by one of us [31] on visual processing suggests a function for slow feedback to inhibitory
neurons from higher areas in modulating the computations carried out in area V1. Our hope
is that studying and modelling the olfactory system in the way we have done here will lead to
insights into aspects of top-down/bottom-up interactions in other cognitive computations.

Appendix: Bulb–cortex coupling: implementation details

Feedforward

In the feedforward pathway from bulb to cortex, the mitral unit outputsgx(xi) are fed both
directly to the excitatory cortical units and in parallel, indirectly via feedforward inhibitory
units. The process, as indicated schematically in figure 1, is described by the equations

Li =
∑
j

Cb→c
ij gx(xj ) (20)

żi = −αff zi +Li (21)

I b
i = Li − σgz(zi). (22)

HereLi is the input signal to the cortical locationi, Cb→c is the connection matrix that
transforms the mitral outputs to the cortical inputs,zi are the membrane potentials of the
feedforward inhibitory units,gz(.) is their activation function andα−1

ff is their time constant.
I b
i is then the total input signal to theith cortical excitatory unit in equation (4). In general, this

input contains both slowly varying and rapidly oscillating components. The pathway via the
inhibitory feedforward units acts like a low-pass filter. Thus, the net effect is that the rapidly
varying or high-frequency components, which contain the odour information, are transmitted
to the cortex.

In the simulations reported in section 3, we tookgz(.) to have two regions of different
gain values, with a smaller gain at smaller input. We designedσ and the parameters ofgz(.)
so that the net slow component ofI b

i pushed the cortical operation pointsūi andv̄i to stable
values close to, but below, their high gain region. Thus the cortex had a stable operating
point, enabling it to carry out its associative memory function more cleanly that without this
engineering refinement.

We make no claims about biological realism for the details of the feedfoward mechanism.
However, some kind of effective high-pass filter is essential to the robust functioning of the
model. Further experimental investigation of the dynamical properties of the feedfoward
pathway would be important for understanding how it actually works.
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Figure A1. Details of the feedback route. Only the oscillatory components of the cortical outputs
gu(u) contain the odour information. This component is extracted by half-wave rectification by
thep units. The oscillatorygp(p) is converted to slowly varying signals by two successive slow
temporal integrating unitsq andr. The resulting signalr(t) is fed through the matrixCc→b and
modulated with the breathing cycle by a signalm(t) to produce the odour-specific feedback signal
to the bulbar granule units. The temporal characteristics of signals from different units are depicted
schematically on the right.

Feedback

To generate the half-wave rectified, low-passed feedback signal to the bulb from the cortical
excitatory unit outputs, we use three successive groups of units followed by a synaptic matrix,
as shown in figure A1:

ṗi = −αfastpi + gu(ui), q̇i = −αslowqi + gp(pi), ṙi = −α′slowri + qi, (23)

I c
i = m(t)

∑
j

Cc→b
ij gr (rj ), (24)

wherem(t) is a modulating signal that synchronizes with breathing, increasing during
inhalation and decreasing during exhalation.

With a short time constant 1/αfast and a strong nonlineargp, thepi unit has a outputgp(pi)
which is effectivelygu(ui) thresholded above the average signal level. This ‘rectified’ output
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is then transformed by the two subsequent unitsqi andri , both with long time constants 1/αslow

and 1/α′slow, into a slowly varying signal, which is modulated by a functionm(t) (representing
the breathing rhythm of the animal) and fed back via the connectionsCc→b to produce the
centrifugal inputIc to the granule units in the bulb.

It is not necessary to use two low-pass filter operations; the model works qualitatively the
same with just one. However, adding the second one delays the feedback signal somewhat,
giving the oscillations time to establish themselves before the feedback begins to act.

In a more complete model, the large time constants 1/αslow and 1/α′slow could emerge as
a dynamic network property of secondary olfactory areas. Similarly, the modulating signal
m(t) could arise from additional signals from other parts of the brain.
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