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What Does Post-Adaptation Color
Appearance Reveal About Cortical Color

Representation?
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We examine the implications of the hypothesis that color information in the cortex is adaptively coded
into a factorial (statistically independent) and gain-controlled representation. We show that this
hypothesis explains the results of the recent experiments by Webster and Mollon [(1991} Nature, 349,
235-238] on changes in color appearance following post-receptoral adaptation. We also give a neural
network with a deterministically convergent, unsupervised learning algorithm that reproduces the

adaptation observed.

Color coding Adaptation Decorrelation

INTRODUCTION

The ultimate goals of any sensory processing is to locate,
identify and discover associations among objects in an
animal’s environment. In vision this task entails segre-
gation and identification of objects from input data
consisting of the light levels in the scene as signaled by
the array of photoreceptors. Recently, it has been argued
that achieving such cognitive goals can be facilitated if
the nervous system first preprocesses input data by
recording it into a special type of representation known
as a factorial code (Barlow, 1961, 1989; Atick & Redlich,
1990, 1992, 1993; for related ideas, see Linsker, 1988).
This code has the special property that elements (e.g.
pixels) of the representation are statistically independent.
One immediate advantage of lactoria! codes is that the
probability of any complex stimulus—the joint prob-
ability of the elements—can be computed simply from
the individual probabilities of the elements that it acti-
vates. This is because statistical independence of the
elements means that every joint probability factorizes
into a product of individual probabilities (and hence the
name factorial). Since the number of individual proba-
bilities is far smaller than the number of possible joint
probabilities, factorial coding allows the brain to learn,
store, and access far more statistical knowledge than
would otherwise be possible. Knowledge of these statisti-
cal properties then provides a set of constraints which
are expected to be useful in solving the object recognition
problem.
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Actually, factorial coding does more than just create
an efficient way to represent statistical properties; it also
preprocesses sensory signals in a way which prepares
them for some further useful types of processing: one of
these is data compression which can be achieved follow-
ing the factorial coding by applying a simple {quantiz-
ing) gain control to each of the statisticaily independent
outputs. This eliminates redundant bits of data, and is
likely to be an early step needed to fit sensory signals into
what appears to be a very tight computational (atten-
tion) bottieneck later in the processing stream (Van
Essen, Olshausen, Anderson & Gallant, 1991). Another
use of factorial coding is as a first stage in segmenting
an image into statistically independent parts which
should aid in the object segregation problem. Finally,
factorial coding helps in separating objects from back-
ground since it can be shown to give most weight to
those parts of an image (such as boundaries) which are
less predictable, and it also allows discovery of true
associations as deviations from independence, as empha-
sized by Barlow (1989).

In vision the sampled representation of natural scenes
is known to possess a high degree of correlations among
pixels (photoreceptor responses) and hence is far from
factorial, The first step in producing a factorial represen-
talion appears to take place in the retina where at high
luminance (high signal-to-noise) pairwise correlations in
the input are eliminated at the ganglion cell outputs. Of
course this is just a first step in producing a factorial code
since images also have important higher order structure
(higher order correlations). It is therefore important to
test for evidence for factorial coding beyond the retina,
in the cortex. However, the problem there becomes very
complicated since, for example, groups of neurons have
complex lateral connections in the cortex so identifying
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the statistically independent elements becomes far more
difficult than in the retina.

One way to test the general idea of factorial coding,
while avoiding some of the complications of the detailed
cortical processing at the neural level, is through quan-
titative psychophysical studies. The idea is to look for
changes in perception following adaptation to an en-
vironment with changed statistical properties. The
reason this is interesting is that the mapping from the
input signals to the factorial representation depends on
the statistical properties of the stimulus environment,
Modifying those statistical properties will modify the
mapping to a factorial representation. Therefore, if
the brain is sufficiently plastic and the idea of coding
for statistical independence is correct then one can alter
the cortical transformations through clever environ-
mental adaptation. This alteration will exhibit itself in
experiments as a change in perception following adap-
tation.

In this paper we examine one such recent psychophysi-
cal adaptation experiment in the color domain and
analyze at the quantitative level what it implies about the
underlying representation of coler information in the
brain [this builds on earlier works of Buchsbaum and
Gottschalk (1983) and of Atick, Li and Redlich (1992)].
We show that the idea that color in the cortex is
adaptively decomposed into two* statistically indepen-
dent channels can easily account for observed changes in
. color appearance following adaptation to an environ-
ment with one particular axis in color space: the
theory makes guantitative predictions for most (14 out
of 16 points) of the experimental data, given two initial
data points. (We also propose a modified experiment
where the theory would make predictions for ali of the
results.) In addition we give a local biclogically plausible
learning algorithm that can achieve the adaptation ob-
served.

COLOR CODING: AN EFFICIENT
REPRESENTATION?

We adopt the hypothesis that one goal of the visual
pathway is to build a statistically independent represen-
tation of the image. In the particular problem of color
coding at hand, this means that the activity of the L and
M cones (ignoring the S cones) which is highly correlated
needs to be recoded to achieve the desired decorrelated
representation (factorial representation). We next exam-
ine the issue of decorrelation of two channels mathemat-
ically.

Let us denote the activity of the two types of photo-
receptors by S,, where a = 1, 2 stands for L., M respect-
ively. Then the autocorrelator which captures the degree
of correlation between these signals is given by
(5,5,>=R,,, where the brackets denote an average
over the ensemble of signals. To decorrelate one can use

*For simplicity we ignore the S {or blue) cone system contribution Lo
color coding and focus on the two dimensional subspace spanned
by the L (red) and M {green) cones.

a linear transformation K, on the input signals §, to
produce the output

2
0,= 5 KaS, (n)

b=

such that

0,0,>=(K-R-KN,=0 ifa#b @

where bold-faced quantities are matrices (below bold-
face will be used to denote vectors as well). For this 2 x 2
problem the simplest transformation K needed is just a
rotation U that diagonalizes R:

. (A0
U-R-U _(0 R;) 3)

where 1, and 2, are the two eigenvalues of R.
Actually, we go one step beyond decorrelation and
normalize the output signals such that

0,0,y =K R-K')y=0,. S

This is a stronger condition than decorrelation alone
since it involves an additional step of gain control. This
additional gain control is the one which as mentioned in
the Introduction is needed to use the facterial code o
achieve data compression. In this way the two incoming
signals S,, 5, can be fit into a couple of channels with the
smallest possible dynamic range. One particular trans-
formation K, that satisfies equation (4) can be parame-
terized in the product form

Ky=V-U (5)

where U is the rotation in equation (3) and V is the gain
control, which in this linear model is

AN/
v=(%" ) ©

The specific transformation K, in equation (5) is not
the only transformation, however, that satisfies equation
{4). In general we can always construct another trans-
formation K=M-K, where M is any orthogonal
matrix, M- M7 = 1, such that K - R - K" = 1. This means
that the problem of finding a factorial representation
with gain control, as proposed by Barlow (1989, 1992)
and Barlow and Foldiak (1989), has no unique solution.
Rather there is a whole class of representations (in this
case a one parameter class) which are all equivalent in
the sense that they all have decorrelated outputs with
unit variance. This is the same nonuniqueness that was
faced in previous work on spatial decorrelation in the
retina (Atick & Redlich, 1992, 1993). There it was shown
that although all the transformations K =M-K, are
equivalent in their decorrelation properties they are not
all biologically plausible. In fact, it was shown that the
condition of locality of the transformation selects out a
unique transformation—leads to a unique choice of
M—which is the one observed in the retina.

In the present context, we fix this M symmetry by
using a formal generalization of the principle of locality.
Taking the output O=K-'S with K=M-K,=
M-V - U, we insist that M be chosen so as to minimize
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the quantity Tr{(S — 0)%). In the purely spatial domain
this can be shown to be the same as the condition of
locality. In general, what this condition means is that we
pick from among all the equivalently decorrelated and
compressed representations O the one that remains as
close as possible to the original representation S. This is
in a sense a general statement of locality: the recordings
that are favored biologically are those which require the
least perturbation of the original signal but at the same
time achieve the goal intended.

We can find the optimal local map by finding the
solution to the variational equations dE{M}/6M =0
where

EM}=Tr{(S~M-V-U-S
~TilpM-M"—1)] (7)

and the matrix p = p7 is a Lagrange multiplier enforcing

the orthogonality constraint M-M7=1. It is not
difficult to show that the optimal solution is
M=U"'=U" (8)

Thus in general we propose that the “most local”
transformation is

K=U"-V-U (9

In the next section we demonstrate that the transform-
ation (9} predicts the correct color adaptation. On the
other hand, the minimal rotation plus gain control in
equation {5) does not make correct predictions. This
does not mean, however, that we disagree with Barlow's
principle since both equations (5) and (9) produce stat-
istically independent outputs. Rather the principle of
statistical independence alone is incomplete, because of
the arbitrary M rotation. To fix this symmetry requires
an additional principle, which is why we introduced
“locality” to determine M. It is the combination of
Barlow’s idea together with “locality” which gives an
unambiguous and correct prediction of the experimental
results. Also, in our previous work on color coding in the
retina 11 was precisely this same combination of prin-
ciples, i.e. the transformation of the form in equation (9)
(rotation-scaling-rotation) which we showed agrees with
retinal color opponent cells {Atick et al., 1992). As
mentioned above it is this type of transformation which
is the color analog of the spatio-temporal transform-
ation derived by Atick and Redlich (1992). Later in this
paper we show that it is also the type of transformation
that 1s learned by a biologically plausible neural network
algorithm, one that is guaranteed to converge. In what
follows, we show how the transformation K in (9) can
explain the results of the adaptation experiment of
Webster and Molion (1991).

IMPLICATIONS OF THE THEORY TO COLOR
ADAPTATION

We start by describing the experiment of Webster and
Mollon (1991). In this experiment subjects view a
spatially uniform chromatic stimulus that is temporally

modulated and is presented in a restricted area of their
visual field. The stimulus is modulated along a fixed axis
in color space as indicated by the angle 6 with the
luminance axis in Fig. 1, while its stimulation strength or
saturation is given by the radial distance. The temporal
modulation does not affect the angle, but varies the
saturation about a fixed mean defined as the origin in
Fig. 1. After a certain period of presenting this adapting
stimulus, subjects are then presented in the same visual
area with a test stimulus. The task is to match the
perceived color of the test stimulus by adjusting the color
of a matching stimulus simultaneously presented in
another visual area placed symmetrically on the other
side of fixation (see Fig. 1). The lower part of Fig. 1
shows the results of a typical experiment from Webster
and Mollon (1991) in the luminance, L + M, and chrom-
inance, L — M subspace. The points on the circle rep-
resent test colors (the axes have been normalized so that
a unit distance along cach axis is one detection threshold
unit) while the experimental points (triangies) represent
the perceived color as determined through the matching
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FIGURE §. Color adaptation experiment by Webster and Mollon
(1991). A stimulus in chromatic space is marked by a vector in the
coordinate system with luminance (L + M) and chrominance (L — M)
as axes. During adaptation, the subject views a restnicted visual field
in which the stimulus strength is modulated about a fixed mean, the
origin in this ceordinate, along a particular hue or adaptation direc-
tion. After adaptation, one of the test stimuli, indicated by small open
circles on the large circle of radius 17 threshold units, is presented in
the adapted visual area. This test stimulus is matched in appearance
to a stimuius (solid triangle) presented in the upadapted visual area,
as indicated for two examples by arrows from small open circles to
triangles. For example, the test stimulus (0, [7) on the luminance axis
is matched to a stimulus of a smaller strength and hue angle ¢ from
the vertical.
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FIGURE 2. Schematic of the color adaptation and matching pro-
cesses proposed for the brain. Cone signals L and M are transformed
to retinal outputs O, O, by a fixed retinal {or lateral geniculate)

transform K,,, which decorrelates O, and O, for the ensemble of

natural signals. @,, O, are further transformed to cortical outputs C,

and C; by the transform K, which adapts to keep C, and G,

decorrelated even when new correlations between O, and O, are

introduced in the adapting environment. In the unadapted area, K,
is an identity transform 1.

procedure just described. It is clear from this data that
adaptation causes major changes in both the perceived
angle (perceived axis in color space) and saturation of
the stimulus (radial distance). Since it is known that
the type of stimulus used in the Webster and Mollen
experiment does not aflfect the sensitivities of the
photoreceptors or even retinal or geniculate neurons
(Derrington, Krauskopf & Lennie, 1984) the observed
adaptation must be of cortical origin.

We next show that the coding K {equation (9)] does
quantitatively explain the Webster and Molion data.
Figure 2 gives a schematic of the color processing stages
assumed for the visual pathway. We have broken up the
color transformation into two stages: the first, given by
the transformation K, from L, M to O,, 0y, is supposed
1o be fixed and nonadaptable (on the time scale and for
the specific stimulus of the Webster and Mollon exper-
iment) as just mentioned in the previous paragraph. As
discussed in an earlier publication (Atick et al, 1992)
there is evidence that the fixed transformation K,
decorrelates color signals from the natural environment.
It is therefore given by the transformation {9) with U and
V determined by the autocorrelator of the photoreceptor
signals L, M in response to natural stimulation. There-
fore, we identify the axes @,, O, (which are rescaled by
V in K, in the threshold units) with the experimental
axes used by Webster and Mollon.*

The second transformation K, in Fig. 2 from 0,, O,
to some cortical modules C,,C, is the one that is

*Actually the axes used in the experiments of Webster and Mollon are
a fixed rotation of the model LGN O, O, axes. Ignoning this
distinction does not alter the theoretical predictions below but
simplifies the discussion. Qur analysis below can be repeated
keeping explicit this fixed rotation without any difficulty.

assumed to be plastic or adaptable. Before adaptation,
or in the unadapted patch—since the input to the cortex
0,, 0, is already decorrelated—this second transform-
ation K, is trivial K, =1. However, by exposing a
subject to an adapting stimulus, the cortical inputs
0,, O, which were statistically independent in the natu-
ral environment become correlated. To restore decorre-
lation at C,, G, the cortex has to apply a nontrivial map
K. to O,, 0, Thus we can write

(@)= ()
()= (20)

where u and a stand for the unadapted and adapted
patch respectively. In matching one attempts to find the
stimulus (Q,, 0,), that gives rise to the same level of
cortical activity in the unadapted patch as does the test
stimulus (©,, O,), in the adapted patch. Mathematically,
the matching condition is

(10)

C, C,
= 11
(Cl)u (Cl)a ( )
which leads to the following equation
) =k (o
OL u 02 o
0
=U7-v-U-| 12
(o),

where U, V for K, are determined by equations (3) and
(6) for the autocorrelator R of the cortical inputs
(0,, 0,) for the adapting stimulus (environment).
Unfortunately, the adaptation ensemble in the
Webster—Motlon experiment does not produce a well
defined autocorrelator: strictly speaking a single stimu-
lus, modulated in time along a fixed axis, gives a
correlation matrix with one vanishing eigenvalue. Actu-
ally, this eigenvalue must be nonvanishing due to the
existence of at least some noise (at least some signal
quantization) at all processing levels. However, the noise
contribution to the autocorrelator is not known. This
turns out to mean that the eigenvalues 4, and 4, of the
autocorrelator R are not determined by the experiment.
On the other hand, the basis where the autocorrelator R
is diagonal is determined by experiment; it is obtained by
rotating the unadapted axis by the adaptation angle 8
(see Appendix). Thus we can parameterize the autocor-

relator as
R- cosd —sinf\ (4
sinff  cosf Ay

cosf  sind
X . (13)

—sinfl cosf
where A, and 1, are the unknown eigenvalues of the
autocorrelator which we treat as parameters in what
follows. A minor change in the experiment, using an

adapting ensemble with at least two colors, would give
control over the ratio 4,/4, which as we show below
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would result in a parameter-free prediction of color axis
shifts.

We should mention that the observed ratio 4, /4; (see
below) does turn out to imply a rather low signal-to-
noise ratio (see Appendix). Therefore, although noise
must be at least partly responsible for nonvanishing
eigenvalues, it may not explain why the ratio 1, /4, is as
low as it is. An alternative explanation is that the cortex
is unable to completely decorrelate the input signals. One
way to test this idea would be to use the learning
algorithm (see below) with a high signal-to-noise ratio,
but to stop the algorithm before it converges. The
problem with this is that the algorithm requires a
relatively low signal-to-noise ratio for stability. We have
not found any other quantitative way to explore incom-
plete decorrelation.

With the parameterization (13), it is clear from
equations (3) and (6) that U is a rotation by 8, while V
1s a scaling matrix diag(l/ﬁ, I/\/l_,). Thus, according
to equation (9) the cortical transformation K, is

W _(cos® —sin0\ (11/4 0
= \sin 6

cos @ 0 14/,
cosf@ sin@
. (14
x(—sine cosﬂ) 4

If the points in (Q,,0,), lie on a circle then from
equations (14) and (12} it is clear that the matching
points (0,, (,), will lie on an ellipse whose minor and
major axes are in the 8 direction and the direction
orthogonal to it, respectively. The lengths of the minor
and major axes of the ellipse are 1’,\/{' and l,"\/I2
respectively. Thus the theory predicts that the matching
data should lie on an ellipse whose minor axis is oriented
along the adapting axis, but whose major and minor axes
lengths—for the Webster and Mollon experiment—are
not otherwise determined.

We can now make some quantitative comparisons
with the Webster and Mollon data. Because we do not
know A, and 1, we cannot predict all of their data, but
this does not mean we can make no quantitative predic-
tions. In fact, we need only two data points to determine
4, and 1,, after which we can predict all of the other 14
data points per subject. One interesting type of predic-
tion to make for these 14 data points is of the angle ¢
between the test stimulus axis and the matching stimulus
axis. Recall, in this experiment that a subject is adapted
0 a stimulus at angle & and then is exposed to one of the
16 different test stimuli which lie on the circle, as shown
in Fig. 1. For each test point on that circle the subject
selects a matching stimulus, giving the set of points
which lie approximately on an ellipse (Fig. 1). Now for
each test stimulus {one point on the circle), one can ask
how much ifs matching stimulus {one triangle on the
ellipse) is rotated from it. For example, il the test
stimulus is at 45° and the match is at 60° then the shift
angle ¢ = 15°. The magnitude of the shift will depend on
the adapting angle 6. We can therefore measure the set
of shift angles for one particular test stimulus, say at 90

or 270°, to obtain ¢(8), as was done by Webster and
Mollon (see Fig. 3).

To compare these experimental measurements to the
theoretical predictions we now need to compute ¢ (8).
For the 90° test stimulus (0,,0,),=(0,1) so from
equations (12} and (14) the shift angle tan (@)=
(—0,{0,), is

tan (P(6)=(_Kcor)l2=COSG Sing(\/ AI'l/}“l.— l) (15)
(Koo 2 sin’ B + \/l. [, cos? 8

which only depends on the ratio A,/4,. From two points
of the experimental response data [Fig. 2(C) in Webster
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FIGURE 3. Comparison of theoretical prediction and experimental
measurement of hue shifis @. The lower graph shows the shifts in angle
of a lest stimulus on the luminance axis as a function of adaptaticn
direction. The triangles are the experimental data obtained by averag-
ing the measured shifts for the positive and negative luminance axis at
each adaptation angle § (Webster & Mollon, 1991). In the theory, the
amount of shift predicted depends only on 4,/4,, which is roughly
constant for all adaptation directions, with average 1,/4, = 4 from the
experimenial response data. With this 4,/4,, the solid curve gives the
predicted ¢ (8). The upper graph gives the predicted (solid circles) and
measured (triangles) match stimuli at one adaptation direction. The
prediction is derived with the samc A, /4, as in the lower graph, and
A =96
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and Mollon (1991)], we estimate that this ratio is 4.0, so
in Fig. 3 we plot ¢(8) for 4,/1, = 4.0. In that figure the
continuous curve is the predicted shift from equation
(15) while the solid triangles are the experimental
measurements. Also, from equation (15) we can deter-
mine the maximum shift possible ¢,,, and the angle
f... 4t which it occurs. Solving d¢p(8)/d8 =0, we
get sin’f., = /A A/ + /4, /4;) and tan g, =
(A fA; = D24, fA)"], which for A,/4,=4 gives
B ~ 54.7° and ¢, = 19.5°, consistent with what is
typicaily found by Webster and Mollon.

NETWORK IMPLEMENTATION

In what follows we present a neural network with a
learning algonthm that allows the network to adaptively
diagonalize the current autocorrelation matrix: the
network learns and implements the transform
K., =U"-V-U of equation (9). The network architec-
ture is shown in Fig, 2, where the feedforward connec-
tions from O, O, to C,, C, are assumed to be fixed and
set to umnity (we use a convention where neurons are
labeled by their outputs). The adaptable links are as-
sumed to be the lateral feedback links which connect the
outputs C,(C,) back to the input of neuron C,(C,) with
link strength W,(#,,). The dynamics is thus

dC,

2
FT—=0,- Ww,.C..
dr i jgl P

At equilibrium, dO,/dr =0, one gets O, =X, W.C,

/B
which shows that W 1s the inverse of the transformation

of K, from O,, O, to C,, C, given in equation (10}. The
proposed update algorithm is

dw,
5 =0G- W,

T

(16)

This algorithm was previously applied to pairwise decor-
relate in space the photoreceptor signals for a stimulus
ensemble with the same power spectrum as natural
scenes, and it was shown to converge to ganglion cell
receptive fields (Atick & Redlich, 1993). The algerithm
was originally proposed by Goodall (1960) in a different
context.

The algorithm in equation (16} when averaged over
presentations of signals drives W to a configuration
where (C,C;> =[W™'-R-(W~')],=6,. For a proof of
this the reader can consult Atick and Redlich (1993). In
that paper it was also noted that the algorithm possesses
a symmetry of multiplication by any orthogonal matrix
M. For example, if W achieves decorrelation then so
does W - M. This is the same symmetry that we discussed
in the paragraph following equation (6), where we
argued that although the principle of decorrelation does
not select a unique M, there may be biological reasons
for favoring a particular M. That led to the choice
M = U7 based on the principle of locality. What we wish
to do now is to give an additional argument for the
choice M = U”. Namely, that M = U7 is exactly the M
that results by applying the developmental algorithm
(16) to learn color decorrelation starting with the initial

condition—before adaptation—K_, =1 (equivalently
W = 1) as in equation (10).

In Atick and Redlich (1993) it was shown that the final
M found by the algorithm after convergence depends
on the initial condition for W. It was further proven that
with the initial condition W = 1 the algorithm is guaran-
teed to converge to a configuration with W=WT
(Keor = KZ,). This condition is exactly equivalent to
M = U7 since

Kwr=M'V'U=UT'v'MT=K;r (17)

has only one solution M = U7, assuming orthogonality
for M.

The algorithm (16) was simulated using Gaussian
signals O,, O, with a fixed autocorrelator. We find that
the algorithm, as expected, learns a K, (or equivalently
W) which can be factorized into the form in equation (9)
with U and V given by the correct rotation and scaling
matrices for the particular signals vsed. For additional
discussion on detailed simulations of algorithms of the
type {16) see Atick and Redlich (1993).

DISCUSSION

At this point we should point out that Webster and
Mollon (1991) suggested, without going into extensive
detail, that their data might be explained in two possible
ways. One way is close to our explanation here and refers
to some earlier ideas by Barlow and Foldiak (1989) on
decorrelated representations. As discussed below
equation (9) the principle of decorrelation alone is
insufficient to completely determine a transformation,
since it leaves an arbitrary rotation which we fix based
on the additional principle of “locality”. This choice is
different from Barlow and Foldiak’s (1989) which does
not correctly predict the Webster and Mollon (1991)
result. However, since the basic principle in both cases
is decorrelation plus gain control we consider our results
a confirmation of the same fundamental ideas discussed
by Barlow and Foldiak (1989). That is, we have shown
concretely that coding color in the cortex in a factorial
(decorrelated} and gain controlled representation, where
the elements (chromatic channels) are coupled and ac-
tively adapt to the current environment, provides a very
simple quantitative explanation of the Webster and
Mollon data.

The aiternate proposal mentioned by Webster and
Mollon (1991) is very different from the type of expla-
nation that we have presented here and is based on the
hypothesis of fatigue. This hypothesis relies on the
assumption that repeated activation of a neuron during
the adaptation period diminishes its sensitivity. So if a
perceptual quantity (e.g. hue) is coded by a collection of
neurons (analyzers) and the adaptation stimulus acti-
vates these neurons differently, then the fatigue hypoth-
esis predicts that each neuron would be desensitized by
different amounts. This in principle can lead to a variety
of perceptual shifts,

The fact that fatigue can produce hue shifts is not an
issue of debate, what is to be seen is whether it can
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produce the correct quantitative shifts. It is not hard to
show, as do Webster and Mollon (1991), that the
simplest model of fatigue with only two channels cannot
explain the data of Webster and Mollon. It does indeed
lead to color axis shifts since, in general, adapting the
two color neurons with a stimulus defined by the angle
# does produce different activation levels for the two
neurons and hence different levels of fatigue. However,
it predicts the wrong shifts. For example this model
predicts that the matching ellipse has its major and
minor axes always along the luminance and 7. — M axes.
Also, when adapting at angle 8 = 45° the matching locus
is not an ellipse but a circle in contradiction to what is
observed. A more sophisticated model of fatigue with
multiple chromatic channels might explain the data, but
at the cost of several additional parameters and assump-
tions. We also find the idea of fatigue uncompelling; it
is hard to accept that a system such as the brain—which
is known to exhibit all sorts of intricate adaptations—
does so merely because of a breakdown of its neuronal
response abilities and not in order to serve some func-
tion. This is hard to believe especially in view of the fact
that active adaptation is a strategy that can enhance the
brain’s computational power.

Unfortunately, at this stage we do not have any
experiment that can unequivocally rule out fatigue in
favor of functional adaptation and hence it would be
very interesting to try to design some. Actually, a hint
that adaptation is not the result of fatigue can be seen
in the experimental data of Movshon and Lennie (1979)
on pattern selective adaptation as has been pointed out
by Barlow (1992). Also, more quantitative control over
the statistical properties of the stimulus in the Webster
and Mollon experiment might lead to stronger theoreti-
cal predictions and hence might lend more credence to
the active functional adaptation philosophy. One exper-
iment that we would like to see done, is one where the
adaptation stimulus consists of at least two colors
modulated in a way which produces a nonsingular
correlation matrix. In that experiment one could control
the ratio 4, /4, and hence have parameter free predictions
from the theory.
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APPENDIX

To demonstrate that the autocorrelator R takes the form (13) we need
to explicitly add noise N, to the signal O,. In the experiment the signals
0,(1) have a time-independent ratio 0,(1)/0, (t) = tan & determined by
the adapting angle # and have a time-dependent magnitude
Pi) = Q1) + OL(t). Therefore the signal can be parameterized as

_feos® —sin8Y [P(1) 1T, Pty
20-(ne e ) (V)= ()

sin 8
Thus without noise the correlation matrix R;=<{0Q.0;>, where (-++)
here denotes temporal averaging, is

2
P 0)_U.

(Al)

(A2)

R =y’
ino:xso u ( 0 0

which explicitly shows the zero eigenvalue of R. Now assuming that
noise is totally decorrelated (N,N,> = N'§; and has no correlations
with the signal {(¥,0,) = 0, the autocorrelator for O, + N, i

z 2
P+ N 0).U_

0 N? (A3)

R|m,o=U’~(

This is the form exhibited in equation (13) which has two nonvanishing
eigenvalues as promised.



