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INTRODUCTION

What is optimal depends on computational tasks. Many recent works base optimality on informa-
tion theoretical terms such as information transmission rates. This can be particularly revelant in
the early stages of vision which are mainly concerned with transmitting information indiscrimi-
nately. We focus on the better known visual system to discuss optimal sensory coding, although
coding in other sensory systems are expected to address similar concerns.

Consider a simplified visual input model, with, say, 1000x1000 pixels arranged in a regular grid at
one byte per pixel and 20 images per second. It provides many megabytes/second of raw data.
Given the information bottleneck in the long optic nerve from retina to thalamus and the limited
firing rates (thus limited data capacity) of cortical neurons (see article SENSORY CODING AND
INFORMATION TRANSMISSION), early vision can greatly benefit from a data encoding that re-
duces the data rate without significant information loss. Since nearby image pixels tend to convey
similar signals (e.g., luminance values) and thus carry redundant information, significant savings
can be made by avoiding transmitting the information redundantly. If, within a particular time
window, each original pixel codes one byte of information, 80% of which is redundant information
shared with neighboring pixels, then one million pixels code only 200 Kbytes of non-redundant
information. One way to avoid redundancy is to transform the original signal

���������
	����	�������	�����
in the � neurons (e.g., photoreceptors) to signals � ����� � 	�� � 	�������	������

in another  (more/fewer)
neurons (e.g., the retinal ganglion cells or cortical neurons), such that signals in

�"!
and

�$#
for all% 	'&

are not significantly redundant. Consequently, 200 Kbytes of information in
�

could be coded
by only 0.2 byte in each neuron

�(!
if  � � , which needs a much reduced firing rate. Loss-less

encoding means that, if needed,
�

can be reconstructed from � . Such observations have led to the
“infomax” proposal that early vision constructs an “optimal coding” of input to allow maximum
information transmission from retina to cortex under limited channel capacity of the optic nerve
or neural activities (Attneave 1954, Barlow 1961, Linsker 1990, and Atick 1992). This principle has
provided many insights in the properties of the receptive fields (RFs) in early vision.

OPTIMAL CODING ILLUSTRATED BY STEREO VISION

Consider the redundancy and encoding of stereo signals (Li and Atick 1994a). Let
�*)

and
�,+

be the
signals to the left and right eyes (Fig. (1)). They may be the average luminance in the images, or the
Fourier components (of a particular frequency) of the images. Assume that they have zero mean
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Figure 1: A stereo pair input to the two eyes.

(for simplicity) and equal variance (or signal power) � � �)�� � � � �+�� ( � ��� � denotes average over
the input ensemble). The redundancy is seen in the correlation matrix:�����
	 � � �) � � �),�,+ �� �,+ �,) � � � �+ � � � � � �) � 	���� � �
where ��� � � � is the correlation coefficient between

� )
and

�+
. The value of � is high, ����� ,

for mean luminance signals
� )�� +

but low, ��� � , if
� )�� +

are a high spatial frequency Fourier
component of the respective images. A simplifying assumption is that

�
are Gaussian signals,

which are defined as to have a probability distribution ��� �����! #"%$ �'&)( ! # �! � # � � � �+* �! #�,%- � ). An
encoding �/. � �0. � � �)�1 �+2� ,43 - 	 � * � � * � � �) & �,+5� ,%3 -
gives zero correlation � � . � * � in � , leaving output probability ���'� � �76 ! ��� � ! � factorized, as
easily verified. The transform

� � � is linear, which approximates the cell response properties in
the retina and, to a less degree, in primary visual cortex. The cell coding

�8.
is a binocular cell due

to the binocular summation of inputs, while the cell coding
� * is monocular or ocularly opponent.

Note that
�:9

are the eigenvectors of the correlation matrix
� �

or the principal components of the
signals, and their signal power � � �9 � � � �<;�� � � � �) � are the corresponding eigenvalues.
In reality, input noise = is added on

�
and the coding transform introduces additional noise =�> ,

hence,
� 9 �@? � �))1 � )0� ; � �+�1 � +A�CB , 3 - 1 �ED � 9 , giving effective output noise � 9 � � � ) ;

� + � , 3 - 1 � D � 9 . For simplicity, the noise terms are assumed to be independent of each other and of
the signals. Let � �

� � � � �
�) � � � �

�+ � , and � �
�D � � � �

�D � . � � � �
�D � * � . Input

� )�� + 1 � )�� +
has F

)�� + � �-HGJI4K � � � �)�� + � 1 � �
� �� �

� �
bits of (mutual) information about

�,)�� +
, since, for Gaussian signals and noise, the information

amount is
�� GJI4K � (signal-to-noise), whereas while

�89
hasF 9 � �-8GJI4K � � � �9 �� �

�9 � � �-HGLI%K � � � �9 � 1 � �
� � 1 � �

�D �� �
� � 1 � �

�D �
bits of information about

�,)�� +
or

� 9
. Note that the redundancy between

�,)
and

�,+
causes higher

or lower signal powers � � �. � or � � � * � in
�/.

or
� * respectively, leading to higher or lower

information rate

F .
or

F * . As an initial choice, define cost as the total signal power, although there
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can be many other cost considerations (see later). Since

F 9 � �� GLI%K � � � � �9 � � + constant =
�� GLI%K �

(cost) + constant, we note that the gain in information per unit cost (
� F , � cost) is smaller in the� .

than that in the
� * channel. This motivates reduction and increment of costs in the

� .
and� * channels respectively, by introducing the gains � 9 , such that

�H9 � � 9 ? � � ) 1 � ) � ; � � + 1
� +A� B , 3 - 1 �ED � 9 , at the expense or benefit of the information transmittedF 9 � �- GLI%K � � �9 �'� � �9 � 1 � �

� � � 1 � �
�D �� �9 � �

� � 1 � �
�D � (1)

Hence, the optimal encoding, balancing the cost and information extraction, is to find the gains � 9
to minimize � ��� 9 � ����� �'� � �� � � &
	 ��� � F � � � cost &
	� Information (2)

where 	 is the Lagrange multiplier whose value determines the balance. The optimal gains can be
obtained by � � , ��� 9 � � to give� �9 � Max � ? �- � � �9 �� � �9 � 1 � �

� � � � 1�� � 1 � 	GLI%K - � �
�D � � �

� �� � �9 � � & � B'	 ��� � (3)

In the zero noise limit when � ������� � � ��� � , � �9 � � � �9 � * � . As expected, this suppresses the stronger
ocular summation signal

�0.
and amplifies the weaker ocular contrast signal

� * , in order to save the
cost, since the cost increases linearly with � �9 , but the extracted information increases only logarith-

mically with � �9 . Hence, for instance, when the coding noise = > is negligible (i.e., � � �� �� �� � � � ��� � ),
output � and the original input

� 1 = contain about the same amount of information about the
true signal

�
, but � consumes much less power with � . � � * � � , when �! � . This gain� 9� � � �9 � * �#"�� also equalizes output power � � �. �%$ � � � * � , since � � �9 � � � �9 � � �9 �

+ noise power, making the output correlation matrix
� D (with elements

� D�'& � � � � � & � ) propor-
tional to an identity matrix (since � � . � * � � � ). Such a transform

� � � , which leaves output
channels decorrelated and equally powered, is called whitening. Any rotation � �)( � via a ro-
tation or unitary transform ( ( (*(*+ � � ), by angle , in the two dimensional space � , multiplexes
the channels

� .
and

� * to give two alternative channels	 � �
� � � � 	.- I0/ �1, � /#243 �1, �& /#243 �1, � - I0/ �1, � � 	 � .

� * � �
	.- I�/ �1, � � . 1 /#253 �6, � � *& /7243 �1, � � . 1 - I�/ �6, � � * � �
which are also decorrelated ( � � � ��� � � � ). Furthermore, note from equations (2) and (1) that cost
= Tr (

� D ) and Information
� �� GJI4K98;:=< + �8;:=< +�> , where

� �
is the correlation matrix of the noises in the

output channel, Tr � � � and ?A@'B � � � denote the trace and determinant of a matrix. Since both the trace
and determinant are invariant to unitary transforms (rotations), the optimized objective function�

= (cost - 	 Information) is invariant to this rotation
� 9 � �"�+� �

. Hence, both encoding schemes�)�� + � � 9
and

�,)�� + � �"� � �
, with former a special case of the latter, are equally optimal in making

the output decorrelated (non-redundant), in extracing information about
� ) � +

, and in saving the
coding cost ( � ��� � � � � � . Since	 � �

� � � � 	 � ) � - I0/ �1, � � . 1 /7243 �1, � � * �01 � + � - I0/ �1, � � . & /7243 �6, � � * �� ) �'& /#253 �6, � � . 1 - I0/ �1, � � * �:1 � + �'& /7243 �6, � � . & - I0/ �1, � � * � � 	
in general

�"�
and

���
prefer different eyes. In particular, , � & ��C D gives

�"� � � � �) ��� .
D � * �21�+ ��� . ; � * � . The visual cortex indeed has neurons of a whole spectrum of ocularities.
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where K = UVKo
O = K(S+N)+No

Any unitary transform
U for any special
purpose if needed

Principal components
of S+N

signal and noise S+N

Diagonal matrix V
transform to apply
a specific gain to
each component

....

K

....
Unitary transform Ko

Original input

Figure 2: A schematic of the steps to obtain infomax (linear) code for Gaussian signals.

VARIATIONS OF OPTIMAL CODINGS

It is now apparent that infomax coding as defined in the Equation (2) is related to whitening, decor-
relation, principal component analysis, and factorial codes, defined as when probabilities of signals
factorizes ���'� � �!6 � ��� � � � . Many other relatives of optimal codings are: minimum entropy or
minimum description length, since minimizing � � �� � 1 � � �� � reduces the total output entropy� � � � � 1 � � � � � (

� � � � stands for entropy) for Gaussian signals
� �

, independent components analysis
since principal components are independent components for Gaussian signals, redundancy reduction
since the well known inequality ( � � � � � � � � �'� � means that minimizing ( � � � � � � reduces the
redundancy, intuitively defined as ( � � � � � � , � �'� � & ��� � (equal to zero when there is no re-
dundancy), between output channels, sparse coding since it is defined as lowering the coding bits� � � � � for all channels � , maximum entropy code since

� � � � is maximized given ( � � � � � � when re-
dundancy is removed, predictive codes since the code effectively predicts or explains away

�*+
from�)

to achieve minimum ( � � � �� � for given

F � ��� ��� (information in � about
�

), and minimum
predictability codes or least mutual information between output channels since ( � � � � � � � � �'� �
means zero mutual information between output channels

� �
and

� &
. All these variations of “opti-

mal coding” often mean approximately or exactly the same (Nadal and Parga 1997) depending on
their precise definitions and the statistics of the signals concerned, and should not be thought of as
independent coding principles.

OPTIMAL VISUAL CODING IN SPACE, TIME, COLOR, AND SCALE

In general, for simple linear encoding of approximately Gaussian signals
�

, a recipe for optimal
coding is visualized in Fig. (2). Given input signal

�
with noise = , the encoding transform � and

additional coding noise = > gives output signal � � � � ��1 = �01 = > . The optimal transform � is
dictated by the input statistics characterized by the correlation matrix

� �
. The first step is principal

component analysis, transforming
��� � �

, via a matrix ��> to the principal components
���
	 �

, i.e.,
� �

� D � . The powers of the components
�

are the eigenvalues of
� �

. Next, the optimal gain � 	 to
� 	

is determined by
� 	

’s signal-to-noise ratio via equation (3). A particular optimal coding transform
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is � ��� ��> , where
�

is a diagonal matrix with diagonal elements equal to the optimal gains � 	 or� ��� � . The resulting � have decorrelated components and retains the maximum information about�
given output cost ( � � � �� � . Furthermore, any transform in the class � � ( � � > , where ( is

any unitary transformation (rotation, (*(�� � � ), is equally optimal since it leaves the outputs �
with the same information extraction and cost, and, in the zero noise limit, the same decorrelation.
The conceptual steps above correspond mathematically to finding the (degenerate) solution � of� � , � � � � where

� � � � � cost - 	 Information.

spatial frequency k

Gain V(k)Signal
power 

region
High S/N

region
low S/N

center-surround spatial filter
receptive field shape K(x)

of V(k)
Inverse 
Fourier

space x

Figure 3: The contrast gain � ��� � as a function of spatial frequency � , determined from the signal-
to-noise (S/N) of the inputs (S+N) at that frequency. The corresponding spatial filter

� � "�� is the
Fourier inverse of � ��� � , adopted by the retinal ganglion cells on the photoreceptor inputs.

In spatial coding (Atick 1992), signal at visual location
"

is
���

. Since the signal correlation is
translation invariant, i.e., � ��� �	��
 � is a function of only

" & "� , the principal components are
Fourier modes, and

� D is the Fourier transform
� 	��D   * ! 	�� such that

��� � � 	  ( � � 	��D ���  ( �  * ! 	�� � � . Field (1987) measured the power spectrum as � � �	 �  � , � � with Fourier frequency
� . Assuming white noise power ���

� � , the high signal-to-noise
� � , � �

in the low � region leads
to the gain � 	 or ����� �<� � that increases with � . However, for high � where

� � , � �
is low, ����� �

quickly decays with increasing � to zero according to equation (3) in order not to amplify noise.
This gives a band-pass � ��� � as a function of � (Fig. (3)). If ( is the inverse Fourier transform� � 
 	   ! 	�� 
 , then the whole transform � � ( � � > transforms signal

�	�
to activities

��� 

of a neu-

ron with a receptive field (RF) at location
"��

as a band-pass filter, i.e.,
����
  ( 	 � ��� � ( �  ! 	���� 
 * ��� ���

+ noise. This is roughly what retinal output (ganglion) cells do, achieving a center-surround trans-
form on the input image and emphasizing the intermediate frequency band where signal-to-noise
is of order 1. Function ����� � is the well known contrast sensitivity function. When the visual
environment dims down, reducing the overall signal-to-noise � � �� �� � � � in all frequencies, say from� � �� �� � � �  � �%� , � � to � � �� �� � � �  � , � � , the band-pass region should shift towards lower frequencies,
effectively making ����� � a low pass. This explains the dark adaptation of the retinal ganglion cells’
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RFs, from center-surround contrast enhancing (band-pass) filter to Gaussian-like smoothing (low-
pass) filter, to integrate signals and smooth out noise.

Coding in time is analogous to coding in space. Image statistics in time (Dong and Atick 1995)
determine the temporal frequency sensitivities ����� � (of frequency � ) of the optimal temporal fil-
ter. Given a sustained input

� � � � over time
�
, the output

� � � � may be more sustained or transient
depending on whether the filter is more low pass or band pass. By an appropriate choice of the
rotation transform ( (Dong and Atick 1995 and Li 1996), the temporal filter can be made causal,
i.e., the output � depends only on input

�
of the past but not the future.

R+G

R-G

R
G G

+

Figure 4: Multiplexing the center-surround achromatic (R+G) filter with the chromatic (R-G)
gaussian-like filter gives a red-center-green-surround double (in space and in color) opponency
RF observed in retina.

Visual color coding (Atick 1992) is analogous to the stereo coding. The inputs are three dimen-
sional (3D),

����	����
, and

� &
for red, green, and blue signals. The principal components include a

strong luminance channel, a weighted summation of the cone inputs, and two weaker chromi-
nance channels, one roughly red-green opponency and another yellow-blue opponency. Optimal
coding then involves appropriate gains to these channals and additional multiplexing of them as
needed. Physiologically, color and space codings are coupled, resulting for instance in the red-
center-green-surround receptive fields (Fig. (4)) of the retinal ganglion cells. This can be under-
stood in a simplified two cone system, red and green. The high signal-to-noise luminance channel
(
���41 ���

) needs a center-surround or band pass spatial filter, while the low signal-to-noise chromatic
channel (

��� & ���
) needs a smoothing or low pass filter. The multiplexing of these two channels, a

rotational operation ( in the 2-dimensional color space, leads to addition or subtraction of these
two filters. The results are the red-center-green-surround or green-center-red-surround RFs. In
the retina and/or primary visual cortex, codings in space, time, color, and stereo are all coupled
together (Atick 1992, Li and Atick 1994ab, Li 1996).

MULTISCALE CODING IN THE PRIMARY VISUAL CORTEX

Primary visual cortex receives the retinal outputs via the lateral geniculate nucleus. Its RFs are
orientation selective in the shape of small bars or edges. Different receptive fields have different
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orientations and different sizes (or tuned to different spatial frequency bands), in a multiscale fash-
ion such that RFs of different sizes are roughly scaled versions of each other, also called wavelet
coding. These RFs can be seen as components of another optimal code by a particular choice of
the rotation (unitary) matrix ( in the coding transform � � ( � � > . Retinal RFs are given when( � ��> * � , and are theoretically the same for all retinal ganglion cells except for a spatial transla-
tion. Another optimal code, apparently not adopted anywhere in our visual system, is when ( ���

,
an identity matrix. The RFs would be infinitely large, each would be unique and a particular prin-
cipal component (Fourier component) with a particular gain. The ( transform for the multiscale
coding is when ( is somewhere in-between the two extremes ( � ��> * � and ( ���

. To construct
a cortical RF, ( multiplexes the principal components (Fourier waves) within a finite frequency
range ��� ��� ��	 � � � such that the resulting RF is responsive only to a restricted range of orientations
and spatial frequencies � . The code can be viewed as an intermediate between the Fourier wave
code, when each RF is infinitely large and responds to only one frequency and orientation, and
the retinal code, where each RF is small and responsive to all frequencies � and all orientations.
Different cortical units cover different ranges of frequencies to give a complete sampling (Li and
Atick 1994b).

It has been argued (reviewed by Simoncelli and Olshausen 2001) that the multiscale code, which
should be as good as the retinal code if the visual inputs assume gaussian statistics, is actually
better in the light of the actual non-gaussian nature of the signals. Oriented RFs have been argued
to capture the non-trivial 3rd order statistics, in particular, the third order correlation � � � � & ��� �
between signals from three image pixels � , 	 , 
 , which are not accounted for by the Gaussian statis-
tics. Previous works (Simoncelli and Olshausen 2001) argued that the cortical orientation selective
RFs match the orientation features in inputs, and that the neurons are inactive unless those matchs
happen. The code is thus argued as a sparser code, since the activities of different cells are sup-
posedly less correlated (see article SPARSE CODING IN THE PPRIMATE CORTEX). Why doesn’t
retina adopt this code? One reason could be that the cortical representation is in addition overcom-
plete, i.e., the number  of cortical units (output units

� �
) is orders of magnitude larger than the

number � of the retinal units (input units
� �

). The overcompleteness has been argued to improve
sparseness, though at the expense of the neural proliferation, by noting that cells tuned to different
image features can not be active together. However, it should be noted that if cortical activities �
depend linearly on visual input

�
, the � units are necessarily (mathematically) dependent on, or

correlated with, each other in an overcomplete representation where  � � (Li 1996). Cortical
response � depend on visual input

�
nonlinearly, by rectification, thresholding, saturation, and

normalization etc (Simoncelli and Olshausen 2001). The observed nonlinearity is unlikely to be
sufficient to achieve decorrelation. However, the nonlinearity and the overcomplete representation
are more likely to serve non-trivial cognitive computations (Li, 2002) beyond the traditional coding
considerations.

DISCUSSION

It is clear that maximizing information transmission alone is not enough to specify optimal codes.
One may prefer one code or another when considering other costs and benefits, e.g. Levy and
Baxter (1996). The retinal code has the advantage of small and identical RF shapes, involving
shorter neural wiring and easier specifications. It also has stronger correlation between output
signals than the Fourier wave codes outside the zero noise limit (both codes should have zero 2nd
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order correlation in zero noise limit), making it easier for error correction purposes. Its translation
invariance also allows an object translated laterally to induce the same pattern of neural activities
except for a change in the responding neurons. When this invariance is extended to objects moving
in depth (when images of objects change sizes), the cortical multiscale code is preferred. In this
case many different RFs are scaled and/or translated versions of each other, leading to translation
invariance within a scale and scale invariance between scales (Simoncelli et al 1992).

More significantly are optimality measures not based on information measures. For example, to
give a best estimation

��
of input

�
from

� � � � � 1 � � 1 � D , the optimal coding transform�
to minimize the estimation error �@� � & ��A� � � given output power � � � � certainly does

not satisfy infomax. Another example is the two classes of the retina ganglion cells. Whereas
Infomax principle applies well to explain the RFs of the more numerous class of retinal ganglion
cells, the P cells in monkeys or X cells in cats, another class of ganglion cells, M cells in monkeys
or Y cells in cats, have RFs that are relatively larger, color unselective, and are tuned to higher
temporal frequencies. These M cells do not extract the maximum information possible (infomax)
about input

�
, but can serve to extract the information as fast as possible (Li 1992), i.e., the temporal

outputs � � � � � & �
� 	������ � � � & � � 	�� � � � � should contain some information about

� � � � � � �
with a

shortest possible delay
� & � �

. This observation should have significant implications on how P and
M pathways should interact at later processing stages.

Information theory provides excellent means to quantify the amount of information, to design op-
timal coding for information transmission. Cognitive functions often requires selections over the
quality or modality of information, which is beyond Information Theory. Information theory is more
likely to find its application in the early stages of the sensory processing, before information is
selected or discriminated for any specific cognitive task, when general purpose information trans-
mission is the main concern. This explains the successes of information theory in the retina and
partly in the primary visual cortex, to the extent of quantitative agreement with experiments and
predictive power for new data (Dong and Atick 1995, Chen and Li 1998). Optimal sensory coding
in later stages of sensory pathways is expected to depend on cognitive tasks beyond simple infor-
mation transmission, and should require applications of alternative theories in future research.
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