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We study the representation of static patterns and temporal sequences in neural networks with signal

delays and a stochastic parallel dynamics. For a wide class of delay distributions, the asymptotic net-

work behavior can be described by a generalized Gibbs distribution, generated by a novel Lyapunov

functional for the deterministic dynamics. We extend techniques of equilibrium statistical mechanics so

as to deal with time-dependent phenomena, derive analytic results for both retrieval quality and storage

capacity, and compare them with numerical simulations.

PACS numbers: 87.10.+e, 64.60.Cn, 89.70.+c

Associative reconstruction of noisy data in a neural
network can be accomplished by endowing a pattern to
be memorized with a basin of attraction for the system's
retrieval dynamics. ' If the dynamics is governed by a
Lyapunov function, a simple intuitive understanding of
the global computation becomes possible: The system
performs a downhill motion in an energy landscape
created by the stored information.

For networks with static patterns, there is a Lyapunov
function if the interactions between single neurons are
instantaneous and mediated by symmetric couplings.
Methods of equilibrium statistical mechanics may then
be applied and permit a quantitative analysis of the
network's performance in terms of the retrieval quality
and storage capacity. The existence of a Lyapunov
function is thus of great conceptual as well as technical
importance.

In general, external inputs to a neural network are not
limited to static memories but provide information in

both space and time. To code the temporal aspects of se-
quences of patterns to be learned, additional asymmetric
couplings with transmission delays may be introduced.
This approach can be generalized to networks with a
broad distribution of signal delays where Hebb's neuro-
physiological principle for learning naturally leads to a
joint representation of spatial and temporal informa-
tion. However, no description in terms of a Lyapunov
function has been given so far.

In this Letter such a description is developed for a cer-
tain class of networks with transmission delays. We
present a Lyapunov functional for the deterministic
parallel dynamics, generalize the formalism of equilibri-
um statistical mechanics so as to deal with thermal noise
in systems with delayed interactions, and, hence, make
the domain of time-dependent phenomena accessible to
powerful free-energy techniques.

We follow Refs. 1-3 and model single neurons by Is-
ing spins 5;, 1 ~i ~ N. They represent a firing state for
5; =+1 and a quiescent one for 5; = —1. The neurons

are connected by synapses with modifiable efficacies
J;, (r). Here r denotes a fixed time delay for the infor-
mation transport from j to i. We focus on a solitonlike
propagation of neural signals, characteristic for the (ax-
onal) transmission of action potentials, and consider a
model where each pair of neurons is linked by several ax-
ons with delays 0~ ~~ r,„. External stimuli are fed
into the system via two-state receptors cr; = + 1. The lo-
cal fields (postsynaptic potentials) are then given by

N max

where the parameter y measures the system's input sen-
sitivity. Other transport mechanisms and network archi-
tectures have been studied elsewhere; see also Refs. 4,
5, 8, and 9.

We concentrate on synchronous (parallel) dynamics
and set the basic time step equal to unity. Consequently,
the signal delays take non-negative integer values. The
inhuence of synaptic noise may be described by a sto-
chastic Glauber dynamics' at finite inverse temperature
p =T '. In that case,

Prob[S;(t+1) = ~ 1] = —,
' [1 ~ tanh[ph;(t)]j, (2)

which reduces in the deterministic limit, p ~, to
S;(t+1)=sgn[h;(t)]. The retrieval dynamics can be
studied in the bulk limit N ~ if the number and
length of the stored sequences remain finite.

In the present Letter, we surpass the limits of this kind
of analysis and show that an approach in terms of statist-
ical mechanics is feasible for networks whose couplings
exhibit an "extended synaptic symmetry, " ' '

(3)

for some (fixed) integer D ) 2. Links with r )D —
1

are assumed to vanish, i.e., r,.„~D —2.
The condition (3) can be met by simple training algo-

rithms for the synaptic e%cacies. As an example, we
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AH(t) = —Q [S;(t)—S;(t—D)]h;(t —1) . (6)

Deterministic dynamics, i.e., S;(t) =sgn[h;(t —1)], im-

plies that the right-hand side will only take nonpositive
values. For finite N, H is bounded from below and hH
has to vanish for t ~. This can be realized only if the
system settles into a state with S; (t) =S;(t —D) for all i

We have thus exposed two important facts: (a) The
retrieval dynamics of a certain class of networks with de-
layed interactions is governed by a Lyapunov functional,
and (b) the system relaxes to static states or limit cycles
with S;(t) =S; (t —D )—oscillatory solutions with the
same period as that of the taught sequences (or a period
equal to an integer fraction of D). It remains to be
shown that such a limit cycle of the retrieval dynamics
indeed resembles a stored sequence for appropriate ini-

tial conditions.
In order to prove the above assertion, we proceed in

three steps. First, we demonstrate that our task concern-
ing temporal associations with a cyclic structure can be

mapped onto a symmetric network without signal delays.

present a linear Hebbian rule. During a learning session,
a coupling strength J;J(i) is altered after each time step
by an amount proportional to the product of SJ(t —i)
and S; (t+1)—due to the delay i in (1) and the discrete
dynamics (2) it takes i+1 units of time until neuron j
inAuences the state of neuron i through that specific
synapse. After P learning sessions, labeled by p and
each of duration D„, we thus obtain

1'
J;,(i) =e(i) g—g S;(t„+1)S,(t„—i). (4)

Np 1' 1

The a priori weights e(i) are non-negative, normalized
such that p, -'*De(i) =1, and may be used to define vari-
ous network architectures. For a "clamped" learning
scenario with y= 1 in (1), the system evolves strictly ac-
cording to the external inputs, S;(t„)=o;(t„—1). Equa-
tion (3) holds once we teach cyclic associations with a
common period D to networks whose weight distributions
obey e(i) =e(D —2 —i)

Returning to the general case, given by (3), we now
establish that there is a Lyapunov functional for the
noiseless retrieval dynamics. We focus on a free evolu-
tion of the system, i.e., we set y=0 in (1), generalize the
results of Ref. 12, and take

1
N D 1 rmax

H(t)=- ——g g g J;,(i)S, (t —a)
ij 1a Or 0

xS (t —(a+i+1)(modD)) .

(5)
The functional H depends on all network states between
t+1 —D and t so that solutions with constant H need not
be static fixed points of the retrieval dynamics. The
difference AH(t) =H(t) —H(t —1) is given by

Second, we apply equilibrium statistical mechanics to
study such "equivalent systems. " Third, we focus on a
special case, the Hebbian learning rule (4), and derive
analytic results for the retrieval quality and storage
capacity.

D-periodic oscillatory solutions of the retrieval dynam-
ics can be interpreted as static states in a "D-plicated"
system. Let us therefore consider such a fictitious sys-
tem with D columns and N rows of ~ 1 neurons whose
activities will be denoted by S;,. A network state will be
written 8 =(AO, A~, . . . , Ao-~) with A, =—tS;„1~i
~ N}. To reproduce the parallel dynamics of the origi-

nal system, neurons S;, with a =t (modD) are updated at
time t. The time evolution of the new network therefore
has a pseudosequential characteristic: synchronous
within single columns and sequentially ordered with
respect to these columns. Accordingly, the neural activi-
ties at time t are given by S;,(t) —=S;(a+n, ) for a
~ t(modD) and S;,(t) =S;(a+n, D) for —a & t
(modD), where n, is defined through t= n, +t(m—odD).
Because of (3), we may construct symmetric efficacies
JJ"=J~ for the new system by putting JJ'=0 and

J~j~=JJ((b —a —1)(modD)) for aWb,

so that there is a well-defined Hamiltonian,

H = ——g g Jt'gS;, Sjb,
1

N D —
1

(g)2ij 1ab 0

equal to that of a Hopfield network of size ND.
An evaluation of {8) in terms of the former state vari-

ables reveals that it is identical with the Lyapunov func-
tional (5). We may once again calculate AH(t) and ar-
rive at a formula corresponding to (6). The interpreta-
tion, however, is changed: a limit cycle of period D in
the original network corresponds to a fixed point of the
new system of size ND. %"e have thus shown that the
deterministic parallel dynamics of a delay network with
extended symmetry can be understood in terms of a
downhill motion in the energy landscape of its equivalent
system.

If, in a second step, we now s~itch to a stochastic
Glauber dynamics (2), the important question arises
whether H also determines the invariant distribution p of
the network. This need not be true since the column-
wise updating procedure of the equivalent system differs
from both the Little' and the Hopfield model. It turns
out, however, that there is indeed an equilibrium distri-
bution i la Gibbs, "

p(A) =Z ' exp[ PH(A)] . —

Here Z—:Tr~ exp[ PH(A)] denotes the pa—rtition func-
tion. The exact proof is elaborate since due to the non-
Markovian structure of the dynamics (1) and (2), the
principle of detailed balance does not apply to single-step
transition probabilities.

In passing we note that for D=2 there are only links
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with zero delay. By (3) we have J;&(0) =Jz, (0), i.e., we

are dealing with a symmetric Little model. We may in-

troduce a reduced probability distribution p for this spe-
cial case, P(A() =Tr~, p(ApA(), and obtain P(A()
=Z 'exp[ pH—(A()] with

say s, cycles of the original system (corresponding to sD
static patterns for the equivalent model of size ND) and
assume that the network is in a state highly correlated
with these spatiotemporal objects. The remaining, ex-
tensively many cycles are described as a noise term. We
consider retrieval solutions and make the ansatz

N N

H= —P— ' g ln 2cosh P g JJS, (10) m~g =N'—ggP;SP, =m "8,p,

qgP
=N—'g S;,Sg =B,g [Sp (1 —

q ) +q],We thus have recovered both the eAective Hamiltonian
of the Little model as derived by Peretto' and the
duplicated-system (D =2) technique of Ref. 13.

Finally, we finish our argument by turning to quanti-
tative results. We focus on synaptic couplings generated
by the Hebbian rule (4) and investigate the case where
each of the P learning sessions corresponds to teaching a
(different) cycle of D patterns [y,~; I (i ~ N], 1 (p
~D, i.e., each pattern lasts for a single time step,
o; (t„)= y,",„(,dD). In accordance with (4) and (8),
there are PD patterns [g,".,'; 1(i (N, 0(a(D —I]
for the equivalent network, 1 ~ p ~ P, 1 ~ e ~ D, given

by g;, =y;, and (ra 4i(a —a),(modD). In what follows, wepo p pa po

work with unbiased random patterns where y,~ =+ 1

with equal probability, and study our network at a finite
storage level a =lim)v (P/N) )0.

As in the replica-symmetric theory of Amit, Gut-
freund, and Sompolinsky we single out finitely many,

for the relevant order parameters of the n-fold replicated
network, 1 ~ p, o ~ n. By applying the techniques of
Refs. 3 and 14, we arrive at the fixed-point equations

(13)

(i4)q= tanh, m' + ar z,

PI, (( )l'r=q-
k=( [1 —p(1 —q)kl, (8)]

(is)

The double angular brackets represent an average with

respect to both the condensed cycles and the normalized
Gaussian random variable z. The kk(C) are eigenvalues
of the matrix 8 with A, (,

=e((b —a——1)(modD)). At
the saddle points given by (13)-(15),the free energy is

qpx, (e)
i —p(i —q)x, (c)

+ —aP'(q —l)r+ 1n2cosh P, gm "0 +der z, ) .
2

—Pf(P) = —~P(m') ——aP in[1 —P(1 —q)Xk (8)]—1

2

I(@)
I(Hopfield)

Da, (C)
da, (Hopfield) '

where d denotes the number of diAerent delay lines be-
tween each pair of neurons, 1 ~ d ~ D —I. A numerical

The preceding equations closely resemble their counter-
parts for the Hopfield (or Little) model and become
identical to them for a "maximally uniform" distribu-
tion, (,q

= (D —1) (1 —6,b), in the limit D ~. For
general period D and weight distribution 8, there is at
zero temperature a first-order phase transition between
the retrieval state and a spin-glass phase as in the
Hopfield case. The critical storage level e, and the cor-
responding overlap m, are difI'erent, though.

It should be noted that each cycle consists of D in-

dependent patterns so that the storage capacity for single
patterns is a, =Da, . During the recognition process,
however, each of them will trigger the cycle it belongs to
and cannot be retrieved as a static pattern.

As a second measure of the performance, we include
the information content I~(8), measured per synapse
and relative to that of the Hopfield model,

D

0.100
0.110
0.116
0.120

m,

0.93
0.95
0.96
0.96

1.45
1.20
1.12
1.09

The above findings agree well with estimates from a
finite-size analysis (N(3000) of data from numerical
simulations as shown by two examples. For D=3, we
have found a, =0.120%0.015, and for D =4, a, =0.125
L- 0.015.

Our results demonstrate that the storage capacity for
temporal associations is comparable to that for static
memories. As an example, we take D =2, i.e., the Little
model. In the limit of large N, we see that 0.100N two-
cycles of the form y,"~ —y,".

2 may be recalled as compared
to 0.138N static patterns;' this leads to a 1.45-fold in-

t solution of the saddle-point equations at T=O leads to
the following results for networks with a "maximally
uniform" distribution:
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crease of the information content per synapse. At the
same time, the retrieval overlap drops slightly from 0.97
to 0.93. The influence of the weight distribution on the
network behavior may be demonstrated by some choices
of e(z) for D =4:

0 1 2 3 a, IR

e(z)
e(r)
e(z)

1

3
I

2

0I

0I

0 0

0.116 0.96
0.100 0.93
0.050 0.93

1.12
1.45
1.45

The uniform distribution leads to the largest a, but
smallest Ig. The other two networks have the same
value of IR as the (unique) D =2 system due to the par-
ticular structure of their eigenvalue spectrum. Further-
more, one obtains IR =1.45 independently of D for all

networks with a "minimal connectivity" where only one
synapse links two neurons (D even). Simulation data
show once again slightly higher values of e,—possibly
indicating eAects of replica-symmetry breaking as in the
Hopfield model.

In summary, we have introduced a Lyapunov func-
tional for a wide class of neural networks with signal de-

lays and have generalized equilibrium statistical
mechanics so as to analyze the network behavior under a
stochastic dynamics. Quantitative results have been ob-
tained for a Hebbian learning rule. They prove that an
extensive number of temporal associations can be stored
as spatiotemporal attractors for the retrieval dynamics.
Even at the critical storage level, retrieved sequences
contain less than 3.5% errors for all studied architec-
tures. Our results indicate that dynamical systems with

delayed interactions can be programmed in a very
efFicient manner to perform associative computations in

the space-time domain.
The current approach provides a new framework for

the study of temporal associations in delayed networks.
Though limited to networks whose couplings exhibit an
"extended symmetry,

" it may be generalized in various
directions. To mention a few examples, first, more so-
phisticated learning prescriptions like a spatiotemporal
version of the pseudoinverse rule can be investigated.
Second, one may wish to switch to continuous state vari-
ables and study temporal associations in "iterated-map
networks. "' It turns out that a generalization of the
Lyapunov functional (5) covers that case as well, ' al-

lowing for a direct comparison of theoretical predictions
with experimental results from hardware implementa-
tions. Finally, one could try to develop a Lyapunov func-
tional for a continuous-time dynamics including signal
delays which seems to be rather significant for applica-
tions as well as for the general theory of functional
differential equations and dynamical systems.
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