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Organization of
visual areas

No more data as illuminating

1980-2007 --- V2, V3. V4 .. J

The feature detection idea no longer ‘
applies around V1-V2? :2::;&

Calling for new ideas!!!
--- What is V1 doing?

1960s-70s, Hubel and Wiesel
Bar/edge feature detectors in V1

1953, Stephen Kuffler
Center-surround feature detectors
In retina



Motivating question: what exactly is V1 doing?

Detect edges/bars  ----for what? Organization of

“ay: visual areas
Vi \ ,,,,,,,,,,,,,,
Prepares information for later?
é%é V

Verifies top-down information?

Y SOMATO

LLLLLLL
SENSORY \ N ) PREFRONTAL

The back-office role?
But V1 is huge! (and thus expensive)

: ) ;¥
1960s-70s, Hubel and Wiesel
Bar/edge feature detectors in V1 .

1953, Stephen Kuffler

Center-surround feature detectors
in retina
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Information bottlenecks in the visual pathway:

Primary visual cortex
(V1)

107 bits/second
~ 108 neurons
~10 spikes/neuron
~1 spike/second

10° bits/second (Kelly 1962)
~ 25 frames/second, 2000x2000

pixels, 1 byte/pixel
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Information bottlenecks in the visual pathway:

Attentional bottleneck ~ 40 bits/second  “To be or not to be,
This is the question ..”

Primary visual cortex
(V1)

107 bits/second
~ 108 neurons
~10 spikes/neuron
~1 spike/second

10° bits/second (Kelly 1962)
~ 25 frames/second, 2000x2000

pixels, 1 byte/pixel




Demo of information deletion --- change blindness
Inattentional blindness — spotting the difference between the two images

We are blind to almost everything except the tiny bit that we pay attention to!



Demo of information deletion --- change blindness
Inattentional blindness — spotting the difference between the two images

We are blind to almost everything except the tiny bit that we pay attention to!
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Attention is guided by bottom-up or top-down factors.
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inputs

A bottom-up
Saliency map

To guide
attentional

selection.
(Koch & Uliman
1985, Wolfe et al
1989, Itti & Koch
2000, etc.)

Shorter reaction time (RT)
of a saccade to a target,
or to find a target
-> higher saliency.




The V1 Saliency Hypothesis:
A bottom-up saliency map in the primary visual cortex (Li 1999, 2002)
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The V1 Saliency Hypothesis:
A bottom-up saliency map in the primary visual cortex (Li 1999, 2002)
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The V1 Saliency Hypothesis:

A bottom-up saliency map in the primary visual cortex (Li 1999, 2002)
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This hypothesis is against
traditional wisdoms which presume
that higher cortical areas guide the
attentional selection (Treisman,

Koch, Desimone, itti , etc).
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Attention auctioned here, no discrimination between
your feature preferences, only spikes count!

Hmm... | am
feature blind
anyway

O
Capitalist... he 2'/.
only cares

about money!!!

ioneer
o) /;IUC’[IO ee\

\o ~N \/\//
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1 $pike
A motion
tuned V1
cell

s 2 $pike
3 $pike v
A color orientation \/

tuned V1 tuned V1
cell cell

/\

Zhaoping L. 2006, Network: computation in neural systems




The V1 Saliency Hypothesis:
A bottom-up saliency map in the primary visual cortex (Li 1999, 2002)

Retina Saliency V1 firing rates
inputs map (highest at each x)
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In monkeys, retina to superior
colliculus connection is unable
to drive visually guided
saccades.




Intra-cortical interactions lead to saliency signals
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The V1 mechanism for saliency simulated by a V1 model

connections
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Visual inputs, filtered through the receptive

fields, to the excitatory cells.

Li, 1998, 1999, 2000, 2002.
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A surprising, qualitative, prediction,

Attention capture by a
non-distinctive visual
item




A surprising, qualitative, prediction Perception

binocular neurons, —
eye-of-origin blind.

V2 and above, mostly l N

Left eye input Right eye input
. eye-of-origin visible,
by monocular neurons




A qualitative prediction, confirmed (Zhaoping, 2008, 2012)

Left eye image

Right eye image
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A qualitative prediction, confirmed (Zhaoping, 2008, 2012)

Left eye image

Right eye image

AN AN
AN NOOUN

NN SN (O

NN

N\
N\
N

N

\

Orientation

/

Fused perception
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Eye of origin
singleton,
non-distinctive, but
predicted to be very
salient

Initial gaze shift,
directed to ocular
singleton 75% of the
trials



A qualitative prediction, confirmed (Zhaoping, 2008, 2012)
Left eye image

Right eye image
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Zhaoping & Snowden 2006, Zhaoping & May
2007, Koene & Zhaoping 2007, Jingling &

\:used perceptiou‘(
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Other qualitative predictions confirmed:

Zhaoping 2008, Zhang et al 2012, etc.

No top-down
influence!
S| V-

N fingerprint!

Higher cortical
areas:
eye-of-origin blind

eye-of-origin
visible

Dissociation between
perceptual distinction

and saliency
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Motivating questions:
(1) What is V1 doing?
(2) Which brain areas control the
direction of attention?

Theory:
A bottom-up saliency map in V1

Predictions and tests:
(1) Qualitative: ocular singleton pop-out
(2) Quantitative: reaction times for pop-out <

Implications.



Examples of quantitative predictions from other theories/models
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Fig. 2. The contrast-response function of light adapted . . .
LMC's compared to the cumulative probability functi Figure 10. Predicted retinal filters, (5.14), at dif-

Zhaoping, Geisler, May 2011,

: Atick and Redlich’s (1990) predicting wavelength
Lau_g_h“m 1978 predicting human psychophysical ~ discrimination threshold from
predicting neural contrast sensitivity from Barlow’s ~ Ccone spectrum sensitivities,
contrast response efficient coding theory, with a few ~ one free parameter
function from input free parameters.
distribution

Zero parameters



Examples of quantitative predictions from other theories/models
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First, recall from the theory:
maximum firing, (not summation of firing rates),

at a location determines its saliency

Retina inputs

A 4

V1 neural firing

rates
O
t oy S+ MAX Winner-take-all
o7 A S | QUCHION fOF
;1 + attention

t +

Neural activities as universal
currency to bid for visual selection.
The receptive field of the most active

V1 cells is selected



First, illustrate using a toy V1:
Toy V1: some cells tuned to orientation, others tuned to color

Colour (C) singleton

y, / 7/ RT. =500 ms , Color (C) cell response 10 spikes/second
/ /7 /
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Orientation (O) singleton
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First, illustrate using a toy V1:
Toy V1: some cells tuned to orientation, others tuned to color

Colour (C) singleton

y, / 7/ RT. =500 ms , Color (C) cell response 10 spikes/second
/ /7 /
/

Orientation (O) singleton

/
/7
/ \ / RT, = 600 ms, Orientation (O) cell response 9 spikes/second
/
/ A Monotonic,
RT Subject dependent
Double (CO) .
singleton RT.o=500 ms = min (RTe, RTp)
C neuron: 10 spikes/second
/ / O neuron: 9 spikes/second
/
/ \ 7/
/ —_ >
/ Firing rate r



In fact, V1 responses are stochastic, so RT data is probabilistic

RT = 500 ms \ \\ / \
\ \ \\ V1 responses to

the target bar
=10 spikes

RT = 400 ms \ \\ / \

\ \ \ V1 responses to

ote "\ the target bar
=12 spikes

P(RT) RT distribution

RT




Therefore, we can predict a probability distribution P(RT,)

O singleton

VAR
A

C singleton

AR

\
W D

CO singleton

VATIR
NEA

— The mos',t active target
neuron is tuned to O

Relative target responses: 10,12,9 ...

The most active target
neuron is tuned to C

Relative target responses: 9,10,11 ...

Two types of neurons
highly active for the
target: O, C

Relative O cell responses: 10, 12,9 ...

Relative C cell responses: 9, 10, 11 ...

Winner responses: 10, 12, 11 ...

P(RTy) RT, distribution

A

RT,

P(RT.) RT.distribution
A




Therefore, we can predict a probability distribution P(RT,)

O singleton
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C singleton
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CO singleton

VATIR
NEA

— The mos',t active target
neuron is tuned to O

Relative target responses: 10,12,9 ...

The most active target
neuron is tuned to C

Relative target responses: 9,10,11 ...

Two types of neurons
highly active for the
target: O, C

Relative O cell responses: 10, 12,9 ...

Relative C cell responses: 9, 10, 11 ...

Winner responses: 10, 12, 11 ...

P(RTy) RT, distribution

A

RT,

P(RT.) RT.distribution
A

RT.
>

P(,R‘Tco) RTo distribution
=P[min(RT, RTy)]

RTeo




Behavioral data from Koeene and Zhaeping (2007)
0.15! O target

0.05: ||‘|||||
0

0.3 04 05 0.6
0.15}

0.05; |||||||
0

0.3 04 05 0.6

o
-

Probability

C target

o
—

Probability

0.15;

CO target
2 o1
3
A_bout 300 S .05
trials per
condition 0

03 04 05 06

RT.,



Predict RT., from  RT,, = min(RT,,RT,)

4~
Probability Density (RTC)
2 -
——
0 0.4 0.5 0.6 0.7 0.8 0.9 1
RT (second)

6 —
41+ Probability Density (RTO)
2 -
O | | | | | | |

0.4 0.5 0.6 0.7 0.8 0.9 1

Probability density (RT,) P value ~ 0.00
mean RTs

6 Predicted 05 ‘_-_i .
4 = Observed 0 Pred|Cted RT

Subject =SA, p=0.000

significantly longer
0.4 0.5 0.6 0.7 0.8 0.9 1 than Observed RT

RTC C)(second)




Because --- real V1 has CO conjunction cells

O target

The most active target P(RTo) RT,, distribution

\ \\ / \\ wessss=)  neuronistunedto O

\ \ Relative target responses: 10,12,9 ...

C target RT,

\ \\ \ o The most active target

\ \ \ \ neuron is tuned to C

P(RT.) RT, distribution

Relative target responses: 9,10,11 ...

CO target

Three types of neurons RT.

\ \\ /\\ m— highly active for the

\ \ target: O, C, CO
Relative O cell responses: 10, 12,9 ... P(RTo) RTo distribution

Relative C cell responses: 9, 10, 11 ...

RT,., <min(RT.,RT,)
Relative CO cell responses: 11, 10, 10 ...

Winner responses: 11,12,11 ...

RTco

Hence, RT., can not be predicted from RT; and RT,



If V1 did not have CO cells, RT., = min(RT,RT,

However, V1 does have CO cells,
RT,., =min(RT.,RT,)

By analogy

V1 has C,0, M, CO, MO, and few CM cells (Hubel and Wiesel

1959, Livingstone and Hubel 1984, Horwitz and Albright 2005)
We assume that V1 has no CMO cells, then

min(R7,,,,RT.,RT,,,RT,)=min(RT,,,RT.,,RT,,,)

Hence, Prob(RT,0) predictable from probability distributions of
RT., RT,;,RTo, RToy, RTeo, and RT, 0.



If this prediction is confirmed --- extra-striate cortex excluded

V2 has CMO cells (Shipp, private communication 2011)
would give  min(RT,,,,,RT,,RT,,,RT,) < min(RT,,,,RT,,,RT

CM>» CcO> MO)

V1 has C,0, M, CO, MO, and few CM cells (Hubel and Wiesel
1959, Livingstone and Hubel 1984, Horwitz and Albright 2005)

We assume that V1 has no CMO cells, then
min(R7,,,,RT.,RT,,,RT,)=min(RT,,,RT.,,RT,,,)

Hence, Prob(RT,0) predictable from probability distributions of
RT., RT,;,RTo, RToy, RTeo, and RT, 0.



Behavioral data from Koene and Zhaoping (2007)
O target

Target is different from distractors in
orientation (0), color (C), motion
direction (M), or combinations them.

C target

7 kinds of targets in total:
C, O, M,

CO, MO, CMV,

CMO

CO target

Each about 300 trials / subject/
condition,
6 subjects in total




Distributions of RTs for a particular subject:

Probability Density (RT,)
4

2 /\/\
0.4 1

RT .(second.)
Probability Density (RT

6

A

0
RT (second
Probability density (RTCMO)
mean RTs

O.5m
0

N A OO

0.4 0.6 0.8 1

RT oM o(second)

P[min(RT,,, RT., RTy, RT))]
= P[min(RT,,, RT.o, RT,0)]

Probability Density (RTM) Probability Density (RTO)

6

4

2

0

Probability Density (RTco

10

0.4

0.6 0.8
RT (second)

e —

0.4

0.6 0.8
RT (second)

Predicted
Observed

Subject =SA, p=0.186, 0.358

6

4

2

0
0.4 0.6 0.8 1

RT (second)
) Probability Density (RTMO)

10

0.4 0.6 0.8 1

P values > 0.18,
No significant
difference



For all six observers

P(RTCMO

8 L

mean RTs
6l 0.4

0.2
4t 0

Subject =CF, p=0.108, 0.186

2 Predicted

data
0 n
0.2 0.4 0.6 0.8 1

RT
12¢
mean RTs
10+ 0.4

sl 0.2
6l 0
4r Subject =NL, p=0.356, 0.404
2 L
0 . 4
0.2 0.4 0.6 0.8 1

RT

sl mean RTs

0.5
6 b

0
4 b
Subject =SA, p=0.186, 0.358

2 b
0 L n
0.2 0.4 0.6 0.8 1

RT

) ——— race(C,M,0,CMO)=race(CM,CO,MO)-- Nt=10, Nest=45

6 L

mean RTs
5t 0.5
4+
3l 0
27 Subject =JC, p=0.092, 0.146
1t
O 1 1 1 -
0.2 0.4 0.6 0.8 1

RT

5} 1 mean RTs

0.5
4+
3 0
2t .

Subject =RK, p=0.894, 0.906
-1 L
0 : : o
0.2 0.4 0.6 0.8 1
RT

6 L

mean RTs
5 0.5
4 L
3l 0
2} ubject =SD, p=0.504, 0.574
1t
o n n
0.2 0.4 0.6 0.8 1

RT

P[min(RT,,, RT., RTy, RT))]
= P[min(RT.,,, RT.o, RT,0)]



Note: the requirements for our prediction are:

(1)V1 theory: the highest firing neuron signals saliency of the most salient item
(2)A monotonic relationship between saliency and RT.

(3)Physiological knowledge that V1 has no CMO cells.

Hence, no parameters are required for our prediction!

V1 theory
V1 response RT]\

r

>

: C-tuned cell: r¢ Monotonically
Visual | stochastic |M-tuned cell: ryy | MAX decreasing
4 e i r 5 —| RT
stimulus O-tuned cell: rg max mapping f

RT = f(tmax) = f(max{re, 1y, ... })
= min{f (r¢c), f("m), - }



Talk outline

Motivating questions:
(1) What is V1 doing?
(2) Which brain areas control the
direction of attention?

Theory:
A bottom-up saliency map in V1

Predictions and tests:
(1) Qualitative: ocular singleton pop-out
(2) Quantitative: reaction times for pop-out

Implications. <€
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Probe V2 and higher areas for:

(1) top-down selection
(2) post-selectional decoding



No more data as illuminating

1980-2007 --- V2, V3, V4 ...

V1 for bottom-up
selection

1960s-70s, Hubel and Wiesel /

Bar/edge feature detectors in V1

1953, Stephen Kuffler
Center-surround feature
detectors in retina
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Probe V2 and higher areas for:

(1) top-down selection
(2) post-selectional decoding



Talk outline

Motivating questions:
(1) What is V1 doing?
(2) Which brain areas control the
direction of attention?

Theory:
A bottom-up saliency map in V1

Predictions and tests:
(1) Qualitative: ocular singleton pop-out
(2) Quantitative: reaction times for pop-out

Implications.:
(1) V2 and higher areas for top-down selection and
post selectional decoding
(2) Saliency signals in higher areas inherited from V1



