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Exercises

Chapter 2

1. Use the rate given by equation 2.1 with �
0 � 50 Hz and

D
����� ��� cos

	
2 
 ��� � 20 ms

�
140 ms � exp 
 � �

60 ms � Hz

to predict the response of a neuron of the electrosensory lateral-line
lobe to a stimulus. The above equation is an approximation for the
linear kernel obtained from the spike-triggered average shown in
figure 1.9. Use an approximate Gaussian white noise stimulus con-
structed by choosing a stimulus value every 10 ms ( � t � 10 ms)
from a Gaussian distribution with zero mean and variance � 2

s � � t,
with � 2

s � 10. Compute the firing rate over a 10 s period. From
the results, compute the firing rate-stimulus correlation function
Q � s ����� . Using equation 2.6, compare Q � s � � ��� � � 2

s with the kernel
D
�����

given above.

2. MATLAB® file �������������! contains the data described in exercise 8 of
chapter 1. Use the spike-triggered average (calculated in that exer-
cise) to construct a linear kernel and use it in equation 2.1 to provide
a model of the response of the H1 neuron. Choose �

0 so that the
average firing rate predicted by the model in response to the stim-
ulus used for the data matches the actual average firing rate. Use
a Poisson generator with the computed rate to generate a synthetic
spike train from this linear estimate of the firing rate in response to
the stimulus "# %$&� . Plot examples of the actual and synthetic spike
trains. How are they similar and how do they differ? Plot the auto-
correlation function of the actual and the synthetic spike trains over
the range 0 to 100 ms. Why is there a dip at a lag of 2 ms in the
autocorrelation of the actual spike train? Is there a dip for the syn-
thetic train too? Plot the interspike interval histogram for both spike
trains. Why is there a dip below 6 ms in the histogram for the ac-
tual spike train? What are the coefficients of variation for the two
spike trains and why might they differ? (Based on a problem from
Sebastian Seung).

3. MATLAB® file �(')��*����%�( contains the responses of a cat LGN cell to
two-dimensional visual images (these data are described in Kara, P,
Reinagel, P, & Reid, RC (2000) Low response variability in simultane-
ously recorded retinal, thalamic, and cortical neurons. Neuron 30:803-
817 and were kindly provided by Clay Reid). In the file, �(+),.-� �" is a
vector containing the number of spikes in each 15 / 6 ms bin, and "# %$0�
contains the 32767, 16 1 16 images that were presented at the cor-
responding times. Specifically, "# �$0�3254�68796: �; is the stimulus pre-
sented at the coordinate 25496<7%; at time-step  . Note that "# %$0� is an$=-� �� array that must to be converted into >.+(,.?A@CB using the com-
mand "# %$0�AD.>�+(,.?�@CBE2�"# �$&�F; in order to be manipulated within MAT-
LAB® . Calculate the spike-triggered average images for each of the
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12 time steps before each spike and show them all (using the $0�%� � B�".�
command). Note that in this example, the time bins can contain more
than one spike, so the spike-triggered average must be computed by
weighting each stimulus by the number of spikes in the correspond-
ing time bin, rather than weighting it by either 1 or 0 depending
on whether a spike is present or not. In the averaged images, you
should see a central receptive field that reverses sign over time. By
summing up the images across one spatial dimension, produce a fig-
ure like that of figure 2.25C. (Based on a problem from Sebastian
Seung.)

4. For a Gaussian random variable x with zero mean and standard de-
viation � , prove that

�
xF

���
x
��� � � � 2 � F � ��� x

�����
where

�
is a constant, F is any function, F � is its derivative,

�
xF

�	�
x
��� � 


dx
1�
2 
�� exp

	 � x2

2 � 2 � xF
���

x
���

and similarly for
�
F � �	� x

���
. This is the basis of the identity 2.64,

which can be derived by extending this basic result first to multi-
variate functions and then to functionals.

5. Using the inverses of equations 2.15 and 2.17


 � 

0 � exp

�
X ��� � � 1 � and a � � 180 � � 
 0 � 
 � Y

� 
 
 �
map from cortical coordinates back to visual coordinates and deter-
mine what various patterns of activity across the primary visual cor-
tex would “look like”. Ermentrout and Cowan (Ermentrout, GB, &
Cowan, J (1979) A mathematical theory of visual hallucination pat-
terns. Biological Cybernetics 34:137–150) used these results as a basis
of a mathematical theory of visual hallucinations. The figure gen-
erated by the MATLAB® program �('(������� shows an illustrative ex-
ample. This program simulates a plane sine wave of activity across
the primary visual cortex with a specified spatial frequency and di-
rection, and then maps it back into retinal coordinates to see what
visual pattern would be perceived due to this activity. Consider vari-
ous other patterns of activity and show the visual hallucinations they
would generate.

6. Perform the integrals in equations 2.31 and 2.32 for the case � x �� y � � to obtain the results

Ls � A
2

exp
	 � � 2 � k2 � K2 �

2 � � cos
��� ��� �

exp � � 2kK cos
���8� �

� cos
��� � � �

exp � � � 2kK cos
���8� ��� /
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and

Lt
�
t
� � � 6 ����� � � 2 � 4

� 2��� 2 � � 2 � 4 cos
���

t ��� � /
with

� � 8 arctan 
 � � � � arctan
	

2
�
� � � 
 /

From these results, verify the selectivity curves in figures 2.15 and
2.16. In addition, plot � as a function of

�
.

7. Numerically compute the spatial part of the linear response of a sim-
ple cell with a separable space-time receptive field to a sinusoidal
grating, as given by equation 2.31. Use a stimulus oriented with� � 0. For the spatial receptive field kernel, use equation 2.27 with� x � � y � 1 � , � � 0, and 1 � k � 0 / 5 � . Plot Ls as a function of K
taking � � 0 and A � 50. This determines the spatial frequency se-
lectivity of the cell. What is its preferred spatial frequency? Plot Ls
as a function of � taking 1 � K � 0 / 5 � and A � 50. This determines
the spatial phase selectivity of the cell. What is its preferred spatial
phase?

8. Consider a complex cell with the spatial part of its response given by
L2

1 � L2
2 , where L1 and L2 are linear responses determined by equa-

tion 2.31 with kernels given by equation 2.27 with � x � � y � 1 � , and
1 � k � 0 / 5 � ; and with

� � 0 for L1 and
� ��� 
 � 2 for L2. Use a stim-

ulus oriented with
� � 0. Compute and plot L2

1 � L2
2 as a function

of K taking � � 0 and A � 5. This determines the spatial frequency
selectivity of the cell. Compute and plot L2

1 � L2
2 as a function of� taking 1 � K � 0 / 5 � and A � 5. This determines the spatial phase

selectivity of the cell. Does the spatial phase selectivity match what
you expect for a complex cell?

9. Consider the linear temporal response for a simple or complex cell
given by equation 2.32 with a temporal kernel given by equation 2.29
with 1 � � � 15 ms. Compute and plot Lt

�
t
�

for
� � 6 
 � s. This de-

termines the temporal response of the simple cell. Do not plot the
negative part of Lt

�
t
�

because the cell cannot fire at a negative rate.
Compute and plot L2

t
�
t
�

for
� � 6 
 � s. This determines the tempo-

ral response of a complex cell. What are the differences between the
temporal responses of the simple and complex cells?

10. Compute the response of a model simple cell with a separable space-
time receptive field to a moving grating

s
�
x
�

y
�
t
� � cos

�
Kx � �

t
� /

For Ds, use equation 2.27 with � x � � y � 1 � , � � 0, and 1 � k � 0 / 5 � .
For Dt, use equation 2.29 with 1 � � � 15 ms. Compute the linear
estimate of the response given by equation 2.24 and assume that the
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actual response is proportional to a rectified version of this linear
response estimate. Plot the response as a function of time for 1 � K �
1 � k � 0 / 5 � and

� � 8 
 � s. Plot the response amplitude as a function
of

�
for 1 � K � 1 � k � 0 / 5 � and as a function of K for

� � 8 
 � s.

11. Compute the response of a model complex cell to the moving grating

s
�
x
�

y
�
t
� � cos

�
Kx � �

t
� /

The complex cell should be modeled by squaring the unrectified lin-
ear response estimate of a simple cells with a spatial receptive field
given by equation 2.27 with � x � � y � 1 � , � � 0, and 1 � k � 0 / 5 � ,
and adding this to the square of the unrectified linear response of
a second simple cell with identical properties except that its spa-
tial phase preference is

� � � 
 � 2 instead of
� � 0. Both linear

responses are computed from equation 2.24. For both of these, use
equation 2.29 with 1 � � � 15 ms for the temporal receptive field. Plot
the complex cell response as a function of time for 1 � K � 1 � k � 0 / 5 �
and

� � 8 
 � s. Plot the response amplitude as a function of
�

for
1 � K � 1 � k � 0 / 5 � and as a function of K for

� � 8 
 � s.

12. Construct a model simple cell with the nonseparable space-time re-
ceptive field described in the caption of figure 2.21B. Compute its
response to the moving grating

s
�
x
�

y
�
t
� � cos

�
Kx � �

t
� /

Plot the amplitude of the response as a function of the velocity of
the grating,

� � K, using
� � 8 
 � s and varying K to obtain a range

of both positive and negative velocity values (use negative K values
for this). Show that the response is directionally selective.

13. Construct a model complex cell that is disparity tuned but insensi-
tive to the absolute position of a grating. The complex cell is con-
structed by summing the squares of the unrectified linear responses
of two simple cells, but disparity effects are now included. For this
exercise, we ignore temporal factors and only consider the spatial
dependence of the response. Each simple cell response is composed
of two terms that correspond to inputs coming from the left and right
eyes. Because of disparity, the spatial phases of the image of a grat-
ing in the two eyes, � L and � R, may be different. We write the
spatial part of the linear response estimate for a grating with the pre-
ferred spatial frequency (k � K) and orientation (

� � � � 0) as

L1 � A
2
�
cos

� � L
� � cos

� � R
� � �

assuming that
� � 0 (this equation is a generalization of equa-

tion 2.34). Let the complex cell response be proportional to L2
1 � L2

2 ,
where L2 is similar to L1 but with the cosine functions replaced by
sine functions. Show that the response of this neuron is tuned to the
disparity, � L � � R, but is independent of the absolute spatial phase
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of the grating, � L � � R . Plot the response tuning curve as a function
of disparity. (See DeAngelis, GC, Ohzawa, I, & Freeman, RD (1991)
Depth is encoded in the visual cortex by a specialized receptive field
structure. Nature 352:156–159.)

14. Determine the selectivity of the LGN receptive field of equation 2.45
to spatial frequency by computing its integrals when multiplied by
the stimulus

s � cos
�
Kx

�
for a range of K values. Use � c � 0 / 3 � , � s � 1 / 5 � , B � 5, 1 � � � 16
ms, and 1 � � � 64 ms, and plot the resulting spatial frequency tuning
curve.

15. Construct the Hubel-Wiesel model of a simple-cell spatial receptive
field, as depicted in figure 2.27A. Use difference-of-Gaussian func-
tions (equation 2.45) to model the LGN receptive fields. Plot the spa-
tial receptive field of the simple cell constructed by summing the spa-
tial receptive fields of the LGN cells that provide its input. Compare
the result of summing appropriately placed LGN center-surround
receptive fields (figure 2.27A) with the results of an appropriately
adjusted Gabor filter model of the simple cell that uses the spatial
kernel of equation 2.27.

16. Construct the Hubel-Wiesel model of a complex cell, as depicted in
figure 2.27B. Use Gabor functions (equation 2.27) to model the sim-
ple cell responses, which should be rectified before being summed.
Plot the spatial receptive field of the complex cell constructed by
summing the different simple cell responses. Compare the responses
of a complex cell constructed by linearly summing the outputs of
simple cells (figure 2.27B) with different spatial phase preferences
with the complex cell model obtained by squaring and summing two
unrectified simple cell responses with spatial phases 90 � apart as in
exercise 8.


