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ABSTRACT

We use the theory of early visual processing proposed in ref. [1] to deduce
the color encoding strategies of the retina. The calculated retinal transfer func-
tions display a nontrivial coupling between color and spatiotemporal processing
even when the autocorrelator of natural scenes has no coupling between the chro-
matic and the space-time dimensions. This coupling in the transfer function is
fundamentally due to photoreceptor noise, and where red and green cone activities
are highly correlated, as they are in humans and monkeys, it leads to the spétio-
temporal-chromatic opponent ganglion cells found in primates. Ignoring the blue
cones, we find two types of ganglion cells whose receptive field organization is either
red center with a green surround or green center with a red surround, as found by
Derrington et al. [4] in monkeys. On the other hand, when the correlation between
the red and green cone outputs is small, as is the case in shallow fresh water fish,
we arrive at the “double opponency” cells observed in goldfish. We also argue that
adding blue cones (which are rare) leads to a third type of cell with R+ G — B

opponency.



1. Introduction

In ref. [1], a computable theory of early visual processing, in particular retinal
processing, was proposed. According to this theory, the underlying purpose of reti-
nal encoding is to produce the most “efficient” representation of the information
available at the level of the photoreceptors. The meaéure of efficiency is a gen-
eralized redundancy which shows that the sources of inefﬁciency are correlations
and noise in the incoming signal. The retina therefore recodes to eliminate corre-
lations, where correlations are most significant (high signal to noise regime), and
to reduce noise in the regime where hoise is domina.ﬁt. This gives a quantitative
prediction for the retinal transfer function at any adaptation level. In ref. [2] the
predicfions for the spatiotemporal processing were quantitatively compared with
data from contrast sensitivity experiments. The extent of agreement of the theory
with experiment is very encouraging and reinforces the belief that the retina is

performing an optimal encoding, an idea that Barlow had suggested many years

ago [3].

In this paper, we derive the predictions of the theory of ref. [1,2] for the
encoding strategies of the retina when we include color. As is well known, the
ganglion cells in the retinas of a wide variety of animals exhibit nontrivial color
opponency. This opponency is actually coupled to spatio-temporal opponency. For
example, in primates at high background luminosities the most common type of
ganglion cell has a receptive field consisting of a red center with green surround or a
green center with red surround {4]. We shall call these cells ‘single opponency’ cells.
What makes the color encoding problem even more challenging from a theoretical
point of view is that the details of the chromatic and spatiotemporal interaction
are not the same in all species. For example, the ganglion cells of goldfish and carp
are quite different from those in monkeys and humans and exhibit what is termed
“double opponency” between the red and green [5]. There are two types that are
most common, one (type O in [5]) has a receptive field with red-green opponency

in the center and the reverse opponency in the surround. The other (type Q) has



non-opponent red and green in the center with the reverse in the surround.

Below we shall see how the observed nontrivial interaction between color and
space-time arises (due essentially to the presence of noise) even when the autocor-
relator of natural scenes has no coupling between color and space-time. We will
also find that this theory accounts for both single as well as double opponency and
thus explains the color coding in retinas of organims as different as monkeys and
fish. This happens because the theory leads to a family of solutions parametrized
by the matrix elements (actually there are only two independent parameters in the
red-green system) of the color correlation matrix. The single and double opponency
cells turn out to be the two extremes corresponding to high and low correlation
between the red and green cones, respectively. Since in primates, the spectral sen-
sitivity peaks of the red and green cones are very close (separated by only ~ 30
nm), high correlation between the red and green cone activities is expected which
leads to the prediction of single opponency. While in the goldfish, where the peaks
are separated by about 90 nm, the correlation is expected to be small leading to

the prediction of double opponency.

We should point out that the earliest attempt to explain color opponency
in the retina from the efficient encoding point of view was made by Buchsbaum
and Gottschalk [6], who were also inspired by Barlow’s [3] redundancy reduction
hypothesis. However, their work included neither the spatial nor temporal dimen-
sions, nor the noise. As we shall see below, color opponency cannot be explained
without properly solving the problem in the realistic context of space-time and

properly accounting for the noise.

The organization of the paper is as follows. In chapter one, we start by applying
the measure of efficiency of ref. [2] to the case when the retinal encoding includes
color. We then compute the various quantities appearing in that measure in terms
of the statistical properties of the ensemble of visual messages. This measure of
efficiency is subsequently used to explicitly derive the spatio-temporal-chromatic

retinal transfer function. The predictions of the theory are finally compared with



experiment. An explication of the theory is not given here, rather the reader should

refer to ref. [2].

2. Theory of spatio-temporal-chromatic encoding

A. Efficiency measure

In species that possess color vision, there are several distinct types of cones
in the retina. For example, in humans and monkeys there are three types often
termed “red”, “green” and “blue”. These cones differ from each other in the
spectral absorption properties of their photo-sensitive molecules. For example, in
humans the so called red cone is most sensitive to light at wavelength of about 558
nm, while the green and blue have peak spectral sensitivities near 530 nm and 419
nm, respectively [7] (the corresponding values for the macaque are 567, 535 and
440 nm [8]). The sensitivity of any given cone type to different light wavelengths
has been measured extensively and is given by the spectral sensitivity function of
that cone type, which we shall denote by C%()), where X is the spectral wavelength
and a = 1,2,3 stands for red, green and blue respectively. These functions for the
monkey Macaca fascicularis are shown in Fig. 1 (very similar to those in humans).
In the retina of humans and monkeys, the red and green cones are most abundant
while the blue cones are rare [9]. Moreover, in the fovea the blue cones are almost
nonexistent. Therefore we start by ignoring the blue cones and consider a system
where only red and green cones exist at each sampling site. This is sufficient to
give a good description of color vision in the fovea. We next show how the blue can
be introduced as a perturbation to the red-green system and hence complete our
description for parafoveal color vision. The rarity of the blue cones should clearly

justify such an approach.

With this in mind, we can follow schematically what happens to a signal
s(x,t, ) falling on the retina, Fig. 2. First, the signal is filtered by the red and

green cones (for completeness we have in Fig. 2 also included the blue cones but



used dashed lines to emphasize that the blue system does not exist at each sampling

site) at each sampling site to produce the photoreceptors signals L!(x,t), L*(x, t):
L(x,t) = /d)\C’“(/\)s()_c, t,A) + %(x,1) (2.1)

(with @ = 1,2), where we have denoted the photoreceptor noise by v%(x,t). The
chromatic and spatiotemporal signal L®(x,t) is subsequently linearly encoded by
the ganglion transfer matrix to produce the ganglion output which is transmitted
down the output channel or the optic nerve. In this red-green system we assume
that the encoding does not change the dimensionality of the color space and hence
we have two types of ganglion cells whichi we denote by the superscript a = 1,2.

The linear encoding of these ganglion cells is

() = 3 / A A (5, 2, OV K ) + 655 t),  (2.2)
b .

where 0%(x,,,t) is the output of ganglion cell of type a whose receptive field is
centered about x, on the retina and §°(x,,t) is the output noise. The transfer
matrix A%(x,,t;¥,t'), in addition to being a matrix in space-time, is a 2 x 2
matrix in color space. The notation used below is the same as in ref. [2], with
boldfaced upper (lower) case quantities denoting matrices (vectors) in space-time.
In addition, in this paper we use the convention that hatted quantities denote
matrices (or vectors) in color space. So a boldface upper-case hatted quantity will

stand for a matrix in color as well as space-time e.g. A is A% (x,¢;¥,1").

We now apply the theory of visual processing of refs. [1,2], to derive A. The
theory states that the purpose of the retinal encoding in all dimensions, space, time
and even color, is to produce the most efficient representation of the incoming visual

information. The appropriate measure of efficiency is the generalized redundancy
R=1-1(0,8)/C (2.3)

where 1(0,S) is the mutual information [10] or equivalently the amount of infor-

mation in the ganglion cell outputs 0®(x,t) about the ideal signal s%(x,t), and O



and S are the ensembles of all possible ganglion cell output 6 and photoreceptor
input signals, §, respectively. C in (2.3) is the capacity of the smallest channel

that can carry the signal o%(x,t) (see more precise definition below).

The efficiency measure R is a statistical measure that depends on the ensemble

properties of the visual messages. For example

P65 P(0,8) }

5) =2 P@.8)lee [Pl

where P(8) (P(6)) is the probability distribution of the ideal signal 8 (ganglion
outputs &), and P(8,6) is the joint probability of § and 6. These probabilities are
all computable upon knowledge of the statistical properties of S and of the noises »
and 8. We identify the ensemble S with the the ensemble of natural scenes in color
(see ref. [2] for a more detailed discussion about the ensemble of natural scenes).
In the case of linear encoding, one can argue that the most relevant statistical
property is the two point correlator or autocorrelator of natural images [2]. In the
context of color the autocorrelator is also a 2 X 2 matrix in color space, which we

denote by R*(x,t;¥,t). This is defined as
R (x,t;¥,1) = / AN C*(A)CH(N) (s(x, 8, A)s(x, ¥, X)),

where the expectation value { ) denotes the standard information theoretic aver-

age.

Knowledge of R, allows us to write P(8), as

P(s) = [(2x)2v det Ry,|"Y/2
L. o oac1 o - (2.4)
exp[—i,'(s —-8) Ry, - (S - S)],

which is the unique probability distribution, consistent with the autocorrelator
being Ry, and which maximizes the information H(S) = — 3 3¢5 P(8)log P(8)
(see ref. [2]). In (2.4), we have included the mean of the signal § although in our

7



analysis below it drops out and we have denoted the volume of space-time by V.
For simplicity we represent the noise sources # and § by gaussian sources with
variances R‘j\? = N2§% and Ng&“’b respectively, where §%° is the kronecker delta
function { as we discuss below the homogeneity of the optic nerve fibers suggests
that there is little variation in the output noise variance among fibers). Both
sources of noise will be assumed not to have any significant correlations with the
signal §. Given (2.4) and these assumptions about the noise, it is not difficult to

show that the mutual information I(0O,S) is

~ det{A - (R,, + Ry) - AT + N21
1(0,5) = L1og dtA - (Res + IY)T T ]
2 det[A - Ry - AT + N21]

, (2.5)

where the determinants are taken over space-time and color. In this form, the
mutual infqrmation is a straightforward generalization of expression (2.7) in ref.
2.

In calculating the capacity C, we face some new issues when the color dimen-
sion is added. It is helpful before we examine these issues to review some of the
discussion in [2] and spell-out more explicitly what C means. In ref. [2], C was
defined as

C = max I(O; W) (2.6)

P(w) (6?)=const.
where W is a dummy variable representing the input to the output channel and
the maximization over P(W) is done for a given output variance (0®(x,t)0o%(x,1)).

Following analysis similar to that in {2], C' can be written explicitly:

1 A’ R33+RN 'AT+N21 aa
C=§logH[ ( N§)1 el (2.7)
t,a

i
In this equation, the quantity [A - (Res+ Ry - AT4 N 21)/NZ21)2¢, is the variance
(actually square of the variance) of the output in the fiber connected to the ganglion

cell with color index a, at location .



One way to think about C, (2.7), is that it is the capacity of the smallest
channel that can carry the signal & (with variance (6?)). Thus C defined in
(2.6) is not in general the capacity of the optic nerve, if by that we mean the
absolute maximum amount of information that the optic nerve can ever transmit.
The capacity of the optic nerve is equal to C' only when (2.7) is evaluated at
the highest signal variances allowed by the fixed dynamical range of the optic
nerve fibers. At very high luminosities, where the incoming visual information
is highest and the signal variances <62> are highest, C' coincides with the optic
nerve capacity. At other adaptation levels, it is smaller and is the capacity of the
smallest channel that could replace the optic nerve and still be able to transmit the
signal 6. In the next section we solve for the encoding A that gives the smallest
R by actually minimizing C, given a constraint on the amount of information
preserved. In general this yields a set of minimal output variances (62> which
allow the information to be maintained. The underlying assumption here is that
there is an advantage to the animal in minimizing this C at all adaptation levels.

However, as we argue next, this benefit is not the same at all levels of adaptation.

At high background luminosities, the smallest C is also the smallest optic nerve
capacity that can maintain the information. This smallest optic nerve capacity
then gives a set of minimal nerve fiber dynamical ranges. The reason minimal
dynamical range is advantageous to an animal is because the size of the fibers
(diameter) grows with their dynamical range [11], which is believed to be a cost to
the animal. At lower adaptation levels, minimizing (2.7) cannot be used to lower
the physical size of the optic nerve fibers but has another very important benefit:
An encoding that lowers C' (2.7), is still one that packs the information in signals
6 so they could fit into the smallest possible channel. Since we do not allow loss of
useful information (see next section), the only way to force this information into
effectively smaller channels is to squeeze out the noise as much as possible before

transmission, again a benefit to the animal.

We are now ready to discuss the new issue that arises with the introduction of

color. In general, ar encoding A leads to outputs which have different variances



for different fibers. In the purely spatiotemporal problem addressed in [2], this
possibility did not arise because of the assumption of translation invariance of A
and R, since then all terms in (2.7), for all the nerve fibers ¢, are equal. With color
there is no theoretical reason to discount the possibility of different output variances
among ganglion cells with different color index a. However, the anatomical evidence
suggests that the optic nerve fiber sizes (in monkey) are unimodally distributed
(see e.g. [12]) i.e. there is no evidence that the optic nerve fibers (at least the
parvocellular portion of it) are grouped into collections of fibers with different
dynamical ranges or fundamentally different properties. Now, if the nerve fibers
have the same dynamical range, C in (2.7) is the optic nerve capacity at high
luminosity only when the variances are all equal and set by the dynamical range
of the nerve fiber. This implies that the most efficient encoding” distributes the
output variances equally so as to utilize all the available dynamical range on every

fiber, which leads to the constraint
(A-(R,, +Ry)-AT)Y = (A . (R, + Ry) - AT)2. (2.8)

The analog of this constraint in space-time is automatically satisfied by our choice

of translationally invariant A.

The constraint (2.8) has definitely to be imposed on A at high luminosities,
which is the regime most relevant to color vision. However, at low luminosities,
where the transition to the rod system takes place, a constraint of the form (2.8)
is not harmful since the outputs in the different color channels become degenerate.

In this paper we examine color vision at high adaptation levels and examine the

* The argument goes as follows: In general the minimal capacity occurs for encodings that
yield different variances on different fibers, which can be taken advantage of by choosing
fibers with different dynamical ranges. However, if the fibers can only occur in one type
with one value of dynamical range, what then is the most efficient way to transmit signals?
If the signals o, (@ = 1,n) are to be transmitted on separate fibers without “multiplexing”
then the signal with the largest variance will set the size of all the fibers because only one
type of fiber is available. Thus the capacity of the channel needed is C = nlog(max, {0?)).
Using the mathematical fact that nlogmax, {02) > 3, log (02} ( where {02) > 1), with
equality when all <03) are equal, we see that the minimum C occurs when <o§) are all equal.

10



regime where the transition to the rod system occurs, both regimes where we are
confident that (2.8) is valid. It is still to be seen whether this constraint is valid

at intermediate luminosities.

We can now write the capacity C as
C =2V log [Tr(A - (Res + Ry) - AT/2VNZ) + 1], (2.9)

subject to the constraint (2.8), which is a much simpler quantity to use than is
(2.7).

B. A variational principle for A%

According to the measure R, (2.3), the most efficient encoding occurs when
C and I(0,S) are as close to each other as possible. This gives a design principle
for A% and thus for the retina. As discussed in [2], one way to solve for A® is to

minimize the functional
E{A%,p} = C — p[I(O;S) — I(L;S) + ¢] (2.10)

with respect to A% and the the lagrange multiplier p (we use p, instead of the A
used in ref. [2], to avoid confusion with the spectral wavelength A). The latter
enforces the constraint that no substantial amount of information should be lost
in the process of recoding. I(L,S) is the amount of information prior to the encod-
ing and € is a small positive number characterizing thc; small loss of information
allowed. Some loss is inevitable due to the presence of the output noise §. The
amount of information in the photoreceptor signals, I(L,S), is explicitly given by
log [det(f{” -i—fiN) / det R;\] It is not hard to see that this information dimin-
ishes as the amount of correlations between the cone activities increases and also
as the noise levels N, increase. A significant source of correlations in the color
problem comes from the fact that the red and green spectral sampling mechanisms
overlap highly and thus the activities of the red and green cones are expected to
be highly correlated (sce Fig. 1). This correlation causes further inefficiency [2] in

the representation of the information at the level of the cones (see also [6])-
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In (2.10) we can replace C' by Tr [A - (Res + Ru) - AT] /NZ, keeping in mind
that we always work subject to (2.8). The functional (2.10) then takes the following
explicit form™

A 1 A A a "
E{A, P} _F Tr [A : (Rss + RN) : AT]

. 2.11)
det[A - (R Ry) AT + N21 (
_p[llog et (A ”A+ AI) + ]—I(L;S)+e].
2 det[A - Ry -AT+N621]
It is more convenient to redefine the matrix A
A'=A.RY?.0,, (2.12)

where RI/ ? is the square root of the diagonal noise matrix Ry and U, is the matrix
that diagonalizes RN 1/2 ‘Rys - R_I/ 2, i.e.

.o . Ry O
0T . RV2. RsscR;,l/z-UcER;s=( 0" R ) (2.13)

In terms of the redefined transfer matrix A’, the functional E{A’, p} takes a partic-
ularly simple form and correspondingly the variational equations 8E{A' , P} JOA’
are more tractable. Since we will be looking for translationally invariant solutions
A%(x, t; ¥, t") = A®(x — ¥;t — t') we can go to frequency space through the stan-
dard fourier transform. For example, the fourier transform of the color correlation

function is defined as
R} (k, w) = / dxdte= KR (x 1),

with a similar expression for A“b(k, w). It is not difficult to show that the vari-

ational equations OE{A'"®, p}/0A"®(k, w) = 0, suppressing the k,w indices take

* The functional £ has a symmetry .:& — U - A where U is an orthogonal matrix. Corre-
spondingly, the solution, A, of 3E/8A = 0 will be fixed up to an orthogonal transformation.
Imposing the constraint (2.8), then chooses a unique orthogonal transformation.

12



the simple form
AR+ 1) - 2[R+ - P4+ (B + 1)~ (F + n7] =0, 214

where all the objects appearing are 2 X 2 matrices in color space and 13'(]_(, w) is the
bilinear matrix 4 T(k, w) - A '(k,w)/NZ. When A'(k, ), as a function of (k,w) is

non vanishing, the term inside the square bracket has to vanish. Thus

[£00)+ 1] [(Rll) + 1) - B ) +1] = 2R ) () + 7
| ~ (2.15)

Since R!,(k,w) is a diagonal matrix in color space given in (2.13), we can see
from (2.15) that the solution for F'(k,w) has to be diagonal with diagonal compo-
nents Fy(k,w) and F_(k,w). When Fy are nonvanishing, they satisfy equations
identical to (2.15) with R,f,(k, w) replaced by R4 (k,w) and R_(k, w), respectively.

The solutions are

(1 Ri(kw) | % .
Tk w) 41 (1+ 1+ X0 1, if Fx>0,
F::l:(l—{1w) = 9 .

0, otherwise.

(2.16)

\
The correlators Ry (k,w) are explicitly given by

Rall ) = g | VRN (6 ) + MR )
& [(N3RE (s w) - NEEE(ew)" + 4NENF (R w)'] |
. v (2.17)
The right hand side of the expression in (2.16) is identical to that in the pure
space-time problem (see eq. 2.15 in [2]), except that the auto-correlator is replaced
by R4 and R_ for F} and F_ respectively. What this means is that introducing

color leads to two decoupled space-time problems with effective autocorrelators

13



R, and R_ given explicitly in terms of the components of the spatiotemporal and
chromatic correlator R2%(k,w) by (2.17). This fact will play an important role in

our discussion below on the properties of the solution.

To recover the transfer matrix A we need to factorize ' into AT and A’ and
then invert the change of variables in (2.12). Since A’ is fixed up to multiplication
by a 2 x 2 orthogonal matrix (recall F' = A'TA'/N‘? ), we can go to a basis where

A’ is diagonal. In this basis, we have

Fy 0 AlA}[N? 0
0o F_) 0 A A%IN?

where A;, A; are the two diagonal components of A'. The solutions for A; and
A. are then givén by Ns+/F4 and Ng\/F_, respectively, apart from phase factors
that depend on (k,w). The dependence of these phase factors on w is fixed by
the requirement of causality (see [2]), while the dependence on k is eliminated
entirely by the requirement of rotation symmetry is space. (Actually there is
still the freedom to multiply A’ by +1 which leads to a degeneracy that can be
identified with the on and off channels in the retina.) Since, in this paper we will
be comparing the solutions with experiments that measured spatial properties at
given temporal frequencies, it is not necessary to know the phase. Thus we can
recover A; and A, simply by taking the square root of Fi. For the general case,
the procedure described in section C.2 in [2] has to be used to extract the causal

solutions. This finally leads to

. o VFy 0 . N5 /Ny 0
et (O )M 0 e

where U is an as yet unspecified 2 x 2 orthogonal matrix. The matrix (7}(1_(, w),
defined in (2.13) is explicitly

ey = [0/ N1N; (R4 (k,w) — Rij(k,w)/NT) /D4
W)=\ piz ke wi/D. Ny Ny (R (ks w) — B (k, w)/N?) /D_ )
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where the denominators Dy are given by

1/2

Dy = [(BE2(k,w))" + NaNa (R, w) - Rk, w)/ND)] (2.19)

From among the family of solutions for A we still need to pick up the solution that
satisfies the constraint (2.8). This uniquely fixes the orthogonal matrix Up to be
a rotation by the angle § = x/4 (the other allowed choices for U, give the same
solutions up to a trivial interchange of the red-green and/or interchange of on-off

channels.)

To complete the solution, we need also to solve for p from the information
preservation constraint. It can be shown straightforwardly that the equation for p

simplifies to

DN =t

’ - R, R, _
/dl_cdw Z log (\/-2—p + \/1 + -27) + Z log(Re +1)| =€
ac{+ a€{+,~},Fa=0

y_},Fa>0
(2.20)

Generally, this equation is solved numerically for p.
C. Properties of the solution

The theory of optimal encoding gives a definite expression for A, (2.18). Before
we can exhibit A explicitly, however we must have a knowledge of the chromatic-
spatio-temporal correlator R%(k,w). This correlator, unfortunately, has not been
measured yet, but we have some constraints on what it may be from the measure-
ments in space [13] and from earlier work [2]. Also, some of the most important
phenomena we exhibit here, such as the interaction between color opponency and
spatio-temporal opponencies, do not depend on the detailed form of R%. The sim-
plest approach then is to assume that R®(x,t;¥,t') factorizes into the spatiotem-
poral correlator Rgs(x,t;%,%), used in ref. [2], (and which Field [13] measured

in the spatial domain), and a chromatic correlation matrix R, In the frequency

15



domain this is

RZ(k,w) = BE® X Rgs(k, w) (2.21)

where R% is a matrix of numbers given by the convolutions
R® = / DN CENCP )R, N, (2.22)

where R:(), ') is the spectral correlation function of natural scenes (at the same

spatio-temporal point).

In the analysis below, we study the form of the solution in various limits for
the choice of color correlation matrix elements Rgb. Actually, since an overall scale
from R can be absorbed in the definition of the signal in Rs,(k,w), there are
only two independent parameters in the symmetric matrix R‘c'b. In what follows,
we set Rl = 1.0, so we are left with R1? and R??. The spatio-temporal correlator
R,s(k,w) is explicitly the same as that used in the purely spatiotemporal analysis

[2], namely

1 2, 2v1/2

= §2 e~ 2K +w?) 2 /xe

Ryo(k,w) = S e T (2.23)
where S? is the signal strength, g is the reciprocal of the receptive field size of the

cell, and «. is the acuity scale (about 18 c/deg for monkeys and humans).

To get some insighﬁ into the solution (2.18) we, for simplicity, set the noise
variances equal: N; = N, = N. In this case Ry and R_, (2.17), are given by
the .product of the eigenvalues of the color matrix R% times the spatiotemporal
correlator Ry,(k, w)/N?:

Rl 0) = ra(5) Rk )

where r4 are the eigenvalues (numbers) of R%®, and we have explicitly exhibited
the S? factor in R,s(k,w). Consequently, the two effective space-time problems,

that the full problem decomposes into, have solutions (2.16) which are identical
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to those encountered in the pure space-time problem except now the S/N ratios
involved are multiplied by the eigenvalues of the color matrix R%: (S/N)? =
r+(S/N)? and (S/N)2 = r_(S/N)%. In many species, especially humans and
monkeys, the spectral sensitivity profiles highly overlap, see Fig. 1. On average
the distance between the red and green spectral sensitivity peaks is only about 30
nm in primates. This means that the matrix R% is expected to have components
which are numerically close to each other, with the red and green highly correlated.
If we examine the limit R1?2 ~ R22 ~ O(1), then the color correlation matrix
possess a hierarchy in its eigenvalues. One eigenvalue, r., will be relatively large
and corresponds essentially to the eigenvector (red-+green) or R + G, which can
be called the luminance channel and the other, r_, will be relatively small and

corresponds essentially to R — G, which can be called the chromatic channel.

The effective signal to noises (S/N )i . = (S/N)?r4 in the corresponding space-
time problems will also have a hierarchy, (S/N);/(S/N)c >> 1 regardless of what
S/N is. From the space-time problem we know what the profiles in (2.16), or
actually the A; and A, profiles look like as a function of signal to noise. For the high
signal to noise (S/N);, A; will exhibit spatio-temporal opponencies and perform
contrast detection, while A, corresponding to the low (S/N)¢, will merely perform
smoothing. In the frequency domain this is equivalent to the statement that A; and
A. will be a band-pass and a low-pass filters, respectively. This is demonstrated
in Fig. 3A, where we have plotted A; and A, for some set of parameters given in
the caption. From this we see that the luminance channel A;, where there is no
color opponency, turns out to exhibit spatio-temporal opponencies, while for the
chromatic channel A, where there is color opponency, exhibits no spatio-tempora.lv
opponencies. This is the origin of the coupling between space-time and color and
is fundamentally related to the fact that noise exists, and that the system can
improve its signal to noise in one domain (for example space) by integrating over
another domain (color). This coupling could of course be accentuated if the original

spatio-temporal chromatic correlator had couplings between color and space-time.

The chromatic and the luminance channels, however are not what get trans-
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mitted down the optic nerve since the final matrix A, (2.18), is a rotation by 7 /4
that superposes these two channels. This superposition of the luminance and the
chromatic channels results, as we shall see below, in a channel of red-center with
green-surround and another channel of green-center with red-surround. The intu-
itive reason for this “multiplexing” is the fact that the amount of information in the
luminance and chromatic channels is very different and thus these channels require
fibers with different dynamical ranges (there is more information in the luminance
channel and hence it requires fibers with larger dynamical ranges), while the phys-
iological constraint (2.8) forces all fibers to essentially have the same properties.
Therefore the retina multiplexes the information in these two channels in order to
utilize most efficiently the available optic nerve fibers. Actually, later in the brain
(where the brain can allocate regions of very different sizes to color and luminance)
there is evidence that suggests that the information is reorganized again into lumi-
nance and chromatic channels (see [14,15]). It is interesting to see that the results
of psychophysical contrast sensitivity experiments (Fig. 3B) that essentially probe
the luminance and the chromatic channels give curves that look similar to those
in Fig. 3A. In Fig. 3B, it is clear that the red-green contrast sensitivity curve
(solid triangles) is a low pass filter while the monochromatic, solid squares, (which

mostly probes the properties of the luminance channel) is a band-pass filter.
D. Numerical calculations

We have numerically calculated the solution in (2.18), to exhibit what the
function A%(k,w) looks like in various parameter regimes. Fig. 4 and Fig. 5 give
this function and its fourier transform in space, respectively, for a limiting set of
parameters where R?2 =~ R!? ~ O(1) and at high S/N. The answer is not too
sensitive to the actual choice of parameters as long-as they are relatively close. As
we can see from Fig. 5, this gives one cell which has predomihantly red excitatory
center and green inhibitory surround and another cell with green inhibitory center
with red excitatory surround (of course there are also the cells with reverse polarity
Ao —A) Ignoring the blue, these are the types of cells that Derrington et. al [4]

find. From the contrast sensitivity curves we see that the first cell at low spatial
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frequency performs R — G opponency; however as the spatial frequency increases,
the cell makes a transition to R 4 G processing. This is also what Derrington et
al. [4] find, in their experiments where they measured color opponency properties
of ganglion cells as a function of spatial frequency. The location of the transition

from R— G to R+ G is predictable in terms of the elements of the color correlator.

Another feature predicted by the theory is a loss of color as the signal to noise
goes down, since as S/N decreases the chromatic channel A; becomes vanishingly
small and only the luminance channel survives. Fig. 6 gives the contrast sensitivity
at low signal to noise; both cells are performing R+ G processing at all frequencies.
We interpret the point where the chromatic channel is lost as the point of transition
to the rod system, i.e. at that point the retina does not need two sampled inputs
(red and green cones), it only needs one sampling. We can also examine the answer
as the temporal frequency of stimulation increases. In that case we also find a loss
of color happening at a predictable temporal frequency. Better measurements of
the autocorrelator of natural scenes would enable us to make concrete numerical
predictions about when color loss happens and where the transition to the rod

system ha.ppehs, as a function of temporal frequency and signal to noise.

Fig. 4 is typical as long as the matrix elements of R% are close to each other,
and clearly shows the single opponency cells that are found in experiments on mon-
keys. The question now is how can this theory account for the double opponericy
cells observed in goldfish and carp? [5]. One fact that turns out to be the clue to
solving this problem is the location of the peak of the red sensitive cone in these
species. In goldfish the red cone has a peak spectral sensitivity around 620 nm (in
carp 611 nm) while the green cone is roughly about the same location as in monkeys
and humans namely 530 nm (in carp 529 nm ). Thus the red-green mechanisms
are separated by about 90 nm instéad of about 30 nm in primates. What this
means is that the color correlation matrix will necessarily have off-diagonal com-
ponents which are much smaller than the diagonal ones, :.e. R!? << 1.0. In the
numerical integration of A%, when we allow the off-diagonal (green-red coupling

strength) components of R% to become small we get the typical curves shown in
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Fig. 7. Without doubt these can be termed double opponency cells. In general the
cells in different species will fall somewhere between the two extremes of single vs.
double opponency. So all types of color opponency cells are related continuously

by varying the off-diagonal component of the color correlator matrix.

As mentioned earlier, a significant fact here is that even when the autocorrela-
tor of natural scenes does not have any coupling between space-time and color, the
resulting retinal transfer function does. The underlying cause of such coupling is
the noise in the photoreceptors and such a phenomena could not be understood by
ignoring that noise. We should point out that one source that contributes to the
noise in the photoreceptors is chromatic aberration. Better measurements of the
correlation matrix and the noise characteristics in the cones will enable us to quan-
titatively assess whether chromatic aberration or other sources of noise (quantum,

intrinsic etc.) control the details of the opponency observed.

Another point that should be mentioned here is that with color vision new
possibilities are opened for retinal adaptation to gross properties of the background
light. Rather than a single number Lo describing the adaptation level, there may
be different average luminosities for each of the photoreceptor types. That is,
there may be adaptation to the background spectrum. It also may be possible
for the photoreceptors themselves to change in sensitivity with varying conditions
(see [16]). In either case, this type of adaptation manifests itself in our analysis
as a change in the signal to noise ratios for each of the photoreceptors, which
appear as numerical coefficients in the color matrix. This means that adapting to
background spectrum is equivalent to changing the parameters in the color matrix.
As a result, fascinating adaptations could in principle take place. However, the
change in background spectrum from daylight to moonlight is not dramatic {17],
so such adaptation may be small. Experiments to test spectral adaptation in

ganglion cells would be a useful probe to explore the theory.
E. Introducing the Blue

So far we have ignored the blue cones in our calculations. As mentioned, this
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is justified in the primate fovea where there are virtually no blue cones. It is also
justified as a first approximation elsewhere in the retina since the blue cones are
very sparsely distributed, as are ganglion cells with blue cone afferents. While this
sparseness makes ignoring the blue cones a good approximation, it also complicates
somewhat including the blue cones in the calculations.  This is because the blue
sampling is at a different spatial scale than the red and green sampling, so it is
incorrect to take the correlation matrix as a direct product of a 3 x 3 color matrix
times a single spatial autocorrelator. However, by a trick, we can get some idea
of the type of additional solutions which arise when the blue cones are included.
Instead of taking accurately into account the true spatial sampling of the blue
cones, we take them to be as numerous as the other cones. But we then compensate
for this fiction by choosing each of their signals to be only a fraction of the true
signal of a blue cone. With this admittedly crude strategy, the analysis using a

3 x 3 color matrix times a single spatiotemporal autocorrelator, proceeds as above.

Including the blue cones differs from the red-green case in diagonalizing the
color matrix, since now there will be three output channels rather than only the
R+ G and R — G channels. However, when the blue cone amplitudes are small
and they correlate weakly with the other cones, as we are assuming, then the
three channels in the diagonal basis consist of the old R + G and R — G plus
a new R + G — B channel. Recall that once we found solutions in the diagonal
basis, we next had to rotate them in color space until the average ganglion outputs
were equalized. But that step is only required when the ganglion cell fibers are
equally numerous and of equal size, since otherwise it would be wasteful for them
not to share the signals equally. However, since we are here treating blue cones
on an equal footing only as a convenience, it would be incorrect to rotate the
blue cone solutions to equalize their outputs with the others. In other words, our
argument here is only self consistent if it results in a large number of very weak blue-
sensitive outputs which can then be seen as an approximation to a small number
of reasonably strong outputs: the inverse of the approximation made for the blue

photoreceptors. The up~hot is that we expect, as a perturbation of our above result,
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a small number of ganglion cells whose color response is approximately R+ G — B.
Their spatiotemporal responses should also be the one expected for low S/N, since
the S/N is proportional to the third color eigenvalue which is by assumption very
small. This means a more lowpass type of response with a relatively lower spatial

frequency cutoff, which is consistent with the data [4].

3. Summary

To summarize our results, we find that efficient encoding of the spatio-
temporal-chromatic signals by the retina accounts for all the prominent features

observed in color vision in various species:

1. In any retina with two cones with close spectral sensitivity peaks, such as
the red and green cones in primates, the theory predicts a pair of ganglion
cells: one with red center and green surround and one with green center and
red surround, Fig. 5. In the frequency domain these predicted kernels make

a transition from R-G at low frequency to R+G at high frequency, Fig. 4.

2. In any retina with two cones with distant spectral sensitivity peaks, such
as the red and green cones in goldfish, the theory predicts a pair of double
opponency ganglion cells: one with R-G center and G-R surround and one

with R4-G center and -R-G surround, Fig. 7.

In deriving results 1 and 2, we find that the theory makes two important predic-
tions: first that spatio-temporal and color information is organized into luminance
and chromatic channels, and second that these are multiplexed for most efficient

transmission through the optic nerve.

3. Independent of the color correlation matrix, as adaptation level decreases,
the predicted solutions become more low pass and start to loose color dis-
criminability. At the lowest levels, all solutions become sensitive only to
luminance signals, which we interpret as a transition to the rod system, Fig.

6.
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4. If a third cone type (blue) is added sparsely, as in primates, a heuristic
argument predicts a relatively smaller number of ganglion cells with B —

(R + G) opponency in color and with lowpass filtering in space-time.

5. The theory shows that the luminance channel performs band pass filtering
while the chromatic channel performs low pass filtering, Fig. 3A, which
agrees with the psychophysical contrast sénsitivity experiments, Fig. 3B.
The theoretical coupling between color and space-time properties comes from
the fact that the effective space-time signal to noise in the chromatic channel
is multiplied by the smaller (“R-G”) eigenvalue of the color matrix, while the

luminance signal to noise is multiplied by the larger (“R+G”) eigenvalue.
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Figure Captions
Fig. 1

The spectral sensitivity curves C1(A), C%()) and C3()) for the red, green
and blue cones respectively, for the monkey Macaca fascicularis. The curves
are all exactly the same shape, but differ in the location of their peaks and
they were calculated from the standard data for constructing the absorbance
spectrum of any visual pigment, based on retinal and of known peak spectral

sensitivity (see for e.g. ref. [7]).
Fig. 2

Schematic diagram showing the stages of transformations undergone by an
ideal signal s(x, ¢, A) falling on the surface of the retina. In the first stage, the
photoreceptors sample this signal both chromatically and in space-time to
produce the photoreceptor signal L* (a=1,2,3 corresponding to red, green and
blue). This signal is then recoded linearly by the ganglion cells to produce
the output o® which is transmitted down the optic nerve. The noise at the
photoreceptor stage is denoted by v* while the output noise is §°. We have
used dashed lines to distinguish the cells that receives blue afferents (which

are rare) from those in the red-green system.
Figs. 3A, B

A. The calculated chromatic (low-pass) and luminance (band-pass) channels
for single cells. The parameters are in the limiting case of R2? = 1.0 and
R!? = 0.995, and S/N = 4.0, ¢ = 0.2 and ¢ = .2. The band-pass and
low-pass curves exist over a very wide range of parameters. The parameters
chosen here represent an extreme where disparity between the two channels

1s accentuated.

B. Psychophysical contrast sensitivity as a function of spatial frequency for
a red-green grating, solid squares, and a green monochromatic grating, solid

triangles, drawn from the data of Mullen {15]. The solid squares probe the
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properties of the chromatic channel while the solid triangles essentially probe
properties of the luminance channel. This statement is not precise since the
true chromatic and luminance channels are not exactly R —~ G and R+ G
channels, however the point here is that the data does support two channels

with low-pass and high-pass properties.
Fig. 4

The chromatic transfer function (equivalently contrast sensitivity curves) Ac
as a function of spatial frequency, in the limit when the matrix elements of
the color correlator are close to each other. The solid lines denote positive
(excitatory) values while the dashed lines are negative (inhibitory). Note
that at low frequencies the ganglion cell of type 1, top two graphs, has an
R — G opponency while at high frequency it makes the transition to R +
G processing, with a similar phenomena for the second cell type 2. This
transition was seen in the experiments in [4]. The curves were generated for
the limiting values R?2 = 0.999 and R'? = 0.9 and S/N = 40.0, x = 1.0,
¢ = 1.0. The S/N, u and € values are typical values for the monkey [2] at
high luminosity, while the values for R% are chosen to represent the extreme
limit of high correlation of the red and green cone activities. The curves
qualitatively look the same for a wide range of values for RZ® as long as R}’
remains a significant fraction, more than about 30% of R?* (recall R!! is by

convention set to 1).
Fig. 5

The chromatic transfer function A% as a function of the distance from the
center of the cell in units of 7. Siﬁce the transfer function is rotationally
symmetric we have projected the answer down to one dimension by integrat-
ing it over one direction. The curves are also calculated at a fixed and very
small temporal frequency. The parameters used are the same as those in the -
caption of Fig. 4. Note that the two types of cells are red center with a green

surround and a green center with a red surround, which is what is found in
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[4] for the monkey.
Fig. 6

The effect of lowering S/N (equivalently the overall background luminosity)
on the chromatic transfer function A% exhibited in spatial frequency space,
at a fixed temporal frequency. The solid lines denote positive (excitatory)
values while the dashed lines are negative (inhibitory). The parameters used
are the same as those in the caption of Fig. 4 except that S/N is now 1.0
instead of 40.0. We can see that the two types of cells perform R+ G type
of processing at all spatial frequencies. A similar behavior is seen as the

temporal frequency is increased even when S/N is kept constant and high.
Fig. 7

The chromatic transfer matrix in the regime where the red-green cone activ-
ities are not significantly correlated. The parameters used are R% = 0.5 and
R!%2 = 0.05, S/N = 40.0, s = 0.5 (the receptive field size of fish is larger than
that of monkey), € = 1.0. We see the double opponency very clearly in this
limit, the first cell type has red excitatory with green inhibitory center and
red inhibitory and green excitatory surround. This cell type corresponds to
type O cells found by Daw [5] in the goldfish retina. The other cell type has
a red and green inhibitory center with a red and green excitatory surround.

This corresponds to type @ cells in [5].
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