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A previously proposed theory of visual processing, based on redun-
dancy reduction, is used to derive the retinal transfer function includ-
ing color. The predicted kernels show the nontrivial mixing of space-
time with color coding observed in experiments. The differences in
color coding between species are found to be due to differences among
the chromatic autocorrelators for natural scenes in different environ-

ments.

1 Introduction

The retinas of many species code color signals in a nontrivial way that is
strongly coupled to their coding of spatial and temporal information. For
example, in the primate retina many color coding ganglion cells are ex-
cited by “green” light' falling on the centers of their receptive ficlds on the
retina, but their response is inhibited by “red” light falling in a concentric
annulus about the green center — called the surround region of their re-
ceptive field. There are also red center, green surround cells (Derrington
etal. 1984) as well as rarer tvpes involving blue cones. Such arrangements,
which can be termed “single-opponency,” are not the only types found
in nature. For example, freshwater fish such as goldfish and carp have
a different type of coding called “double-opponency” (Daw 1968). Their
ganglion cells are color opponent — they calculate the difference between
the outputs of different cone types at each spatial location — and they are
spatially opponent (with a center surround receptive field) but their color
and spatial encoding are mostly decoupled. One of the challenges for a
theory of retinal processing is to account for the difference between this
double-opponent goldfish code and the single-opponent primate code,
as well as the range of intermediate response types observed in other

species.

UIn this paper, we use “green” and "red” to denote light with spectral frequencies
exciting primarily the cones with medium and long spectral sensitivities, respectively.
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In this paper, we demonstrate that the computable theory of early
visual processing reported by Atick and Redlich (1990, 1992 henceforth
references | and II) can explain this variety of retinal processing types.
As explained at length there, the theory hypothesizes that the purpose of
retinal coding is to reduce both redundancy and noise in the visual im-
age. The idea of redundancy reduction as an efficiency goal in the sensory
system was first proposed by Attneave (1934) and Barlow (1961). In the
retina, redundancy in space, time, and color comes from the fact that the
pixel by pixel representation of natural scenes, which is the representa-
tion formed by-the photoreceptors, contains a high degree of correlations
among pixels. Therefore, many pixels redundantly represent the same
information. Actually with color, there is an additional source of corre-
lation between the photoreceptor outputs coming from the overlapping
spectral domains of the three cone types.

To improve efficiency, the retina can recode the photoreceptor signal
to eliminate correlations in space, time, and color. In refs. I and 1], it was
assumed that the retina, being only the first stage in the visual pathway,
can eliminate only the simplest form of redundancy, which comes from
pixel-pixel correlations: second-order correlation. It makes sense for the
retina to eliminate second-order correlation since it is the source of the
largest fraction of redundancy in the image, and it can be eliminated
relatively easily through a linear transformation that decorrelates the in-
put (photoreceptor) signal. As shown in I and II, decorrelation together
with noise reduction does give a retinal transfer function that agrees with
available data from contrast sensitivity experiments. Here we take that
analysis one step further and solve for the system that decorrelates at the
two point level both in space and color.-

What we find is that the differences seen in the color coding of pri-
mates and fish can be attributed to plausible differences in the color
correlation matrix for the two species. More precisely, we note that the
degree of overlap between the R and G cones in primates is greater than
the corresponding overlap in fish (the R and G spectral sensitivity peaks
are separated by only 32 nm for the primates but by 90 nm for the fish).
This difference in photoreceptor sampling is well known to be attributed
to differences between the primate visual environment and the environ-
ment under water (Lythgoe 1979). What we show in this paper is that
this sampling difference has very pronounced effects on the subsequent
neural processing needed to achieve decorrelation. In fact it will enable
us to account for single vs. double opponency coding. In passing, we
should mention that we limit our analysis to the two cone (R and G) sys-
tem, since in primate retina these photoreceptors occur with equal density
and are more abundant than the blue cones. In fact the blue cones consti-
tute only 15% of the total cone population in the entire retina while in the
fovea they are virtually nonexistent. We also confine ourselves to color
coding by linear cells, which implies cells in the primate parvocellular

pathway.



Understanding Retinal Color Coding 561

It is important to point out, however, that the mixing between space,
time, and color that we derive here does not come only from decorrela-
tion. In fact, we use here a correlation matrix which itself does not mix
space-time with color, though such mixing in the correlation matrix can
easily be included in our analysis and it only accentuates the effect found
here - for the more general analysis (sce Atick ct al. 1990). It is actually
noise filtering, together with redundancy reduction, which produces the
nontrivial interactions. Noise filtering is a prerequisite for achieving sin-
gle opponency, and it 2lso explains the observed differences between
psychophysical contrast sensitivity measurements in the luminance and.
chromatic channels.

We should point out that the earliest attempt to explain color op-
ponency using decorrelation was made by Buchsbaum and Gottschalk
(1983), also inspired by Barlow (1961). However, their work did not in-
clude the spatiotemporal dimensions, nor did it include noise, so it does
not account for the observed nontrivial coupling of space-time and color.

2 Decorrelation and Color Coding

As in refs. I and II, we make the hypothesis that the purpose of retinal
processing is to produce a more efficient representation of the incoming
information by reducing redundancy. With the assumption of linear pro-
cessing, the retina can eliminate only the simplest form of redundancy,
namely second-order correlations. However, second-order decorrelation
cannot be the only goal of retinal processing, since in the presence of
noise as was argued in II decorrelation alone would be a dangerous
computational strategy. This is due to the fact that after decorrelation
both useful signal and noise are coded in a way that makes their distinc-
tion no longer possible (they both have the properties of random noise).
Thus for decorrelation, or more generally redundancy reduction, to be
a viable computational strategy, there must be a guarantee that no sig-
nificant input noise be allowed to pass. The way we handle this noise
here is similar to the approach in II for the purely spatial domain: we
first lowpass filter to diminish noise and then decorrelate as if no noise
existed.

Figure 1 is a schematic of the processing stages we assume take place
in the retina. We should emphasize that this is meant to be an effective
computational model and is not necessarily a model of anatomically dis-
tinct stages in the retina. As shown in the figure, the intensity signal
L(x.t.)), depending on space, time, and spectral wavelength A, is first
transduced by the photoreceptors to produce a discrete set of photore-

ceptor outputs,

P(x.t) = / AAC (ML(x.1. }) @1
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Figure 1: Schematic of the signal processing stages for the model of the retina
used here. At the first stage, images are sampled by the photoreceptors to
produce the chfomatic signals, . These are subsequently lowpass filtered by
M 1o climinate noise, and then decorrelated to reduce redundancy by K.

The functions C?(\} are the spectral sensitivities of the two (more gener-
ally three) photoreceptor types, a = 1.2 for R. G, respectively. Following
transduction, the photoreceptor signals are lowpass filtered by a func-
tion M*(x.5;x'.t') to reduce noise. Having filtered out the noise, the
final stage in Figure 1 is to reduce the redundancy using the transfer
function K*(x.t;x'.1') that produces decorrelated retinal outputs. Thus
the output O is related to the input P through

O=K-(M-(P+n)+ng) . 2.2)

where 1°(x.) is input noise including transduction and quantum noise,
while ng(x. ) is noise (e.g., synaptic), which is added following the filter
M. Such post-filter noise, though it may be small, must be included
because it is very significant from an information theoretic point of view:
it sets the scale (accuracy) for measuring the signal at the output of the
filtler M. We have introduced boldface to denote matrices in the 2 x 2
color space; also in equation 2.2 each - denotes a space-time convolution.
To derive both filters M and K, we require some knowledge of the sta-
tistical properties of the luminance signals L(x.t.A): the statistical prop-
erties of natural scenes. For our linear analysis here, we only need the
chromatic-spatiotemporal autocorrelator, which is a matrix of the form

(P'(x.)P*(x.1))
/ AMNC(ANCHN) (L(x. £ AL(X'. 1. X))

R*(x.t;x'. 1)

where ( ) denotes ensemble average. Unfortunately, not much is known
experimentally about the entries of the matrix R*(x.t;x".#'). Thus, to
gain insight into the color coding problem e are forced to make some
assumptions. First, we assume translation invariance in space and time:
R is then only a function of x — x’, and t — #, s0 it can be Fourier trans-
formed to R*(f.w), where f and w are spatial and temporal frequency,
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respectively. Second, we assume R*(f.w) can be factorized into a pure
spatiotemporal correlator times a 2 x 2 matrix describing the degree of
overlap between the R and G systems. This second assumption is not
absolutely necessary, since it is possible to perform the analysis entirely
for the most general form of Ri*(f.w) (see Atick ¢! al. 1990). However, this
assumption does make it much simpler to analyze and explain our the-
oretical results. We also examine color coding only under conditions of
slow temporal stimulation or near zero temporal frequency. In that case,
we do have available Field's (1987) experimental measurement of the
spatiotemporal correlator: R(£.0) = J3/Ifl* with Iy the mean background
Juminance of the input signal. Using this R(f), and making the further
simplification that the mean squared R and G photoreceptor cutputs are

roughly equal, we arrive at

R(g‘0)=—’3— (1 ;) 2.3)

AN

where r < 1 is a parameter describing the amount of overlap of R and G.
\We should emphasize, that we do not advocate this simple form of R¥
as necessarily the one found in nature. More complex R can similarly
be dealt with but they produce qualitatively similar solutions.

The next step is to use this autocorrelator to derive a noise filter M*(f)
(from now on we drop explicit dependence). In ref. 11, the principle
used to derive M(f), without color, was to maximize the mutual informa-
tion between the output of the filter and the ideal input signal [the signal
L(f.w) without noise}, while constraining the total entropy of the output
signal. The resulting lowpass filter cannot be complete, however, since it
does not include the effects of the optics, but these can be incorporated by
multiplying by the optical modulation transfer function (MTE). As dis-
cussed in detail in ref. II, in the absence of color (one channel problem),
this gives

1[1_ R 1"
M=‘ﬁ{%-ﬂb—(i)—;\ﬁ] exp —(Ifl/f)° 2.4)

with N2 the input noise power. Here, the exponential term approximates
the optical MTF, which has been independently measured (Campbell and
Gubisch 1966); we use typical values for the parameters a and f. Al-
though, as shown in ref. II, this filter matches the spatial experimental
data well, other filters can also give good results. For example, one may
use a maximum log likelihood principle, equivalent in our case to using
mean squared estimation. The really important property all such filters
must have, however, is that their shape must depend on the signal to
noise (S/N) at their input.

To see how color correlations (two channel problem) affect the spa-
tiotemporal lowpass filtering, it is helpful to rotate in color space to the
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basis where the color matrix is diagonal. For the simple color matrix in
equation 2.3, this is a 45° rotation by

1 T 1
Uss ﬁ(—l ])

to the luminance, G + R, and chromatic, G — R, channels [in vector
notation, the red and green channels are denoted by R=(1.0)and G =
(0.1)]. In this G % R basis, the total correlation matrix, equation 2.3, plus
the contribution duc to noise is

. 2 .

U;s(R(.f)+N3)UI_;='-;%<IOTr 239 @.5)
where the noise, (n"n*) = §**N?, is assumed equal in both the R and G
channels, for simplicity. In the G = R basis, the two color channels are do-
coupled. Thus, the corresponding spatiotemporal filters M (f) are found
by applying our single-channel results, equation 2.4, independently to
cach channel. The R(f) appropriate to each G = R channel is from equa-
tion 2.5,

R:(f) = (1 £ B /P (2.6)

Notice that the two channels differ only in their effective S/N ratios:

(S/N)+ = /(1 £ r)(Jo/N)

which depend multiplicatively on the color eigenvalues 1 £ r. In the
luminance channel, G + R, the signal to noise is increased above that in
cither the R or G channel alone, due to the summation over the R and G
signals. The filter M..(f), therefore, passes relatively higher spatial and
temporal frequencies, increasing spatiotemporal resolution, than without
the R plus G summation. On the other hand, the chromatic channel,
G - R, has lower S/N, proportional to 1 — r, so its spatiotemporal filter
M_(f) cuts out higher spatial and temporal frequencies, thus sacrificing
spatiotemporal resolution in favor of color discriminability. The complete
filter in the original basis is finally obtained by rotating from the diagonal
basis back by 45°

mig =3 (1 7 (M0 mop) (4 1)

[Again M.(f) is given by equation 2.4 with R(f) — R.(f) in equation 2.6.)
Aflter filtering noise, the next step is to reduce redundancy using
the transfer function K*(f.10).2 At the photoreceptor level, most of the

*By redundancy here, as in ref. I, we mean the difference between the average
information H calculated using the joint probabilities for the neural outputs, and the
sum of the “bit” entropies 3", H;, calculated treating the ith neuron completely inde-
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redundancy is due to second-order statistics: autocorrelation. If we ig-
nore noise for the moment, then this redundancy can be eliminated, as
shown in ref, I, by a linear transformation K (x = x') that diagonalizes
the correlation matrix R*(x - x') so that at second-order the signals are
statistically independent: K-R-K' = D with D a diagonal matrix both
in color and space-time. This, does not, however, uniquely specify K
since the matrix D is still an arbitrary diagonal matrix. In the spatiotem-
poral case, we found a unique solution by requiring a translationally
invariant, local set of retinal filters: the approximation where all retinal
ganglion cells (in some local neighborhood, at least) have the same re-
ceptive fields, except translated on the retina, and these fields sum from
only a nearby set of photoreceptor inputs. These assumptions force D to
be proportional to the unit matrix: D = /1, with proportionality constant
r- This gives in frequency space, the whitening filter

K(f) = /oIR(f)

In generalizing this to include color, we note that when D is proportional
to the unit matrix, the mean squared outputs [(KRKT)# for output O]
of all ganglion cells are equal. This equalization provides efficient use of
optic nerve cables (ganglion cell axons) if the set of cables for the cells
in a local neighborhood has similar information-carrying capacity. We
therefore continue to take D proportional to the identity matrix in the
combined space-time-color system.

Taking D proportional to the identity, however, lecaves a symme-
try, since one can still rotate by a 2 x 2 orthogonal matrix U2, that is,
K(f) — UgK(f), which leaves D proportional to the identity (U% is a
constant matrix dependirig only on one number, the rotation angle; it
satisfies UsU] = 1). This freedom to rotate by Uy will be eliminated
later by looking at how much information (basically S/N) is carried by
each ganglion cell output. We shall insist that no optic nerves are wasted
carrying signals with very low S/N.

Returning to the situation with noise, the correlation matrix to be
diagonalized here by K*(f) is the one for the signal after filtering by M
(see Fig. 1). To derive K(f), we 80 back to the G = R basis where Met(f)
is diagonal in color space. Then e can again apply the single-channel
analysis from Atick and Redlich (1992) to each channel separately. This
gives two functions K (f) that are chosen to separately whiten the G £ R
channels, respectively. Since the complete frequency space correlators in

pendently. More precisely, H = ~ Sty Prny log(P(i_) ). using the complete joint
probabilities Py ) = P(0,.0;....) for the neural (e.g. photoreceptor) outputs O; with
space-time~color index i, while H; = — 2 P(O;)1og[P(O:)). The difference between H
and 37, H; measures the amount of statistical dependence of the neural signals on each
other: the more dependent, the greater the redundancy, since then more bits cffectively
carry the same information. Reducing redundancy amounts to finding a transformation
on the signals O; so that after the transformation the ratio H/ 3", H; is lowered.
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the two channels after filtering by M (f) are M (f)(R=(f) + N?) + Ni, the
K4 (f) are therefore '
: 1/2 .
Ka(f) = i o Q.7
[ML(B(R(H) + N2) + Nj)

where N} is the power of the noise that is added following the filter M*(f)
(see equation 2.2). Equation 2.7 generalizes the whitening filter K(f) =
V//R(£) to the Gase with noise. Now putting equation 2.7 together with
equations 2.4 and 2.6, we obtain the complete retinal transfer function —
the one measured experimentally —

Kar= U (40 ) (Y 20) (5 1) @9

The right-most matrix transforms the G, R inputs into the G = R basis.
These two channels are then separately filtered by K:Mz. Finally, the
rotation Uy, to be specified shortly, determines the mix of these two
channels carried by individual retinal ganglion cells.

3 Properties of Solutions

We now use our theoretical solution (equation 2.8) to explain the ob-
served color processing. Specifically, we now show how such diverse
processing types as those found in goldfish and primates are both given
by equation 2.8 but for different values of the parameter r in the color
correlation matrix.

For the case of goldfish, where, as argued in the introduction, one
expects only small overlap between R and G (r is small), the two chan-
nels in the diagonal basis have eigenvalues 1 = r, which are comparable:
(1=r)/(1+r) ~ 1. This means that both channels will on average be car-
rying roughly the same amount of information and will handle signals
of comparable S/N. Thus the filters K (f)M..(f) and K_(f)M_(f) are very
similar. In fact they are both bandpass filters as shown in Figure 2A for
some typical set of parameters. Since these channels are already nearly
equalized in S/N, there is no need to rotate them using Uy, so that matrix
can be set to unity. Therefore, the compiete solution (equation 2.8) when
acting on the input vectors R. G, gives two output channels correspond-
ing to two ganglion cell types:

Z] = (G+R) K+M+
Zy = (G-R)K-M. G.1

If we Fourier transform these solutions to get their profiles in space, we
arrive at the kernels K®(x — x') shown in Figure 3 for some typical set of
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Figure 2: (A,B) The luminance and chromatic channels for the goldfish, A, and
for primates, B. In both figures the curve that is more bandpass-like is the
luminance G + R channel, while the other is the G — R channel. Parameters
used are Jo/N = 5.0, a = 1.4, f, = 22.0 ¢/deg, Np = 1.0 for both A and B. The
only difference between the A and B is r: for A, r = 0.2 while for B, r = 0.85.

parameters. The top row is one cell type acting on the R and G signals,
and the bottom row is another cell type. These have the properties of
double opponency cells.

Moving to primates, there is one crucial difference which is the ex-
pectation that r is closer to 1 since the overlap of the spectral sensitivity
curves of the red and green is much greater: the ratio of eigenvalues
(1-r)/(1+r) << 1. Since the eigenvalues modify the S/N, this means that
the G — R channel has a low S§/N while the G + R has much higher S/N.
Therefore, K_(f)M_(f) is a lowpass filter while K. (f)M..(f) is bandpass as
shown in Figure 2B. These two channels can be identified with the chro-
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Figure 3: The retinal kernel K in the R and G basis predicted by the theory
for r = 0.2 (goldfish regime) and for the same parameters used in Figure 2. The
top and bottom rows correspond to two different types of retinal ganglion cells
predicted by the theory. These cells can be termed double opponent and they
are similar to many goldfish ganglion cells.

matic and luminance channels measured in psychophysical experiments,
respectively. The curves shown in Figure 2B do qualitatively match the
results of psychophysical contrast sensitivity experiments (Mullen 1985):
namely the lowpass and bandpass properties of the chromatic and lumi-
nance curves, respectively. So according to our theory, these differences

in spatial processing come from the hierarchy between the color eigen-
values that leads to different spatiotemporal S/N in the two channels.
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Although there is psychophysical evidence that color information in
primates under normal conditions is physically organized into luminance
and chromatic channels in the cortex (Mullen 1985), this is not how the
primate retina transmits the information down the optic nerve (Derring-
ton ef al. 1984). One reason that might explain why the primate retina
chooses not to use the G=R basis is that the representation of information
in chromatic and luminance channels has one undesirable consequence: '
If we compute the signal-to-noise ratio as a function of frequency in the
chromatic channel, given by (S/N)L = KAMIR-/ [K’_(M"'_N: + 1)], and
compare it with the corresponding ratio in the luminance channel we
find that the ratio (S/N)=/(§/N)+ K1 because (1=r)/(1+1 K 1. So for
primates, transmitting the information in the luminance and chromatic
pasis would result in one channel with very low §/N, or equivalently one
channel that does not carry much information. Transmitting information
at low S/N down the optic'nerve could be dangerous, especially since the
optic nerve introduces intrinsic noise of its own; it also may be wasteful
of optic nerve hardware. What we propose here is to use the remaining
symmetry of multiplication by the rotation matrix Uy, to “multiplex” the
two channels so they carry the same amount of information, that is, such
that they have the same $/N at each frequency.

We should point out that the same could have been done for the
goldfish but there the two channels (equation 3.1) (G+ R)K: (M. (f) and
(G - R)K-(IM-(D) already have approximately equal S/N so the degree
of multiplexing is very small or ignorable. In the case of primates, where
the hierarchy in S§/N between the two channels is large the mixing of the
two channels will be significant. In fact the angle of rotation needed is
approximately 45°. This leads finally to the following solutions for the
two optimally decorrelated channels with equalized S/N ratios

Z, = (G+R)K:M,—(G-RK-M-
= R (K.M. +K-M-)+G (KsMs = K-M-)
Z, = (G+R)K+My+(G—R)K-M-

R (KyM- - K-M2) + G (KyeMy + K-M-) (3.2)

Since for primates, K. (f)M4+(f) and K_(H)M_(f) are very different, the end
result is a dramatic mixing of space and color. For example, cell no. 1 at
low frequency has K_(HM-(f) > K. (M. () so it performs an opponent
R — G processing. As the frequency is increased, however, K_(HiM-(f)
becomes smaller than K. (M. (f) and the cell makes a transition to a
smoothing G + R type processing ( Derrington et al. 1984). In Figure 4,
we show the filters in frequency space, in the R and G basis. These filters
are in principle directly measurable in contrast sensitivity experiments.
We view the zero crossing at some frequency as a generic prediction of
this theory.
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Figure 4: The predicted retinal filter K*(f) in the R and G basis for the pa-
rameters in Figure 2 with r = 0.85 (primate regime). The solid (dashed) lines
represent excitatory (inhibitory) responses. Notice that both cells Z; and Z,

make a transition at some frequency from Opponent color coding (G - R or
R-G)to honopponent (G + R).

In Figure 5 (dashed line), we show how the solutions look for a typical
set of parameters after Fourier transforming back to space. We can see
cell type 1 summates red mostly from its center and an opponent green
mostly from its surround, while for type 2 the red and green are reversed.
These cells can be termed single opponency cells, as seen in Primates
(Derrington et al. 1984). One might object that the Segregation of the red
and green in the center js not very dramatic, Actually, this is due to the
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Figure 5: The retinal kernel K* in the R and G basis predicted by the theory
for r = 0.85 (primate regime) and for the same parameters used in the Figure 2
(dashed curves). The solid curves use the same parameters with one exception:
the parameter Ny was allowed to be different in the luminance and chromatic
channels by a factor of two. This was done to illustrate that complete color
segregation in the cell’s center can be easily achieved.

simplified model we have taken. Complete segregation can be achieved
if one allows the synaptic noise parameter No, which was set to 1 for the
dashed line, to be different for the two channels. In fact a difference of

1/2 between the two noises produces the solutions shown by the solid
curves in Figure 5.
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