Contents

1	Approach and scope										
	1.1	The approach									
		1.1.1	Data, models, and theory	1							
		1.1.2	From physiology to behavior and back via theory and models	3							
	1.2	The pro	oblem of vision	4							
		1.2.1	.2.1 Visual tasks and subtasks								
		1.2.2	Vision seen through visual encoding, selection, and decoding	7							
		1.2.3	Visual encoding in retina and V1	10							
		1.2.4	Visual selection and V1's role in it	12							
		1.2.5	Visual decoding and its associated brain areas	14							
2	A very brief introduction of what is known about vision experimental										
	2.1	Neurons, neural circuits, and brain regions									
		2.1.1	Neurons, somas, dendrites, axons, and action potentials	16							
		2.1.2	A simple neuron model	17							
		2.1.3	Random processes of action potential generation in neurons	18							
		2.1.4	Synaptic connections, neural circuits, and brain areas	18							
		2.1.5	Visual processing areas along the visual pathway	19							
	2.2	Retina		22							
		2.2.1	Receptive fields of retinal ganglion cells	22							
		2.2.2	Sensitivity to sinusoidal gratings, and contrast sensitivity curves	25							
		2.2.3	Responses to spatiotemporal inputs	30							
		2.2.4	P and M cells	34							
		2.2.5	Color processing in the retina	35							
		2.2.6	Spatial sampling in the retina	37							
		2.2.7	LGN on the pathway from the retina to V1	38							
	2.3	V1		39							
		2.3.1	The retinotopic map	39							
		2.3.2	The receptive fields in V1—the feature detectors	40							
		2.3.3	Orientation selectivity, bar and edge detectors	41							
		2.3.4	Spatial frequency tuning and multiscale coding	42							
		2.3.5	Temporal and motion direction selectivity	43							
		2.3.6	Ocular dominance and disparity selectivity	46							
		2.3.7	Color selectivity of V1 neurons	48							
		2.3.8	Complex cells	48							
		2.3.9	The influences on a V1 neuron's response from contextual stimuli outside the								
			receptive field	52							

viii | Contents

		2.4	Higher visual areas				
			2.4.1	Two processing streams	54		
			2.4.2	V2	55		
			2.4.3	MT (V5)	57		
			2.4.4	V4	59		
			2.4.5	IT and temporal cortical areas for object recognition	60		
		2.5	Eye m	ovements, their associated brain regions, and links with attention	60		
			2.5.1	Close link between eye movements and attention	62		
		2.6	Top-do	own attention and neural responses	63		
		2.7	Behav	ioral studies on vision	65		
	3	The	efficie	ent coding principle	67		
		3.1	A brief introduction to information theory				
			3.1.1	Measuring information	68		
			3.1.2	Information transmission, information channels, and mutual information	70		
			3.1.3	Information redundancy, representation efficiency, and error correction	74		
		3.2	Formu	lation of the efficient coding principle	77		
			3.2.1	An optimization problem	77		
			3.2.2	Exposition	79		
		3.3	Efficie	nt neural sampling in the retina	83		
			3.3.1	Contrast sampling in a fly's compound eye	83		
			3.3.2	Spatial sampling by receptor distribution on the retina	85		
			3.3.3	Optimal color sampling by the cones	89		
		3.4	Efficie	nt coding by visual receptive field transforms	90 -		
_			3.4.1	The general analytical solution for efficient coding of Gaussian signals	91		
		3.5	study: stereo coding in V1 as an efficient transform of inputs in the dimension of	of			
			oculari	ity	96		
			3.5.1	Principal component analysis K_o	98		
			3.5.2	Gain control	102		
			3.5.3	Contrast enhancement, decorrelation, and whitening in the high S/N regime	105		
			3.5.4	Many equivalent solutions of optimal encoding	106		
			3.5.5	Smoothing and output correlation in the low S/N region	108		
			3.5.6	A special, most local, class of optimal coding	110		
			3.5.7	Adaptation of the optimal code to the statistics of the input environment	110		
			3.5.8	A psychophysical test of the adaptation of the efficient stereo coding	117		
			3.5.9	How might one test the predictions physiologically?	120		
	_	— 3.6 The efficient receptive field transforms in space, color, time, and scale in the r					
1			V1		120		
r			3.6.1	Efficient spatial coding in the retina	123		
			3.6.2	Efficient coding in time	134		
			3.6.3	Efficient coding in color	138		
			3.6.4	Coupling space and color coding in the retina	142		
			3.6.5	Spatial coding in V1	147		

Lecture 2, 3.4 - 3.5.9 April 29

Lecture 3, 3.6.1 to 3.6.4

May 6

Lecture 1, 3.1-3.4

April 22

Lecture 5, 3.7 - 4.3

May 20

Lecture 6: 5.1 to 5.3.1

May 27

154 3.6.6 Coupling the spatial and color coding in V1 3.6.7 Coupling spatial coding with stereo coding in V1—coding disparity 161 3.6.8 Coupling space and time coding in the retina and V1 164 3.6.9 V1 neurons tuned simultaneously to multiple feature dimensions 167 3.7 The efficient code, and the related sparse code, in low noise limit by numerical simulations 170 3.7.1 Sparse coding 171 173 3.8 How to get efficient codes by developmental rules and unsupervised learning 3.8.1 Learning for a single encoding neuron 174 3.8.2 Learning simultaneously for multiple encoding neurons 175 V1 and information coding 177 Pursuit of efficient coding in V1 by reducing higher order redundancy 177 Higher order statistics contain much of the meaningful information about visual 4.1.1 178 objects 4.1.2 Characterizing higher order statistics 180 4.1.3 Efforts to understand V1 neural properties from the perspective of reducing higher 183 order redundancy Higher order redundancy in natural images is only a very small fraction of the 4.1.4 185 total redundancy 4.2 Problems in understanding V1 solely based on efficient coding 186 Multiscale and overcomplete representation in V1 is useful for invariant object recognition 4.3 from responses of selected neural subpopulations 187 Information selection, amount, and meaning 188 The V1 hypothesis—creating a bottom-up saliency map for preattentive selection and segmentation 189 5.1 Visual selection and visual saliency 189 5.1.1 Visual selection—top-down and bottom-up selections 189 A brief overview of visual search and segmentation-behavioral studies of 195 saliency 5.1.3 Saliency regardless of visual input features 197 A quick review of what we should expect about saliencies and a saliency map 200 The V1 saliency hypothesis 201 5.2.1 Detailed formulation of the V1 saliency hypothesis 202 5.2.2 Intracortical interactions in V1 as mechanisms to compute saliency 204 5.2.3 206 Reading out the saliency map 5.2.4 207 Statistical and operational definitions of saliency 208 5.2.5 Overcomplete representation in V1 for the role of saliency 5.3 A hallmark of the saliency map in V1—attention capture by an ocular singleton which is barely distinctive to perception 209 5.3.1 Food for thought: looking (acting) before or without seeing 215 5.4 Testing and understanding the V1 saliency map in a V1 model 215 5.4.1 The V1 model: its neural elements, connections, and desired behavior 216 222 5.4.2 Calibration of the V1 model to biological reality

Contents | ix

Lecture 7/8, 5.4.1-5.4.7 June 3/17th Contents Computational requirements on the dynamic behavior of the model 5.4.3 5.4.4 Applying the V1 model to visual search and visual segmentation 5.4.5 Other effects of the saliency mechanisms—figure-ground segmentation and the medial axis effect 5.4.6 Input contrast dependence of the contextual influences 5.4.7 Reflections from the V1 model 5.5 Additional psychophysical tests of the V1 saliency hypothesis Lecture 9, The feature-blind "auction"—maximum rather than summation over features 5.5.1 5.5.1 -5.5.5 5.5.2 The fingerprints of colinear facilitation in V1 5.5.3 The fingerprint of V1's conjunctive cells June 24 5.5.4 A zero-parameter quantitative prediction and its experimental test 5.5.5 Reflections—from behavior back to physiology via the V1 saliency hypothesis 5.6 The roles of V1 and other cortical areas in visual selection 5.6.1 Using visual depth feature to probe contributions of extrastriate cortex to atten-Lecture 10, tional control 5.6 - 5.75.6.2 Salient but indistinguishable inputs activate early visual cortical areas but not the parietal and frontal areas July 1 5.7 V1's role beyond saliency—selection versus decoding, periphery versus central vision Implications for the functional roles of visual cortical areas based on their repre-5.7.1 sentations of the visual field 5.7.2 Saliency, visual segmentation, and visual recognition 5.8 Nonlinear V1 neural dynamics for saliency and preattentive segmentation Supplementary? 5.8.1 A minimal model of the primary visual cortex for saliency computation Dynamic analysis of the V1 model and constraints on the neural connections 5.8 5.8.2 Extensions and generalizations 5.8.3 5.9 Appendix: parameters in the V1 model 6 Visual recognition as decoding 6.1 Definition of visual decoding Some notable observations about visual recognition

6.3.5

coding

Lecture 11, 6.1 to 6.3.3.

July 8th

315 315 317 Recognition is after an initial selection or segmentation 317 6.2.1 6.2.2 Object invariance 318 6.2.3 Is decoding the shape of an object in the attentional spotlight a default routine? 319 6.2.4 Recognition by imagination or input synthesis 321 6.2.5 Visual perception can be ambiguous or unambiguous 323 6.2.6 Neural substrates for visual decoding 325 6.3 Visual decoding from neural responses 326 327 6.3.1 Example: decoding motion direction from MT neural responses 6.3.2 Example: discriminating two inputs based on photoreceptor responses 330 6.3.3 Example: discrimination by decoding the V1 neural responses 332 6.3.4 Example: light wavelength discrimination by decoding from cone responses 334

Perception, including illusion, of a visual feature value by neural population de-

225

227

247

250

250

252

252

257

260

266

269

269

271

275

279

281

282

285

286

299

312

313

338

Lecture 12 6.3.4 to 6.3.8

				Contents	xi
			6.3.6	Poisson-like neural noise and increasing perceptual performance for stronger visual inputs	r 345
			6.3.7	Low efficiency of sensory information utilization by the central visual system	345
			6.3.8	Transduction and central inefficiencies in the framework of encoding, attentional	l
				selection, and decoding	346
_ecture 13,		6.4	Bayesia	an inference and the influence of prior belief in visual decoding	347
6.4			6.4.1	The Bayesian framework	348
			6.4.2	Bayesian visual inference is highly complex unless the number and the dimen-	-
July 22rd				sions of possible percepts are restricted	349
' <u>-</u>			6.4.3	Behavioral evidence for Bayesian visual inference	350
_ecture 14, ——	\rightarrow	6.5	The init	ial visual recognition, feedforward mechanisms, and recurrent neural connections	361
6.5 and advanced	and advanced			The fast speed of coarse initial recognition by the primate visual system	361
materials			6.5.2	Object detection and recognition by models of hierarchical feedforward networks	361
naterials			6.5.3	Combining feedforward and feedback intercortical mechanisms, and recurrent	t
July 29				intracortical mechanisms, for object inference	363
	7	Epilo	ogue		364
		7.1	Our ign	orance of vision viewed from the perspective of vision as encoding, selection, and	t
			decodir	ng	364
		7.2	Compu	tational vision	365
Referen			ces		367
	Inde	ex			380