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Items that stand out from their surroundings, that is, those that attract attention, are considered to be salient. Salience is
generated by input features in many stimulus dimensions, like motion (M), color (C), orientation (O), and others. We focus
on bottom–up salience generated by contrast between the feature properties of an item and its surroundings. We compare
the singleton search reaction times (RTs) of items that differ from their surroundings in more than one feature (e.g., C + O,
denoted as CO) against the RTs of items that differ from their surroundings in only a single feature (e.g., O or C). The
measured RTs for the double-feature singletons are compared against “race model” predictions to evaluate whether
salience in the double-feature conditions is greater than the salience of either of its feature components. Affirmative answers
were found in MO and CO but not in CM. These results are consistent with some V1 neurons being conjunctively selective
to MO, others to CO, but almost none to CM. They provide support for the V1 hypothesis of bottom–up salience (Z. Li, 2002)
but are contrary to expectation from the “feature summation” hypothesis, in which different stimulus features are initially
analyzed independently and subsequently summed to form a single salience map (L. Itti & C. Koch, 2001; C. Koch &
S. Ullman, 1985; J. M. Wolfe, K. R. Cave, & S. L. Franzel, 1989).
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Introduction

Items in the visual field with features that are different
from their surroundings automatically “pop out” in visual
scenes and attract attention. Traditionally, this “pop-out”
phenomenon has been demonstrated in singleton search
tasks, where the reaction time (RT) for finding targets that
differ from uniform surrounding distracters in at least one
feature dimension (e.g., color, orientation, and motion)
does not increase with the number of distracter items. The
degree to which an item or location stands out from its
surroundings, that is, attracts attention, is referred to as the
“salience” of the item/location (Titchener, 1908). The
term salience has been used in the visual perception
literature in a number of different contexts and with
slightly different meanings (e.g., Parkhurst, Law, &
Niebur, 2002; Titchener, 1908; Wolfe, 1994). In this
article, the term salience will always refer to a purely
bottom–up attraction of attention arising from the contrast
between the feature properties of an item and its
surroundings (Moraglia, 1989; Nothdurft, 1991, 1992,
1993) rather than top–down aspects such as the task-

specific feature relevance. We shall therefore not be
considering the effects of top–down modulations that
may play a role in guided search (e.g., Bacon & Egeth,
1997; Lamy, Leber, & Egeth, 2004; Leber & Egeth, 2006;
Sobel & Cave, 2002; Wolfe, Cave, & Franzel, 1989).
Salience has been shown to play a crucial role in the

localization of targets (Duncan & Humphreys, 1989;
Foster & Ward, 1991; Treisman & Gelade, 1980;
Treisman & Gormican, 1988; Wolfe, Friedman-Hill,
Steward, & O’Connell, 1992), control of eye movements
(Deubel & Frank, 1991; Findlay, Brogan, & Wenban-Smith,
1993; Nothdurft & Parlitz, 1993), and allocation of spatial
attention (Joseph & Optican, 1996; Julesz, 1981, 1986;
Nothdurft, 1999; Wolfe et al., 1989). Furthermore, the
global properties of a scene also affect the salience of a
target stimulus; for example, a target item on a nonuni-
form background is much less salient than a target on a
uniform background (Duncan & Humphreys, 1989;
Nothdurft, 1991, 1992). Thus, increased overall feature
contrast in the background pattern reduces the relative
salience of the target. As shown by various studies (e.g.,
D’Zmura, 1991; Dick, Ullman, & Sagi, 1987; Duncan &
Humphreys, 1989; Itti & Koch, 2001; Koch & Ullman,
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1985; Nagy & Sanchez, 1990; Nakayama & Silverman,
1986; Nothdurft, 1993, 1995, 2000; Treisman & Gelade,
1980; Wolfe et al., 1989), salience is generated by feature
contrasts in a wide variety of stimulus feature dimensions,
like motion, color, luminance, depth, and others. All these
saliency effects seem to display qualitatively similar
properties as described above. Salience, therefore, does
not appear to be feature specific. This is consistent with
the concept that the function of salience is to attract
attention for the investigation of the item. The feature
properties of the attracting item are investigated after
attention has been attracted to that location.

Mechanisms and neural correlates of salience

Various groups have suggested that stimulus information
is first processed in separate feature maps, representing
single visual features such as red color and vertical
orientation, and is subsequently summed into a single
master map (Itti & Koch, 2001; Koch & Ullman, 1985;
Wolfe et al., 1989) to represent salience irrespective of the
actual features (Figure 1a). We shall refer to this
hypothesis as the “feature summation hypothesis”.
Unfortunately, neither the neural mechanisms nor the exact
underlying cortical areas responsible for the feature and
saliency maps have been clearly specified in the feature
summation hypothesis. The strong influence of the sur-
rounding on a target’s salience suggests that contextual
modulation effectsmay be particularly important (Nothdurft,
2000). Such contextual effects were demonstrated in a
series of studies on single cells in area V1 (e.g., Allman,
Miezin, & McGuinness, 1985, 1990; Kastner, Nothdurft,
& Pigarev, 1997, 1999; Knierim & van Essen, 1992;
Lamme, 1995; Lee, Mumford, Romero, & Lamme, 1998;
Nothdurft, Gallant, & van Essen, 1999; Sillito, Grieve,
Jones, Cudeiro, & Davis, 1995; Zipser, Lamme, & Schiller,
1996; see also Schofield & Foster, 1995, for a biologically
inspired model based on surround suppression). Although the
responses to a stimulus in the receptive field (RF) are fre-
quently suppressed when similar stimuli are simultaneously
presented outside the RF, the suppression is often weaker or
even absent when the surrounding stimuli are different to
that in the RF. Thus, the mean responses of the cell popula-
tion to contrasting stimuli are relatively enhanced over those
to uniform texture fields. The response differences correlate
well with the salience of pop-out targets. A biologically based
model of the preattentive computational mechanisms in the
primary visual cortex was developed by Li (2002), showing
howV1neural responsescancreateasaliencymap that awards
higher responses to more salient image locations. We shall
refer to thishypothesisas the“V1hypothesis”.Keydifferences
that differentiate the V1 hypothesis (Li, 2002) from the
feature summation hypothesis are the following:

1. The V1 hypothesis does not sum the separate
feature-based information.

2. The V1 model includes cells that are tuned to
specific feature combinations.

The V1 hypothesis relies on conventional V1 cells tuned
to input features, such as orientation and color, and known
interactions between these cells (Figure 1b).

Model predictions

In the V1 hypothesis, firing rates of V1 cells code
salience at the RF locations, regardless of the feature
encoded by any specific cell. The activities of multiple V1
cells that respond to the same retinotopic location are not
summed. Each V1 cell competes on its own, and the V1
cell with the greatest firing rate determines the most
salient location (i.e., winner-take-all). The salience of
stimulus features is therefore related to the presence of V1
cells that are sensitive to these features. For example,
because a red vertical bar excites “vertical”, “red”, and
“red and vertical” sensitive V1 cells at its location, with
responses RO, RC, and RCO, respectively, from the
orientation-tuned (to vertical), color-tuned (to red), and
conjuntive-tuned (to red and vertical) cells, the salience of

Figure 1. (a) Feature summation hypothesis. Visual inputs are first
processed in separate feature maps tuned to different stimulus
features (e.g., orientation, color, and motion). The output of these
feature maps is summed to produce a single salience map. (b) V1
hypothesis. V1 cells tuned to different features interact through
lateral connections. Activity in cells responding to uniform feature
texture stimuli is suppressed through mutual inhibition. The most
salient location is the RF location of the cell with the greatest firing
rate. C = color, CO = color and orientation, O = orientation, MO =
motion direction and orientation, M = motion direction tuned cells.
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the red vertical bar is determined by the strongest
response from these V1 cells, that is, Salience ò max
(RO, RC, RCO). When this red vertical bar is among green
vertical bars, the red-tuned cell will be the most
responsive (because it is least suppressed by other cells
tuned to the same color); thus, Salience ò RC. We denote
this salience by unique color as Salience(C) and, similarly,
salience by unique orientation as Salience(O) and salience
by unique double feature as Salience(CO). Then, for a red
vertical bar among green vertical bars, Salience(C) ò RC,
and similarly, Salience(O) ò RO. However, for a red
vertical bar among green horizontal bars, when the
singleton differs from the background by both C and O,
Salience(CO) ò max(RO, RC, RCO) because all three
types of cells will escape iso-feature contextual suppres-
sion. Consequently, the V1 hypothesis predicts

SalienceðCOÞ Qmax½SalienceðCÞ; SalienceðOÞ� ð1Þ

This inequality is derived under a simplistic assumption that,
to single-feature singletons, the responses from the con-
junctively tuned cells are never the dominant one of the
responses from all cell types. The inequality still holds when
this assumption does not hold, as long as we assume that
the conjunctively tuned cells respond more vigorously to the
double-feature than the single-feature singleton and that the
single-feature tuned cells do not respond more vigorously to
the single-feature than the double-feature singletons.
Because in V1, there are numerous conjunctive cells

sensitive to “orientation and motion” (MO) or “color and
orientation” (CO) but only very few, if any, conjunctive
cells sensitive to “color and motion” (CM; Horwitz &
Albright, 2005; Hubel & Wiesel, 1959; Livingstone &
Hubel, 1984; Ts’o & Gilbert, 1988), the V1 hypothesis
makes clearly distinctive predictions for the salience of
MO, as well as CO versus CM combined feature contrasts.
If we generalize from above and denote the salience of a
stimulus feature (combination) x as Salience(x), where x is
color (C), orientation (O), motion (M), or a combination
of these (MO, CO, or CM), we can formulate the V1
prediction for the MO and CO feature combinations as

SalienceðMOÞ Qmax½SalienceðMÞ; SalienceðOÞ�; ð2Þ

and

SalienceðCOÞ Qmax½SalienceðCÞ; SalienceðOÞ�: ð3Þ

For the CM feature combinations, however, the lack of V1
conjunctive cells means that the salience of a CM feature
combination is equal to the salience of the stronger of the
two feature dimensions. Using the same notation as
before,

SalienceðCMÞ ¼ max½SalienceðCÞ; SalienceðMÞ�: ð4Þ

Therefore, comparing the salience of items that differ
from their surrounding by MO, CO, or CM features
against the salience of items that differ from their
surroundings in only a single feature, for example,
orientation (O), motion (M), or color (C) targets, provides
a test of the validity of the V1 hypothesis.
In contrast, the feature summation hypothesis assumes

that all stimulus features are initially analyzed in separate
feature maps, which are subsequently summed to form a
single salience map. Thus, there is no prior reason to
assume that certain feature combinations should be more
salient than others. Double-feature items will cause activa-
tion in two feature maps, resulting in a greater activation of
the summed salience map at the location of these items.
Using the same notation as before, we can write,

SalienceðMOÞ¼wðMÞ�FeatureðMÞþwðOÞ�FeatureðOÞ
K SalienceðMÞ þ SalienceðOÞ
9 max½SalienceðMÞ;SalienceðOÞ�: ð5Þ

Here, Feature(O) or Feature(M) denotes activation in
the orientation or motion feature maps, respectively, and
w(O) and w(M) are the weights that sum feature maps to
the master salience map (Mueller, Herrer, & Ziegler,
1995). Thus, for example, Salience(O) = w(O)� Feature(O),
and so on, assuming that salience from a single feature is
mainly due to the activation from the corresponding feature
map. Therefore, the feature summation hypothesis predicts
that

SalienceðMOÞ 9max½SalienceðMÞ;SalienceðOÞ�: ð6Þ

And similarly,

SalienceðCOÞ 9max½SalienceðCÞ;SalienceðOÞ� ð7Þ

and

SalienceðCMÞ 9max½SalienceðCÞ;SalienceðMÞ�: ð8Þ

This model therefore predicts that items that differ from
their surroundings in the MO, CO, or CM feature
dimensions are all more salient than corresponding items
that differ from the surrounding in the C, M, or O feature
component alone.

Evidence for increased salience from feature
combinations

Nothdurft (2000) measured the relative salience of
singleton targets defined by various single- or double-
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feature contrasts by means of a comparison to reference
targets defined by luminance levels. Subjects were briefly
(150 ms) presented with two texture arrays of bars, one on
either side of the central fixation spot, and had to indicate
which texture array contained the more salient target. One
array contained a target defined by color, orientation,
motion, or luminance feature contrasts (or a combination
of these), whereas the other contained the reference target
defined by luminance contrast. By varying the luminance
contrast of the reference target, Nothdurft measured for
each feature (and feature combination) the luminance
contrast of the reference that was perceived as equally
salient. He thereby provided a feature-independent mea-
sure of salience expressed in equivalent luminance contrast
levels. From these experiments, Nothdurft concluded the
following:

1. Combined feature targets are more salient than
single-feature targets.

2. Combined feature targets are less salient than the
sum of the component features (suggesting not
completely independent processing).

3. The CO feature combination showed the least
salience additivity effect.

4. The CM feature combination yielded more salience
additivity than the CO feature combination did.

5. The MO feature combination showed about as much
salience additivity as the CO feature combination did
(perhaps slightly more).

Although Conclusions 3 and 4 seem incompatible with
the V1 hypothesis, these conclusions, as well as Con-
clusion 2, also appear to be incompatible with the feature
summation hypothesis.
When comparing Nothdurft’s (2000) results against the

predictions from the two salience map hypotheses,
however, the following caveats must be considered. There
are a number of issues with Nothdurft’s methodology that
may have made the results nonrepresentative for testing
the salience models. When attempting to replicate the
Nothdurft study, we found that the salience comparison
task used in the study proved to be very difficult for many
naive subjects, leading to a subject rejection rate of more
than 50%. Subjects were rejected if, after careful
explanation of the task, their responses proved to be
random or completely biased to one feature type (as
determined by an inability to fit a psychometric function
to their data). In addition, even subjects who could do the
task had to be specifically requested to respond quickly to
avoid lengthy deliberation within the subject before
responding. The task of judging which of two targets
was more salient appears to inherently require top–down
feature evaluation. Unlike bottom–up salience, the top–
down salience or “stimulus priority” that Nothdurft may
have measured is strongly affected by stimulus relevance
(Bacon & Egeth, 1997; Lamy et al., 2004; Leber & Egeth,
2006; Mevorach, Humphreys, & Shalev, 2006; Sobel &

Cave, 2002). It is therefore not clear whether the task used
by Nothdurft provides a reliable measure of the purely
bottom–up stimulus salience for which the V1 hypothesis
and the feature summation hypothesis give predictions.
The need to find a better method to measure salience

was previously raised by Huang and Pashler (2005),
who proposed measuring the effect of a distracter (defined
by the relevant features) on the RT for finding a target
item in a search task. If salience reflects the degree to
which an item attracts attention, RT in a search task would
seem to offer a more direct measure of item salience.
Unfortunately Huang and Pashler did not compare the
salience of CM-defined targets versus CO- or MO-defined
targets and therefore does not provide us with the desired
evidence for testing the proposed salience map hypoth-
eses. In 2002, Krummenacher, Mueller, and Heller
measured RT in a search task (oriented bar texture) in
which the target could be defined by C, O, or CO. The
search RTs revealed a significant reduction for CO-
defined targets as opposed to the targets defined by C
only or O only. Comparison against race model predic-
tions for independent processing of C and O features
revealed that the RTs for the CO feature condition could
not simply be accounted for as the results of a winner-
take-all race between two independent single-feature pro-
cesses (similar results were also reported by Zhaoping &
May, 2007). Krummenacher et al. concluded that the
salience of CO-defined targets is greater than the salience
of targets defined by C only or O only. These results are
compatible with both the V1 and the feature summation
hypotheses. Krummenacher and colleagues are now
expanding their work on redundant features to CM and
MO as well (private communication, 2007). Unfortu-
nately, a direct comparison with the Nothdurft (2000)
study is not possible because his methods of measuring
saliency does not provide the possibility for testing
against a “race model” while the additivity measure used
by Nothdurft is not applicable to the RT data from
Krummenacher et al.
None of the published data in the literature provides the

crucial information for testing the predictions of the two
saliency map hypotheses concerning the salience of
feature combinations. We therefore measured RTs in a
search task for C-, M-, and O-defined targets and targets
defined by any combinations of these features. Similar to
Krummenacher et al. (2002), we compare the measured
RTs against race model predictions to evaluate if the
salience in the double-feature conditions is greater than
the salience of either of its feature components.

Hypothesis testing by means of a race model

In simple RT tasks (e.g., Donders, 1868), where
participants must respond as quickly as possible to the
presentation of any stimulus, responses are faster, on
average, when two stimuli are presented than when only
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one is presented (e.g., Raab, 1962). One possible cause is
statistical facilitation.
If all stimuli (stimulus features) are detected separately,

the response is initiated as soon as the first one is detected.
The RT is determined by the latency of a single detection
process if only one stimulus is presented but is determined
by the winner of a race between two detection processes
in redundant trials to detect either of the two simulta-
neously presented stimuli. This is equivalent to the
application of the V1 hypothesis to the CM double
feature, when the salience is determined by the higher of
the two responses to the two single features. Generally,
the average time for the winner of the race will be shorter
than the average time for either racer (see Miller & Ulrich,
2003).
Alternatively, the activations produced by the two

stimuli (stimulus features) could be summed (e.g., the
salience map in the feature summation hypothesis) so that
the “decision threshold” is reached more rapidly when two
stimuli (stimulus features) are presented than when only
one is (e.g., Miller, 1982; Schwarz, 1989, 1994; see
Townsend & Nozawa, 1995, for an in-depth analysis).
One way to distinguish summation/interaction at the
stimulus processing level from statistical facilitation is
by means of the so-called race model inequality (Miller,
1978, 1982; Ulrich & Giray, 1986), in which

FrðtÞ e F1ðtÞ þ F2ðtÞ; ð9Þ

for every value of t, where F1 and F2 are the cumulative
probability distributions of RT in the two single-stimuli
conditions and Fr is the cumulative distribution function
(CDF) of RT in the redundant-stimulus condition. This
inequality holds for all separate-activations race models
(e.g., CM in the V1 hypothesis but not in the feature
summation hypothesis), where the processes detecting the
two possible stimuli (stimulus features) operate separately
and each operates at the same speed regardless of whether
the other signal is presented (Ashby & Townsend, 1986;
Luce, 1986).
Comparison of observer RTs for double-feature stimuli

against the corresponding prediction from the race model
will therefore determine if there is bottom–up interaction
that increases the salience of double-feature-defined
targets. We can thus test the basic assumptions of the
V1 and feature summation hypotheses independent of any
particular computational implementation of these hypoth-
eses. In particular, the feature summation hypothesis
predicts that the mean RT for the double features should
be shorter than that predicted by the race model regardless
of the underlying feature dimensions. In contrast, the V1
hypothesis predicts that mean RTs for CM double-feature
stimuli should be predicted by the race model from the
RTs for the corresponding single features and that mean
RTs for CO and MO double features should be shorter
than predicted by the race model.

Methods

Participants

Eight observers (both authors and six naive subjects)
participated in the experiment. All had normal or
corrected-to-normal vision. The subjects were four
women and 4 men. Informed consent was obtained after
the nature and possible consequences of the study were
explained.

Apparatus and stimuli

The stimuli were presented on a 19-in. Mitsubishi
Diamond Pro 2070SB monitor (120 Hz frame rate) and
were generated using a Cambridge Research Systems
Visage card controlled with Matlab 6.5 (the MathWorks)
running on a Pentium 4 PC with Windows XP operating
system. Responses were given by means of a USB-numeric
keypad using the psychophysics toolbox (Brainard, 1997;
Pelli, 1997). The participant sat 57 cm from the stimulus
monitor in a quiet, dark room. The visual stimulus
consisted of a matrix of 30 � 22 bar stimuli (Figure 2
shows part of the stimulus screen). The size of each bar in
visual angles is approximately 1- long and 0.2- wide. The
arrangement of the bars was randomly jittered, giving a
horizontal distance between bars varying from 1.2- to 3.3-
and a vertical distance varying from 1.1- to 2- visual
angle. All bars were colored (green or purple of equal
color saturation, in opposite CIE 1976 direction from
neutral white on an axis going through uV= 0.15, vV= 0.52
[green] and uV = 0.25, vV = 0.4 [purple]) with equal

Figure 2. Example of stimulus screen for the color and orientation
target feature condition. In addition to the color and orientation
features, all bars also uniformly moved horizontally to the left or
the right. (Note that, to keep the bar elements clearly visible, only
a part of the total stimulus screen is shown here).
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luminance (14 cd/m2), equally tilted clockwise or counter-
clockwise from vertical, and moved with the same speed
to the left or to the right. On each trial, all of the
background distracter bars had the same color, tilt, and
motion direction, whereas the target bar had the
opposite color, tilt, or motion direction, or a combina-
tion of these. Target bars could be at 1 of 18 locations
(9 left, 9 right) at a constant eccentricity of 12.8- from
the intertrial fixation spot in the center of the screen.
Unlike the Nothdurft (2000) and Krummenacher et al.
(2002) studies, where the contrast between the target-
defining feature property and the corresponding back-
ground feature property was always set to the maximum
achievable contrast level (i.e., 90- orientation contrast,
fully saturated color features, and rapid motion), the
degree of color saturation, tilt, and speed of motion was
adjusted per individual to achieve single-feature target
contrasts that would yield mean search response times of
approximately 600 ms (orientation contrast ranged from
20- to 45-, color saturation ranged from 60% to 100%,
and motion speed ranged from 0.7-/s to 2.7-/s). After
each response button press, the bars were replaced by
low-contrast crosses and one high-contrast fixation point
in the middle of the screen. This fixation screen stayed
until the subject pressed another button to initiate the
next trial.

Design and procedure

The measurement procedure employed a 2AFC search
task in which subjects had to report in which half of the
screen (left or right) a singleton target was located. Each
trial contained a target that could be defined either by one
feature (C, O, or M) or by multiple features (CM, CO, or
MO). Targets defined by different feature dimensions
were randomly mixed so that subjects could not antici-
pate which feature dimension to attend to. Each session
contained 20 trials for each of the six feature conditions,
giving a total of 120 trials per session. Each subject
performed about 16 sessions, yielding a total of about
320 trials per feature condition per subject. Subjects
performed all sessions consecutively in 1 day. On
average, each session lasted 10 min. Subjects were
allowed to take short breaks between sessions. Trials
were self-paced, and subjects were instructed to take a
break between trials if they felt that they were losing
concentration. The experimenter sat next to the subjects
throughout the experiment to monitor their performance.
If a subject seemed to lose concentration (i.e., a sequence
of incorrect responses were given), the experimenter
suggested taking a short break between trials. Subjects
were instructed to respond as rapidly and accurately as
possible to indicate which side the target was on. As an
extra incentive for giving rapid correct responses,
subjects were presented with a score at the end of each

session based on their mean RT and percentage correct
responses. Reaction time was recorded as the time
between stimulus onset and button press. Subjects were
instructed to press the left cursor (located on their left
hand side) to indicate “target in left half of screen” and
the right cursor (on their right hand side) to indicate
“target in right half of screen”. The subject-specific
feature contrast tuning was done during separate training
sessions before data collection, during which only single-
feature-defined targets were used. These sessions also
served to familiarize subjects with the search task. We
aimed for a mean RT of 600 ms for all single-feature-
defined targets to ensure roughly equal task difficulty
(salience) for each single-feature condition, to allow
sufficient range for possible significant RT reductions in
the double-feature conditions (minimum RT, as measured
by presentation of a target stimulus with no background
distracters, was approximately 300 ms), and to reduce the
available time for the top–down signals to affect the
response. A mean RT of 600 ms also reduced the chance
for target–distractor collisions in the conditions that
contained motion contrast (M, CM, and MO). Depending
on the subject, the percentage of trials in which a
collision occurred varied from 0% to 2.9% of trials
containing motion contrast.

Outlier removal

Outliers were defined as RTs that were more than 3 SD
different from the mean RT. For each subject and each
stimulus condition, the RT outliers were removed based
on the mean and standard deviation of the RTs of that
particular subject and condition. For each subject and
stimulus condition, outliers constituted less than 3.2% of
the RT data. All results presented here are based on the
RT data after removing the trials with erroneous responses
or RT outliers. Qualitatively, the same results were
obtained when the outliers are retained.

Results

Percentage error rates

Table 1 lists the percentage error rates per subject per
stimulus condition. In all cases, the percentage of
incorrect responses never rose above 8%, indicating that
subjects were responding with a high degree of accuracy.

Comparison of mean RTs

For each subject, the mean RT was determined for each
of the six features/feature combinations. Figure 3 shows
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the mean of these mean RTs across subjects. The raw data
suggest that subject performance is faster for all double-
feature conditions than for any of the single-feature
conditions. However, as discussed in the Introduction
section, further analysis (by means of a race model) is
necessary to determine if this performance difference
reflects feature summation or a statistical facilitation in
independent parallel processing of stimulus features.

RT cumulative distribution functions

Next, we considered in more detail the RT distributions
for each of the stimulus conditions. To get a general
comparative overview of the RT distributions, we plotted
the CDFs of the RTs by pooling trials from all subjects for

each of the stimulus conditions (Figure 4). The CDFs
clearly show a separation between the single- and double-
feature conditions, indicating that the double-feature
conditions (solid lines) contained a greater percentage of
fast RTs, and a separation between the CM condition
(cyan line) and the faster MO (black line) and CO
(magenta line) conditions.

Comparison against race model prediction

To test whether the decrease in mean RT for the
double-feature conditions is indicative of an interactive
increase in salience or is the result of independent
parallel processing of two features, we compared the RT
distributions for the double-feature conditions against
the corresponding predictions from a race model. The
race model assumes that both features are processed
independently and the RT for finding the target corre-
sponds to the time needed for the faster of the two feature
processes to reach a decision threshold. To produce race
model predictions for the double-feature condition RT
distributions, we used a Monte Carlo simulation as
follows. In each simulated trial for the double-feature
condition (e.g., CM), we randomly selected two RTs, one
from each pool of experimental RT data from the
constituent single-feature condition (e.g., C and M), and
the RT of this double-feature trial is then the shorter of
these two selected RTs. To minimize race prediction
variance, we simulated 500,000 trials. Figures 5a, 5b, and
5c show the race-model-predicted and real RT distribu-
tions for the three double-feature conditions (data pooled

Figure 3. Mean RTs for all eight subjects was averaged, giving the
mean and standard deviation between subjects. RTs for the three
single-feature and three double-feature target conditions are
shown. Error bars show standard deviations.

Figure 4. RT CDFs for the three single-feature target conditions
(blue, red, and green dashed lines) and the three double-feature
conditions (cyan, magenta, and black solid lines). Data were
pooled from all eight subjects.

Subject

Percentage of incorrect responsest1.1

C O M MO CO CMt1.2

Z.L. 3.2 0.6 5.3 1.2 0.6 5.6t1.3

A.K. 3.8 4.7 5.3 1.2 1.9 5.3t1.4

C.F. 3.8 5.6 3.4 0.3 1.9 0.3t1.5

J.C. 5 6.5 0.6 3.1 2.5 0.3t1.6

N.L. 5 1.7 0.6 3.9 1.0 0t1.7

R.K. 8 3 3.1 2.8 0.3 2.5t1.8

S.A. 4.4 0.3 4.7 1.6 0.7 1.3t1.9

S.D. 2.8 4.4 5.9 1.3 3.4 0.6t1.10

t1.11t1.13 Table 1. Percentage error rates per target feature condition.
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from all eight subjects). Figure 6 shows the corresponding
CDF plot. The CDF plot clearly shows that the real RT
data for the MO and CO feature combinations have a
greater percentage of RTs below 600 ms than predicted
by the race model. For the CM feature combination,
however, this is not the case. Figures 7a and 7b show a
comparison between the real and race-model-predicted

mean RTs, that is, RT(real) and RT(race), for the double-
feature conditions when the mean RTs for each subject are
obtained (shown in Figure 7a) before they are averaged
between subjects (Figure 7b). To facilitate comparison,
we obtain for each subject

mean RTðrealÞ T 95%CI RTðrealÞ j mean RTðraceÞ; ð10Þ

where 95% CI RT denotes 95% confidence interval of the
RT and this is plotted in Figure 7a. Figure 7b plots the
average value of this quantity above across subjects.
Figure 7a shows that for most subjects, mean RT(race) is
slower than mean RT(real) for the MO and CO conditions,
whereas for the CM condition, mean RT(race) was often
faster than mean RT(real). Repeated measures ANOVAs
comparing RT(real) against RT(race) for the eight subjects
showed no significant difference for CM (df = 1, F = 0.22,
p = .65), whereas the CO and MO conditions did show
significant differences (df = 1, F = 5.99, p = .044 and
df = 1, F = 9.94, p = .016, respectively). Figure 7b shows
that, averaged over the eight subjects, the difference
between mean RT(race) and mean RT(real), that is, mean
(mean RT(real) j mean RT(race)), was significant for MO
(one-sample t test: t = 3.1532, df = 7, p = .0161) and CO
(one-sample t test: t = 2.4469, df = 7, p = .0443) but not
for CM (one-sample t test: t = 0.4690, df = 7, p = .6533).
If we apply a Bonferroni correction, to compensate for the
fact that these data might not be fully independent because
they were collected in the same sessions, the threshold

Figure 5. Real RT distributions (pooled data of all eight subjects) and race model simulations of the double-feature target conditions.
(a) Color and motion combination. (b) Color and orientation combination. (c) Orientation and motion combination.

Figure 6. RT CDFs of the subject performance (solid red, green,
and blue lines) and race model prediction (dotted magenta, cyan,
and gray lines) for the double-feature target conditions (pooled
over all eight subjects).
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values become p = .0166, leaving only MO significant.
Furthermore, comparison of the difference “mean
RT(race) j mean RT(real)” for the three double-feature
conditions, using matched t test, indicates a significant
difference between CM and CO and between CM and
MO, but no difference between CO and MO (p = .03,
p G .01, and p = .34, respectively). This suggests that O
and C, as well as O and M, interact to increase the

salience of targets defined by these feature combinations,
whereas C and M features are processed separately,
leading to no special boost in target salience.

Discussion

To summarize the findings from this experiment, we
have shown by comparison with race model predictions
that the RTs to find targets that are defined by CO or OM
features are significantly shorter than would be predicted
by independent parallel processing of either of the
constituent features alone. In contrast, the RTs for CM-
defined targets are not significantly different from the
predictions from independent parallel processing of the
constituent single-feature contrasts.

Comparison with literature

In the CO condition, our finding agrees with that by
Krummenacher et al. (2002). They concluded from their
CO results that “I there is coactivation of a common
mechanism by target signals in different dimensionsI.”
The results from our study and from the Nothdurft

(2000) study, however, diverge on a number of key issues.
Whereas we found strong search advantages for MO- and
CO-defined targets, but only weak advantages for CM-
defined targets, Nothdurft reported that the CO feature
combination showed the least salience increase (over that of
the single-feature targets), whereas both theMO and the CM
feature combinations showed a greater salience increase.
The most probable reason for differences in our data

and those of Nothdurft (2000) is the methodological
differences of using search task RT measurement versus
salience comparison judgments. As discussed in the
Introduction section, when attempting to replicate
Nothdurft’s experiment, many of our subjects were not able
to successfully perform the task as instructed. Nevertheless,
we did qualitatively replicate Nothdurft’s results.
Although the RT method used in our experiment was

geared specifically toward measuring bottom–up salience
effects by avoiding the need for higher level image
processing (i.e., we used singleton pop-out with mean
response times of 600 ms or less, and the subjects were
typically unaware of the singleton type right after button
responses to a trial, which was irrelevant for the task),
Nothdurft’s paradigm may inherently require stimulus
evaluation at a higher level of processing to compare the
salience of the targets presented in the texture arrays in the
right half and left half of the screen.
The possible contributing factors toward top–down

processing involvement are the following:

& The separation into two distinctly separate stimulus
fields. Without this separation, the experiment would

Figure 7. To facilitate comparison across subjects, we show the
differences between the mean RT(real) and the race model
predicted RT for double-feature singletons. (a) For each of the
eight subjects, in green, is mean RT(real) T 95% CI RT(real) j mean
RT(race). (b) The difference mean RT(real) j mean RT(race)

averaged across subjects. Error bars show 95% CI. No error
bars are given for RT(race) because these can be made arbitrarily
small by increasing the number of simulated trials.
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have corresponded more to a uniform “target versus
distracter” type task, similar to the task used by
Huang and Pashler (2005; except that both singletons
were equally valid as target).

& The response method and instruction. Nothdurft’s task
would have been more “bottom–up salience oriented”
if the direction of initial eye movements had been
recorded while subjects were instructed to simply
search for a singleton element. Instructing the subject
to “press the button on the side where the more salient
target is” promotes responses based on awareness of
target features and internal reflection about the
percept. The task in Nothdurft’s experiment implies
a comparison between two targets, whereas bottom–
up salience is thought to simply provide initial
attention grabbing.

Models of bottom–up salience

The feature summation hypothesis proposes a hier-
archical system in which different stimulus features are
processed in independent parallel feature maps that are
subsequently summed into a master salience map. Due to
this summing stage, it is predicted that all double-feature
targets should be more salient than both of the
corresponding single-feature-defined targets. To accom-
modate our data for the CM feature targets, feature
summation models would have to introduce the follow-
ing two fundamental changes: (1) add a layer of
computation at which CO and MO features are summed
but CM features are not summed, and (2) replace the
final summation stage by a winner-take-all stage.
Crucially, the CM results show that not all features are
summed to form a single salience map (Figure 8).
Furthermore, if Change 2 to the feature summation
hypothesis is not included, then summing the outcomes
from the CO and MO maps would amount to summing C
and M, in contradiction to our data.
In contrast, the V1 hypothesis is able to account for

our data without requiring any changes. The RT results

for the different feature conditions in our experiment are
consistent with the occurrences of conjunctive cells in
V1 that are sensitive to CO or MO feature combinations
but not to CM feature combinations (Horwitz &
Albright, 2005; Hubel & Wiesel, 1959; Livingstone &
Hubel, 1984; Ts’o & Gilbert, 1988), thus validating the
predictions made by the physiology-based V1 model of
bottom–up salience (Li, 2002).
By construction, our data do not distinguish the V1

hypothesis from the augmented feature summation
hypothesis of bottom–up saliency. Structurally, the
augmented feature summation hypothesis has an inter-
mediate stage for CO and MO as subsequent to the
single-feature maps. This is so as to retain its resem-
blance to the original feature summation hypothesis.
However, the augmented feature summation hypothesis
could be modified such that all the single- and double-
feature maps cohabit in a single stage or area, then it
would be even structurally indistinguishable from the V1
hypothesis.
The augmented feature summation hypothesis is a

fundamental departure from the original feature summa-
tion hypothesis. In particular, with the replacement of the
final summation stage by the winner-take-all stage in the
augmented feature summation hypothesis, there is no
longer a need for a separate master saliency map in
addition to the feature maps. This is because the atten-
tional selection system could simply ignore (or be blind
to) the separation between the single- and double-feature
maps, treat all units (or neurons) from these feature maps
as if they were from a single neural population, find the
most active unit or neuron among them, and direct
attention to its RF. Then, as far as this attentional selection
is concerned, there is no need to separate the neurons
tuned to different features into separate feature maps; all
the neurons might as well be residing in a single cortical
area such as V1 (Zhaoping, 2005, chap. 93; Zhaoping &
Dayan, 2006). In addition, it is known that V2 has neurons
tuned to all three types of conjunctions of feature
dimensions (Gegenfurtner, Kiper, & Fenstemaker,
1996)VCM, CO, and MOVand thus could not have been
responsible for the bottom–up saliency in our task given
our data. Our data are thus strong evidences in support of
the V1 mechanisms against those in higher cortical areas
for being responsible for the bottom–up saliency. How-
ever, our data are far from conclusively proving the V1
hypothesis and completely rejecting the original feature
summation hypothesis. This is because our experiment
only looked at one particular aspect of saliency compu-
tation using the most basic set of stimulus variations and
feature dimensions. It is not unlikely that more complex
visual stimuli and features, such as depth and surface
features, could call for additional visual selection mech-
anisms beyond V1, although they are likely to require
longer processing and response latencies (He &
Nakayama, 1992) and may be viewed as a different class
of bottom–up saliency from those considered in this

Figure 8. Symbolic sketch of the augmented “feature summation”
hypothesis with the required modification to account for our data.

Journal of Vision (2007) 7(7):6, 1–14 Koene & Zhaoping 10



article. With these more complex visual features, some
properties in the original feature summation hypothesis
could still be relevant. These questions should be closely
investigated in future studies.

Role of V1 conjunctive cells for salience

The increased salience of double-feature-defined targets
is correlated with the occurrence of conjunctive cells in
V1 sensitive to specific feature combinations. If the
presence of conjunctive cells makes corresponding dou-
ble-feature targets more salient, why do targets defined by
MO or CO feature combinations not pop out in con-
junction search tasks?
The Li (2002) V1 hypothesis is based on the observa-

tion of contextual influences on the neural firing rates of
V1 cells through finite range lateral interaction between
Layer 2–3 pyramidal cells and interneurons. The output
activity of each cell therefore depends not only on its
direct input (i.e., the stimuli within its classical RF [CRF])
but also on the contextual stimuli outside the CRF. Each
cell receives inhibitory inputs from cells with neighboring
CRFs that are sensitive to the same featureViso-feature
suppression (with the exception of collinear edge- or bar-
detector cells, which provide excitatory input). Although
reading out the actual input features from the V1 response
requires feature-specific decoding from the population
responses (Dayan & Abbott, 2001), the location of the
most salient item simply corresponds to the CRF of the
most responsive cell. A feature singleton pops out within
this framework simply because it evokes response in a
neuron that does not suffer from the iso-feature suppres-
sion, whereas neurons responding to the nonsingleton
items do. To understand why a unique feature conjunction
(which is not a feature singleton) does not pop out, V1’s
conjunctive cells must get inhibitory inputs not only from
other conjunctive cells sensitive to the same feature
combination but also from single-feature cells sensitive to
either of the features to which the conjunctive cell responds.
Thus, during conjunctive search tasks, the activity of the
conjunctive cell will be suppressed qualitatively (although
perhaps not quantitatively) just like the activities in single-
feature tuned cells, making the situation qualitatively similar
to that without conjunctive cells.

Conclusion

Using RT measurements in a singleton search task, we
have shown that OM and CO double-feature-defined
targets can be found significantly faster than predicted
from a race model assumption of independent processing
for the C, M or O features, suggesting a low-level
interaction that increases the salience of OM and CO

double-feature-defined targets. For CM double-feature-
defined targets, however, the RT was not significantly
different from the race model prediction, suggesting that
color and motion do not interact (at low level) but are
instead processed independently and in parallel. These
results are in agreement with predictions from the V1
salience map model (Li, 2002) but contradict the assump-
tion of a general summation over all feature maps that
forms the output of the feature maps hypothesis (Itti &
Koch, 2001; Koch & Ullman, 1985; Wolfe et al., 1992).
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