
0.1 Reading for information theory

Please read this brief introduction to information theory. After reading, please mark out where it is

the easiest and most difficult to understand.

0.1.1 Measuring information amount

One is presumably familiar with the computer terminology “bits”. For instance, an integer between

0-255 needs 8 bits to represent or convey it, so, the integer 15 is represented by 8 binary digits as

00001111. Before you know anything about that integer, you may know that its can be equally likely

any one integer from 0 up to 255, i.e., it has a probability of P (n) = 1/256 to be any n ∈ 0 − 255.

However, once someone told you the exact number, say n = 10, this integer has a probability

P (n) = 1 for n = 10 and P (n) = 0 otherwise, and you need no more bits of information to know

more about this integer.

Note that log2 256 = 8, and log2 1 = 0. That is, before you know which one among the 256

possibilities n is, it has

− log2 P (n) = log2 256 = 8 bits (1)

of information missing from you. Once you know n = 10, you miss no bits of information since

− log2 P (n = 10) = 0.

Similarly, if you flip a coin, and each flip gives head or tail with equal probability, then there

is only one bit of information regarding the outcome of the coin flipping, since there is a probability

P = 1/2 for either head or tail, giving − log2 P (head) = − log2 P (tail) = 1 bit. Suppose that you

can get information about integer n ∈ [0, 255] by coin flipping. Say the first coin flip says by head

or tail whether n ∈ 0 − 127 or n ∈ 128 − 255. After this coin flip, let us say that it says n ∈ 0 − 127.

Then you flip the coin again, and this time to determine whether n ∈ 0 − 63 or n ∈ 64 − 127, and

then you flip again to see whether the number is in the first or second 32 integers of either interval,

and so on. And you will find that you need exactly 8 coin flips to determine the number exactly.

Thus, an integer between 0-255 needs 8 bits of information. Here, one bit of information means an

answer to one “yes-no” question, and n bits of information means answers to n “yes-no” questions.

Now let us say that we are flipping a special coin with P (head) = 9/10 and P (tail) = 1/10. So

before the coin is even flipped, you can already guess that the outcome is most likely to be “head”.

So the coin flipping actually tells you less information than you would need if the outcomes were

equally likely. For instance, if the outcome is “head”, then you would say, well, that is what I

guessed, and this little information from the coin flip is almost useless except to confirm your

guess, or useful to a smaller extent. If the coin flip gives “tail”, it surprises you, and hence this

information is more useful. More explicitly,

− log2 P (head) = − log2 9/10 ≈ 0.152 bit

− log2 P (tail) = − log2 1/10 ≈ 3.3219 bit

So, a outcome of “head” gives you only 0.152 bit of information, but a “tail” gives 3.3219 bits. If

you do many coin flips, on average each flip gives you

P (head)(− log2 P (head)) + P (tail)(− log2 P (tail)) = 0.9 · 0.152 + 0.1 · 3.3219 = 0.469 bit (2)

of information, less than the one bit of information if head and tail are are equally likely. More

generally, the average amount of information for probability distribution P (n) for variable n is

I = −
∑

n

P (n) log2 P (n) bits (3)
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The formula for information is the same as that for entropy, which we denote by H(n) as the en-

tropy on variable n. When signals are represented as discrete quantities, we often use entropy H

and information I inter-changably to mean the same thing.

In the coin flip example, the amount of information is higher when the head and tail occur

equally probable (1 bit), than when it is not (e.g., 0.469 bit). In general, the amount of entropy

or information on variable n is more when the distribution P (n) is more evenly distributed, and

most in amount when P (n) = constant, i.e., exactly evenly distributed. So if variable n can take

N possibilities, the most amount of information is I = log2 N bits, hence 8 bits for an integer n ∈
[0, 256]. Hence, a more evenly distributed P (n) means more varibility in n, or more randomness,

or more ignorance about n before one knows its exact value.

0.1.2 Information transmission and information channels

Let a signal S be transmitted via some channel to a destination giving output O. The channel can

have some noise, and let us assume

O = S + N (4)

So for instance, S can be the input at the sensory receptor, and O can be the output when it is

received at a destination neuron. Before you receive O, all you have is the expectation that S has a

probability distribution PS(S). So you have

H(S) = −
∑

S

PS(S) log2 PS(S) bits (5)

of ignorance or missing information about S. Let us say that you also know the channel well

enough to know the probability distribution PN (N) for the noise N . Then you receive a signal

O, and you can have a better guess on S, as following a probability distribution P (S|O), which

is the conditional probability of S given O. As you can imagine, P (S|O) must have a narrower

distribution than PS(S). For instance, if you know originally that S is between −10 to 10, and you

know that the noise is mostly N ∈ −1, 1, and if you received an O = 5, then you can guess that

S ∈ (4, 6). So your guess on S has narrowed down from (−10, 10) to (4, 6). If S can only take on the

21 integer values (for instance), you originally had about log2 21 = 4.4 bits of information missing.

Now given O, you have only about log2 3 = 1.59 bits of information missing from you. So given

output O, you can guess what S is to some extent, though not as good as if you received S directly.

The amount of information still missing is the conditional entropy

H(S|O) ≡ −
∑

S

P (S|O) log2 P (S|O) (6)

= 1.59 bits in the example above (7)

which should be much small than −∑

S PS(S) log2 PS(S) which in the above example is 4.4 bits.

So the amount of information O tells you about S is then, for this particular value of output O,

H(S) − H(S|O) = [−
∑

S

PS(S) log2 PS(S)] − [−
∑

S

P (S|O) log2 P (S|O)] (8)

= 4.4 − 1.59 = 2.8 bits, in the example above

The first and second terms are the amount of information missing about S before and after, respec-

tively, knowing O.

Each input S gives a conditional probability distribution P (O|S) (which is probability of O

given S) of the output O. Assuming that the noise N is independent of S, we know that O = S +N
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should differ from S by an amount dictated by the noise which follows a probability PN (N), hence

P (O|S) = PN (O − S), i.e., the probability that O occurs given S is equal to the probability PN (N =

O − S) that the noise value N = O − S occures. In different trials, you will receive many different

output signals O, arising from randomly drawn inputs S from its probability distribution P (S).

Hence, over all trials, the overall probability distribution of PO(O), which is called the marginal

distribution, can be obtained by weighted summation of the conditional probability P (O|S) by its

occurrance weight P (S), i.e.,

PO(O) =
∑

S

PS(S)P (O|S) =
∑

S

PS(S)PN (O − S). (9)

So, when averaged over all outputs O, the information that O contains about S is obtained simply

by averaging the quantity in equation (8) by probability PO(O), as

I(O; S) ≡ H(S) −
∑

O

PO(O)H(S|O)

= [−
∑

S

PS(S) log2 PS(S)] − [−
∑

O,S

P (O)P (O|S) log2 P (S|O)]

= [−
∑

S

PS(S) log2 PS(S)] − [−
∑

O,S

P (O, S) log2 P (S|O)]

Here P (O, S) = PO(O)P (S|O) is the joint probability distribution of O and S. If an information

channel transmits I(O; S) bits of information from source S to output O per unit time, then this

channel is said to have a capacity of at least I(O; S) bits per unit time.

A particular useful example is when S and N are both gaussian,

P (S) =
1√

2πσs

e−S2/(2σ2

s
) P (N) =

1√
2πσn

e−N2/(2σ2

n
) (10)

with zero means and variances σ2
s and σ2

n respectively. Then,

PO(O) =

∫

dSP (S)P (O|S) ∝
∫

dSe−S2/(2σ2

s
)e−(O−S)2/(2σ2

n
) (11)

=
1

√

2π(σ2
s + σ2

n)
e−O2/(2(σ2

s
+σ2

n
)) (12)

≡ 1√
2πσo

e−O2/(2σ2

o
) (13)

Hence, O is also a gaussian random variable, with zero mean and variance σ2
s +σ2

n. It can be shown

that entropy of gaussian signals is, within a constant, the log of standard deviation of the signal.

For example, H(S) =
∫

dSP (S) log2 P (S) = log2 σs + constant. Then, the amount of information in

O about S is

I(O; S) = H(S) − H(S|O) (14)

= H(O) − H(O|S) = H(O) − H(N) (15)

=
1

2
log2(1 +

σ2
s

σ2
n

) = log2

σo

σn
, (16)

which depends on the signal-to-noise ratio σ2
s/σ2

n. Note that we have equated H(N) = H(O|S),

and H(S) − H(S|O) = H(O) − H(O|S) (see below).

Equation (16) gives an intuitive understanding of the mutual information I(O; S) for gaussian

signals. Imagine an output signal O which can vary within a range σo, and we discretize it into
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σo

σn

values, with quantization step size σn determined by the size of the noise. When each of the
σo

σn

discrete values is equally likely to occur, the information provided by each discrete value is

log2
σo

σn

= I(O; S) — naturally, as O, having a range of σo, conveys information about S with a

resolution of σn.

0.1.3 Mutual information, information redundancy, and error correction

One can say that once O is known, one knows something about S. This means O and S share some

information, whose amount is exactly I(O; S), which is called mutual information. The difference

between O and S is caused by noise, and that is the information not shared between S and O.

Hence, this mutual information is symmetric between O and S,

I(O; S) = I(S; O) =
∑

O,S

P (O, S) log2

P (O, S)

P (S)P (O)
(17)

This symmetry is the reason why we equated H(S) − H(S|O) = H(O) − H(O|S) in equation (15).

We can use this result in another situation where information is shared between nearby pixels

in images. Let S1 and S2 be the image intensities in two nearby pixels of an image. Normally, these

two intensities are likely to be similar in most natural images. Hence, if you know S1, you can al-

ready guess something about S2. Or, P (S2|S1) 6= P (S2), so S1 and S2 are not independent variables.

P (S2|S1) usually has a narrower distribution than P (S2). So we say that information provided by

S1 and S2 are somewhat redundant, although information provided by S2 is not exactly the same

as that by S1. When there is information redundancy, we have H(S1)+ H(S2) > H(S1, S2), i.e., the

summation of the amount of information provided by S1 and S2 separately is larger than the infor-

mation contained by the two signals together. Then the amount of mutual information between S1

and S2 is

I(S1; S2) = H(S1) + H(S2) − H(S1, S2) (18)

In general, given N signals S1, S2, ..., SN ,

∑

i

H(Si) ≥ H(S1, S2, ..., SN ) (19)

with equality when all S’s are independent or when there is no redundancy. One may quantify the

degree of redundancy by

Redundancy = 1 − H(S1, S2, ..., SN )/[
N

∑

i=1

H(Si)] (20)

which takes a value between 0 and 1, with 0 meaning no redundancy and 1 meaning complete

redundancy (which will not occur in reality unless N → ∞ and Si = S1).

Redundancy exists in many natural information representation such as natural images or nat-

ural languages (represented as a string of letters, and the nearby letters are correlated). When infor-

mation is represented redundantly, we say that the representation is not efficient. In our example,

if
∑

i H(Si) = 100 bits > H(S1, S2, ..., SN ) = 50 bits, it is not efficient to use 100 bits to represent 50

bits of information. Sending the signals S ≡ (S1, S2, ..., SN ) (per unit time) through an information

channel in this form would require a channel capacity of at least 100 bits per unit time. Shan-

non and Weaver (1949) showed that theoretically, all the information (of amount H(S1, S2, ..., SN ))

about S ≡ (S1, S2, ..., SN ) could be faithfully transmitted through a channel of a capacity of only

H(S1, S2, ..., SN ) (e.g., 50 bits) per unit time, by encoding S into some other form S
′ = f(S), where
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f(.) is an (invertable) encoding transform. In such a case, S′ would be a more efficient representa-

tion of the original information in S, and the information channel would be more efficiently used.

Redundancy is useful for the purpose of error correction. In other words, while efficient

coding or representation of signals may save information storage space or information channel

capacity, it also reduces or removes the ability to recover information in the face of error. For

instance, given a sentence conveyed noisily as “I lik. .o invite y.u f.r din.er” (in which each “.”

indicates some missing letter(s)), one can recover the actual sentence “I like to invite you for dinner”

using the knowledge of the structures in the natural language. This structure in a natural language

is caused by the redundancy of information representation, so that one can predict or guess some

signals (letters) from other signals (letters), i.e., there are non-zero mutual information between

different letters or words in a sentence or sentences. In terms of probability and information, this

can be stated as follows. Without any neighbooring letters or context, one can guess a missing letter

S as one of any 26 letters in the alphabet with probability P (S) (though some are more likely than

others), and one would require an information amount H(S) = −∑

S P (S) log2 P (S) to obtain

this letter; With the neigboring letters, the redundancy between the letters enables the guess to

be narrowed down to fewer choices, i.e., the conditional probability P (S|contextual letters ) has a

narrower distribution over the 26 letters in the alphabet, so that the amount of information needed

to recover the letter is the conditional entropy H(S|contextual letters), which is less than H(S)

given the redundancy. Redundancy in natural languages enable us to communicate effectively

through noisy telephone lines, or when one speaks with imperfect grammar or unfamiliar accent.

If everybody speaks clearly with standard accent and perfect grammer, redundancy in language

would be less necessary. How much redundancy is optimal in a representation depends on the

level of noise, or tendency to errors, in the system, as well as the end purpose or task that utilizes

the transmitted information.
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