
Defensive coding in MATLAB
Jeremy Badler, Ph.D.

9th January, 2020

This is not really about
defensive coding

• “Defensive coding” (officially) = protecting your programs from
incompetent or malicious user input

• BUT we still want to minimize bugs and write code others can
understand (= standards and style)

• For stimulus generation and data analysis, there are additional
considerations like measurement units and parameter logging

• MATLAB is more forgiving than standard programming languages, but
this sometimes makes bugs harder to spot

What might badly-written code look like?

General concepts

• Divide programs into logically-sound chunks, using functions if
necessary

• Make variable and function names consistent and informative

• Try not to repeat code

• Save all parameters

• Timestamp outputs to avoid overwriting

• Document what the code DOESN’T say

• Conventions in this presentation:
blue = code, green = comments, red = strings

Variables

• Make names informative and include units
• timeMS, targetSizePix, frameRateHz, screenResolutionPixPerDeg

• Captalization conventions
• variables start with lower case: fixationDurationSec
• functions have the first letter capitalized: ComputeDistribution()
• constants are in all caps: DEBUG_MODE = 1;

• Prefixes n for number and i for counter
• for iTrial = 1:nTrial,

• CamelCase vs Underscore_method
• Be consistent: I prefer CamelCase with underscores for constants

• Avoid overwriting MATLAB functions (length, which, log, …)
• Define constants only ONCE, at the top of the code

Comments

• Header comments are for users, code comments for programmers
• Comment liberally, but make them informative

x = x + 1; % add one to x (this is not a useful comment)
x = x + 1; % add one to compensate for MATLAB indexing (better)

• Uses double comments to mark section boundaries
%% initialize user parameters
%% real-time display loop

• Comment loop ends
for iTrial = 1:nTrial,

for iFrame = 1:nFrame,
<3 pages of draw code>
end % for iTrial = 1:nTrial,

end % for iFrame = 1:nFrame,

Comments and functions

• Documenting function example

function [dotXdeg, dotYdeg, colorList, nDots] = ...
GenerateDotFieldSq(squareSideDeg, dotDiamDeg, …

dotDensityPerDeg2, blackProb, debugFlag)

% generate probabilistic dot field, with checks to eliminate overlaps

% NOTE: overlap avoidance will silently fail if too many iterations
needed (currently >1E6)

% INPUT squareSideDeg = size of dot field (etc.)

% OUTPUT dotXdeg = horizontal positions of all dots (etc.)

Functions and structures

• Consider structures if you have many parameters
patient = []; % initialize as empty (not struct[]!)

patient.name = ‘John Doe’;

patient.billing = 127.00;

patient.test = [79, 75, 73; 180, 178, 177.5; 220, 201, 205];

function updatedPatient = …

AddNewDataToPatient (newData, patient)

function drawSingleFrame(stimulusParameters)

Parameters

• Define parameters up top, in structure

params.dotDiamDeg = 0.26; % base dot size

params.dotDensityPerDeg2 = 2.0; % #dots per sq deg

<set up PTB screen window, etc>

params.derived.screenCtrPix = screenCtrPix; % substructure

params.derived.programName = mfilename; % returns name of m-file

<run single trial>

save (saveFileName, ‘params’, ‘data’, ‘-append’); % save after every trial

Randomizing

• Balanced, independent or joint?
• Balanced assures all conditions are presented equally often, but can cause

issues with predictability

• Joint balanced assures parameter combinations are equally represented

• True independent will create unequal group sizes that inconvenience
statistical analysis

• Balanced independent:
• Total trials nTrials multiple of nParamA * nParamB * nParamC *……

• Use randperm() to index the matrix
randIdx = randperm(nTrials); % shuffle

paramA_TrialIdxList = rem(randIdx-1, nParamA) + 1; % vector of index values into ParamA

Randomizing continued

• Balanced joint:
• Parameter A (n=2)

• Parameter B (n=2)

• Parameter C (n=3)

• Use repmat() to create and randperm() to index the matrix

• True independent:
• “sampling with replacement”

randIdx = randi(nParams, nTrials, 1); % directly indexes your parameter

• Refresh the randomizer and save the seed!
randState = rng('shuffle'); % refresh random generator based on current time

1 2 1 2 1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2 1 1 2 2

1 1 1 1 2 2 2 2 3 3 3 3

Data logging

• Initialize a matrix of responses
• E.g., response latency, response key
• Should be in register with trial parameters!
• For variable-length data:

• Allocate extra space now and trim at end

• Write data at end of each trial (after all gfx)
• Save every trial in case of crash
• For large data:

• You can sometimes just save the random seed (e.g., 800x800x3 noise mask texture)
• Consider separate matrices:
eval(sprintf(‘trialDataMatrix%.3d = currentTrialDataMatrix;’, iTrial)); % e.g. trialDataMatrix006

• Convention: longest dimension as rows (trial number or sample time)

Optimization

• In the PTB draw loop, all operations need to
be completed within one frame (~16 ms)

• Modern computers are fast and forgiving, but
certain operations still take a lot of time:
• Initializing new variables
• First-time function calls
• Concatenating arrays and matrices
• Creating textures
• Writing to disk

• Move as much as possible out of the draw
loop!

Optimization example

randState = rng;
% save current state of random number generator

xyPosPix = stepSizePix * cumsum(randn(nFrames, 2));
% generate positions for 2-D random walk

noiseCoreTex = Screen('MakeTexture', winPtr, noiseCore);
% create an offscreen texture using a previously created matrix

t0 = GetSecs; t1=t0; t2=t0; t3=t0;
% initialize the timer variables we will use for consistency checks

Priority(MaxPriority(winPtr));
% set maximum execution priority

Optimization example continued

%% now we are ready to start the display loop

vbl=Screen('Flip', winPtr); % do initial flip to synchronize

t0 = vbl; % save starting time

for iFrame = 1:nFrame,
Screen('DrawDots', winPtr, xyPosPix(iFrame,:), dotSizePix);
Screen('DrawingFinished', winPtr);
<handle user input, etc. here if necessary>
vbl=Screen('Flip', winPtr, vbl + (waitFrames-0.5)*ifi);

end % for iFrame = 1:nFrame,

t1 = GetSecs - t0; % elapsed time of all frames

Protecting from users

• Check inputs
if isempty(userInput), <execute some contingency>; end
if userInput < minAllowed || userInput > maxAllowed,

<execute some contingency>; end
if numel(userInputString) > maxAllowed, userInputString =

userInputString(1:maxAllowed); end

• Function argument counts
function MyFun(criticalInput1, criticalInput2, optionalInput3)
% remember to put your help/instruction text here!
if nargin < 3, input3 = <some default value>; end
if nargin < 2, help (mfilename); return; end % displays help & aborts execution

Protecting from everyone

• Sometimes code crashes
• Because of users, programmers or computers having a bad day

• This is annoying in Psychtoolbox because of screen windows, etc.

try

< do complicated psychtoolbox stuff>

catch

Priority(0); % ramp down the priority if it was elevated

ShowCursor; % restore the cursor if it was hidden

ListenChar(0); % stop character checking and reenable keyboard echos

sca; fclose all; % close any open windows, textures, files

rethrow(lasterror); % display the error that caused the crash

end % could also save data here, but you don’t need to because you save every trial, right?

Miscellaneous tips

• Indent loops and conditionals!
• Avoid if possible break and continue in loops, as they make it difficult to

check flow control
• Consider using a while loop: while iTrials <= nTrials && ~abortCondition,

• Use parentheses for mathematical expressions
• Break long lines with ellipsis (…)
• Don’t be afraid to use spaces between operators for readability
• Use a leading zero if necessary when writing decimals

• x = 0.5;

• saveFilename = sprintf('%s_%s_%s', mfilename, subjCode, datestr(now,
30)); % generate a safe file name

Acknowledgements

• Unakafova, V. A. (2017). Best practices for
scientific computing and MATLAB programming
style guidelines. 10.13140/RG.2.2.32109.18408.

• Wilson, G., et al. ”Best practices for scientific
computing.” PLoS Biol 12.1 (2014): e1001745. (as
cited in Unakafova)

• Johnson, R., ”Matlab programming style
guidelines.” USA Datatool. Version 1 (2002) 2.1
updated version at
http://www.datatool.com/downloads/MatlabStyle
2%20book.pdf (as cited in Unakafova)

• Giovanni Fusco, Smith-Kettlewell Eye Research
Institute, San Francisco

http://www.datatool.com/downloads/MatlabStyle2%20book.pdf

Good Luck!

