
1 What is known about vision experimentally

Vision is one of the most studied brain functions, in some sense, offering a window to study the

brain. There is thus a vast knowledge about the physiology and anatomy of the brain responsible

for vision, as well as about the visual behavior particularly in human vision. A good book for

beginners to learn such knowledge is “Foundations of vision”128 by Brain A Wandell, and readers

will find it easy to read whether or not they are from the life science background. Other very

useful books are: “Visual perception, physiology, psychology and ecology” by Bruce, Green, and

Georgeson,13 and “Vision Science, photons to phenomenology” by Palmer.96 The book “Theoretical

Neuroscience” by Dayan and Abbott23 also provides a good introduction to early visual system

and its receptive fields to the modellers. Meanwhile, here I give a brief review of the parts of

these knowledge most relevant to the topics in this book. Most of the reviewed are about the

human or primate visual system. Most materials presented in this section are the results of my

paraphrasing the general knowledge in the vision science community, and hence I often omit the

detailed references which can be obtained from typical textbooks such as the ones above, and from

the two volumn book “The Visual Neurosciences” editted by Chalupa and Werner.21

1.1 Neurons, neural circuits, cortical areas, and the brain

Neurons are cells in the nervous system that receive, process, and transmit information. There

are billions of neurons in the human brain, each is typically composed of dendrites, axons and a

soma or cell body. Dendrites receive inputs from other neurons or from the external sensory world

through some signal transduction process. Axons send output signals to other neurons or effectors

such as muscle fibers. Typically, the output signals are in the form of electrical pulses or spikes

called action potentials, each is about 1 millisecond (ms) in duration and dozens of millivolts in

amplitude. Through synapses, which are contacts between neurons, action potentials cause electric

current to flow across the membrane of the target neuron and change the target neuron’s mem-

brane potential. The electric potentials within a neuron determine the state of a neuron and its

production of action potentials. Action potentials are near identical to each other, hence, informa-

tion are conveyed by their timing and rates, i.e., when they are fired or how many of them per

unit time, rather than their individual voltage profiles. They can propagate long distances along

axons without appreciable decays before reaching their destination neurons, and so are adequate

for communication between neurons far apart from each other. Sometimes, very nearby neurons

can also influence each other’s states without action potentials.

A simple model39 of a neuron is as follows: a neuron’s internal or membrane potential is

modelled by a single variable u, which can change in time t by input current I as du/dt = −u/τ +I ,

where τ is the membrane time constant to model the neuron as a leaky integrator or input current;

the rate of the action potentials can be viewed as the output of the neuron; the output can be

modelled as a nonlinear function g(u) ≥ 0 of the membrane potential u, such that this function g(u)

is monotonously increasing with u, is zero for small u, and saturating for u → ∞. The effect of this
output g(u) is to contribute to the input current to the target neuron by an amount w · g(u), where

w models the strength of the synaptic connection.

Each neuron has synaptic connections with hundreds or thousands of other neurons, forming

neural circuits for computation. There are micro-circuits between nearby neurons, and macro-

circuits between neural groups. Neurons with similar functional properties are aggregated to-

gether, and a cortical area, such as one of the visual cortical areas in Fig. (1), is defined by these

locally connected and functionally similar groups of neurons. Nearby neurons are more likely con-
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nected with each other, as one can expect if the brain is not to devote too much volumn to axonal

wiring.84 Thus generally, neurons are much more connected with each other within a cortical area

than between cortical areas, and nearby cortical areas are more likely connected.11, 27 Through such

neural interactions, the brain carries out computation from sensory inputs to perceptions and mo-

tor actions. For instance, visual sensory inputs, after being sensed by photoreceptors in the retina,

are processed by various visual areas in the brain. These processings lead to visual perception of

inferred visual objects in the scene, and, by sending processed information to brain areas respon-

sible for motor actions, guide or dictate behavior such as orienting, navigation, and manipulating

objects.

1.2 Visual processing stages along the visual pathway

A: the primate brain areas B: a schematic of the visual
processing hierarchy
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Figure 1: A: The retina and cortical areas for visual processing in primates, from van Essen et al
1992.124 The cortical areas involved in visual processing are among those which are shaded. On the
top left is the medial view of the brain, i.e., the view after cutting the brain along the mid-line in a
left-right symmetric manner. The bulb like shape denotes the eye ball. The middle left is the lateral
view of the brain from the side. In these views, the cortical areas are about 1-3 mm thick and folded
like sheets to fit inside the three dimensional space of the head. The main plot is the view of the
brain after unfolding the sheets, cutting the cortical area V1 away from other brain areas (notably
area V2) in the process. B: The hierarchy of the levels of visual processing in the brain, simplified
from information in Felleman and Van Essen 199129 and Bruce et al 2004.12 Various labeled areas
can be located in the brain map in A. V1, the primary visual cortex, is also called the striate cortex.
The gray shaded area encloses what is called the extrastriate cortex. The pink shaded area outlines
the areas controlling or implementing the motor actions caused by sensory inputs.

The visual world is imaged on the retina, which does an initial processing of the input sig-

nals and sends them on by neural impulses along the optic nerve to the rest of the brain. Fig. (1)

shows the brain areas involved in vision. Each visual area has up to many millions of neurons, it
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does some information processing within itself while receiving signals from, and sending signals

to, other areas. Each neuron can be seen as an information processor transforming its input signals

to output signals. It is typically composed of dendrites which receices input signals, axons which

send output signals to other neurons or muscle cells, and the cell body. Often, the output signals

are in the form of electrical pulses or spikes called action potentials, each is about 1 millisecond

(ms) in duration and dozens of millivolts in amplitude. Action potentials are near identical to each

other, hence, information are conveyed by their timing and rates, i.e., when the spikes are fired or

how many of them per unit time, rather than their individual voltage profiles. They can propagate

long distances along axons without appreciable decays before reaching their destination neurons,

and so are ideal for communication between neurons far apart from each other, particular between

different brain areas. Physically nearby cortical areas are more likely connected by the axons, as

expected from the design to minimize the brain volumn occupied by the inter-area neural axons to

transmit the signals. Within a cortical area, some neurons which are physically near each other can

also communicate without action potentials. Note from Fig. (1A) that about half of the brain areas

are involved with vision. Most brain regions are denoted by their abbreviated names in Fig. (1). For

instance, V1 denotes visual area 1, the primary visual cortex and the largest visual area containing

detailed representation of the visual input; V2 for visual area 2 which receives most of its inputs

from V1; LGN for lateral geneculate neclus which is often viewed as the relay station between the

retina and V1 by our ignorance; FEF for frontal eye field , SC for superior colliculus, and both FEF

and SC control eye movements. IT for inferotemporal cortex, whose neurons respond to complex

spatial shapes in visual inputs; MT for middle temporal area whose neurons are particularly sen-

sitive to visual motion; LIP for lateral intra-parietal area, implicated for decision making for eye

movements. The lower case letters ending some of the abbreviations often denote spatial locations

of the cortical areas, e.g., v for ventral, d for dorsal.

The term visual pathway implies that there is a hierarchy of levels for information processing,

starting from the retina, as shown schematically in Fig (1B). Information processing progresses from

lower stages, starting at retina (and excluding the SC and gaze control stages in the pink shaded

area), to higher stages, ending at FEF within this figure. Each neuron typically responds to, or

is excited by, visual inputs in a limited extent of the visual space called its receptive field. The

receptive field is small for retinal neurons, with a diameter only 0.06 degree in visual angle near the

center of vision,110 too small to cover most recognizable visual objects, e.g., an apple, in a typical

scene. As one ascends along the visual hierarchy, the neural receptive field gets progressively

larger, with a diameter of (in order of magnitudes) 10 degree in visual angle in V4, and 20-50

degrees in IT,102 making it possible to hope that a single neuron in higher visual areas can signal

the recognition of a visual object, e.g., one’s grandmother. In the early stages such as the retina

and V1, the receptive fields are relatively invariant to the animal’s state of arousal. They become

increasibly variable in the later stages, for instance, the sizes of the receptive fields depend on the

animal’s attention and on the complexity of the visual scenes.85

The connections between stages or brain regions in Fig (1B) symbolize the existence of neural

connections between the regions. Most of these connections are non-directional, indicating that

the connections are reciprocal or that each of the two areas connected receive signals from the

other. This figure shows not only the flow of sensory information through various processing

stages in the hierarchy, but also that of information flow towards visually induced action of eye

movements. It also reflects the view shared by many others (e.g., Findlay and Gilchrist 2003) that

understanding the motor actions associated with vision is very important to understanding the

sensory processing. After all, the main purpose of recognizing and localizing objects in the scene
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is to act on them; meanwhile, actions, such as directing the gaze to conspicuous locations in the

scene, in turn facilitate sensing and sensory information processing. In this light, it is noteworthy

that signals from as early as the retina and V1 in this hierarchy already influence the motor outputs

of vision.

Physiologically and anatomically, much more is known about the early visual stages, in par-

ticular the retina, LGN, and V1, than higher visual areas. This is partly because it is often easier

to access these early stages and is easier to determine how neural responses are related to the vi-

sual inputs. Behaviorally, one can probe how sensitive an animal is to various simple or complex

visual inputs, ranging from the image of a simple small bar to to that of an emotionally looking

face. One can also measure how quickly and easily visual objects are localized or identified, e.g.,

in finding a tomato among many apples. Often, behavioral findings using simple visual stimuli

could be linked with physiological and anatomical findings about the early visual stages. How-

ever, our relative ignorance of the higher visual areas means that our knowledge of more complex

visual behavior is much less associated with the neural bases. In particular, the hierarchy of visual

cortical areas shown in Fig (1B) is inferred mostly from anatomical evidences. They may suggest

but not precisely determine the hierarchy of information processing, and different anatomical or

physiological evidences11 can give different interpretation as to which level in the hierarchy a par-

ticular visual cortical area should be. As understanding vision necessarily means understanding

both the neural and behavioral aspects, theoretical and modeling studies on visual functions are

much easier for early visual processes. This book reflects this by focusing on the retina and V1 and

their associated visual behavior.

1.3 Retina

The retina is the first stage in the visual pathway. The three dimensional visual scene is imaged on

the retina, where the lights in the images are absorbed by the photoreceptors at the image plane, see

Fig. (2). In primate retina, there are about 5x106 cones responsible for the day time color vision, 108

rods, which are mainly functional in dim light.128 Each photoreceptor absorbs the local light in the

image to electrical response signals. These signals are transformed through several intermediate

cell types called bipolar cells, horizontal cells, and amacrine cells, before they are finally received

by about 106 retinal ganglion cells, the output neurons from the retina. By firing voltage impulses,

each about 1 millisecond (ms) in duration and dozens of milli-volts in amplitude, at up to about

100 spikes per second for each neuron, the 106 ganglion cells send the visual signals via their axons,

bundled together into the optic nerve, on to the brain. Note that the blood vessels in the eye ball

are also imaged onto the back of the retina together with the visual scene. Nevertheless, we seldom

see them since they are static in the images. Human vision is insensitive to static or non-changing

inputs. Voluntary and involuntary eye movements, many of them are ever-present small jitters

of our eyes that we are unaware of, keep us not blind to the part of the visual world which is

motionless.

1.3.1 Receptive fields of the retinal ganglion cells

If one quantifies the response of a retinal ganglion cells by the firing rate, i.e., the number of neural

spikes per seconds, and the visual input at any image location by the contrast, i.e., the ratio be-

tween input intensity at this location and the mean input intensity, then for most ganglion cells, the

response is approximately a linear function of the input.110 This means, if such an input at location
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Figure 2: The schematic illustration of the retina and its neurons, adapted from figures in “Simple
Anatomy of the retina” from http://www.webvision.med.utah.edu/sretina.html. In the left part,
light enters the eye and the retinal neural responses are transmitted by the optic nerve to the rest
of the brain. The right half is a zoomed up view of a patch of the retina on the left, with imaging
light entering from the bottom, passing through ganglion and other cell layers before hitting the
rods and cones.

x and time t is S(x, t), and the firing rate of a neuron at time t is O(t), then

O(t) =

∫

dxdt′K(x, t − t′)S(x, t′) + spontaneous firing rate (1)

where K(x, t − t′) denotes the spatiotemporal filter, or the spatio-temporal receptive field, that

transforms input S to output O. In many physiological experiments, the input S(x, t) is set to zero

before a time designated as t = 0, the stimulus onset time, and then stays unchanged S(x, t) =

Sx(x) for a sufficiently long time. To this input, the response O(t) at large enough t > is called

the sustained response of the neuron and can reveal the spatial shape of the receptive field K as

Kx(x) ≡
∫

K(x, t)dt, when the temporal filter is integrated out, thus

O(t → ∞) =

∫

dxKx(x)Sx(x) (2)

The filter value Kx(x) is non-zero for a limited spatial range of x, typically only a fraction of a

degree, and this range is then the range of the receptive field of the neuron. The center of this

receptive field varies from neuron to neuron, such that the whole population of the retinal ganglion

cells can adequately sample the whole visual field. Let the center of a receptive field be x = 0, it is

often found thatKx(x) has a shape which can be modelled by a difference of two gaussians, which

in two dimensional space x is

Kx(x) =
wc

σ2
c

exp[−x2/(2σc)] −
ws

σ2
s

exp[−x2/(2σ2
s)] (3)

where the first and the second terms denote the two gaussian shapes respectively, with wc and ws

indicating their strengthes, and σc and σs their spatial extents, as illustrated in Fig. (3). Typically,

the σc < σs and wc ≈ ws such that Kx(x) has a spatially opponent shape. In the example in Fig.
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(3), wc and ws are both positive, the neuron will increase its output O by a bright spot near the

center of the receptive field but decrease its output when this bright spot is farther from the center,

and the optimal visual input to excite this cell would be a bright center disk surrounded by a dark

ring. Hence, such a receptive field is called a center-surround receptive field. If both wc and ws are

negative, then the optimal stimulus would be a dark central spot surrounded by a bright ring, and

a bright central spot in a dark ring would decrease the neural response. The two kinds of receptive

fields, or neural types, corresponding to positive or negative values for wc and ws, are called on-

center or off-center cells respectively. As the firing rates are never negative, to make room for firing

rate decrease, the spontaneous firing rates in response to no inputs, or spatially uniform inputs, are

high enough, around 50 and 20 spikes/second for the majority (i.e., the X or P cells, see later) of

ganglion cells in the cat and monkeys respectively.120, 121

A: The center excitation
of a ganglion’s
receptive field
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B: The larger inhibition
of a ganglion’s
receptive field

C: The center-surround
receptive field
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contrast sensitivity
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Figure 3: A-C: The receptive field shape of a retinal ganglion cell is modelled as a difference of
two gaussians shown in A and B (as an inhibition), giving a center-surround shape of the receptive
field in C. In each plot, the value of the receptive field Kx(x), or its components, is visualized by
the gray scale at image location x, with bright and dark pixels for excitation and inhibition, and the
gray level near the image corners for zeroKx(x). Parameters used are: σs/σc = 5, wc/ws = 1.1. D:
the normalized contrast sensitivity g(k) vs spatial frequency k in the units of 1/σc, for the receptive
field in C. Also see Fig. (??).

An input

S(x, t) = Sx(x)δ(t) (4)

(where δ(t 6= 0) = 0, and
∫

dtδ(t) = 0) which appears only momentarily at time t = 0 can reveal the

impulse response

O(t) =

∫

dxK(x, t)Sx(x) (5)

of the filter K(x, t), or how K(x, t) changes with t. The impulse response to an optimal center-

surround spatial pattern Sx(x) is typically an increase followed by a decrease of responses O(t)

from the spontaneous response level, like that shown in Fig. (??D) by approximating the impulse

response function

O(t) = e−αt[(αt)5/5! − (αt)7/7!], (6)

with α = 70/second. If a stimulus

S(x, t) = Sx(x)H(t) (7)

(whereH(t) is a step function withH(t) =

{

1, t >= 0
0, otherwise

(8)

is the onset of a spatial pattern Sx(x) which stays on, the response O(t) typically has a transient

component near the onset time resembling the impulse response, and a sustained response for

t → ∞.
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The two best known classes of the retinal ganglion cells in primates are called the parvocellu-

lar cells and the magnocellular cells, or P and M cells for short. The P cells are about of the order 10

times as numerous, and have smaller receptive fields and longer impulse responses compared to

the M cells. Hence, the P cells can have a better spatial resolution while the M cells better temporal

resolution.

1.3.2 Contrast sensitivity to the sinusoidal gratings

One can also investigate how a ganglion cell responds to a sinusoidal input pattern

Sx(x) = Sk cos(kx + φ) + constant (9)

a grating of spatial frequency k/(2π) cycles/degree, with an amplitude Sk and phase φ. If one

decompose the spatial receptive field Kx(x) into Fourier waves by

Kx(x) ∼
∫

dkg(k)eikx, (10)

then g(k) is the sensitivity or gain of the neuron to the sinusoidal wave of frequency k, and it

is called the contrast sensitivity curve. For Kx(x) in equation (3), g(k) in two dimensional space

k = (kx, ky) is,

g(k) ∼ wc exp[−k2σ2
c/2]− ws exp[−k2σ2

s/2] (11)

which is another difference of two gaussians. For |wc| ≥ |ws|, we have |g(k)| slowly increasing with
k until reaching a peak value at some frequency kp before decreasing with k. ThusKx(x) is a band

pass filter which is insensitive to low spatial frequency signals or spatially smooth signals, or to

high frequency signals which vary in a scale much finer than the scale σc and σs of the receptive

field, but is most sensitive to spatial frequency on the order of kp ∼ 1/σc, or to spatial variations on

a scale comparable to the size of the center of the receptive field. See Fig. (3ACD).

Equation (2) implies that the sustained response level of the cell should be O(t → ∞) ∼
g(k) cos(φ). Hence, by using spatial grating with zero phase φ = 0, one can obtain g(k), from which

one can quite easily construct the shape of the spatial filterKx(x). Experiments often use a drifting

grating

S(x, t) ∝ cos(kx + ωt) + constant, (12)

leading to a response

O(t) ∝ cos(ωt + φ) (13)

which scales with g(k, ω) the Fourier transform of the spatiotemporal filter

K(x, t) ∝
∫

dkdωg(k, ω)eikx+iωt. (14)

The response to the static grating is simply the special case when ω = 0. Typically, the monkey

retinal ganglion cells are most sensitive to temporal frequency on the order of 10 Hz. This means

that the impulse response to a momentary sinusoidal spatial wave is typically a transient wave

form lasting about ∼ 100 ms. The contrast sensitivity functions of the ganglion cells in monkeys

correspond quite well to the human observers’ sensitivity to the same gratings.64 Comparing the P

and M ganglion cells, the P cells are more sensitive to higher spatial frequencies while the M cells

to higher temporal frequencies.
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1.3.3 Spatial sampling on the retina

For each unit area of visual space, more cones and retinal ganglion cells are devoted to the central

than the periphary visual space. Fig. (4A) shows that the densityD of cones per unit area decreases

rapidly with eccentricity e, the distance in visual angle from the center of vision. Roughly,

D ∝ α/(eo + e) (15)

with eo ∼ 1 − 2o.123 Consequently, visual acuity drops drastically with eccentricity e, as demon-

strated in Fig. (4B), the size of the smallest recognizable letter increases roughly linearly with e.

The sizes of the receptive fields of the ganglion cells also scale up with e accordingly.123 Hence,

humans have to use eye movements to bring objects of interests to fovea in order to scrutize them.

Such eye movements, or saccades, occur at a rate of about three times a second, although we are

typically unaware that we saccade this frequently, suggesting that many of the saccades are carried

out more or less involuntarily. Related to this is the problem for the human visual system to decide

where in the visual space to saccade to next, or which object in the visual scene to pay attention to.

This is the problem of visual attention, which we will discuss extensively in the book.

Rods belong to another class of photoreceptors that function mainly in dim light due to their

higher sensitivity to light. Because the cones are packed so density in the fovea, there is no rods

in the center of fovea, and rod density peaks around 20o eccentricity, as shown in Fig. (4A). As

cones are not functional in very dim light, one often has to not look at something directly in such

an environment in order to make it visible by bringing the image of the object to the rods on the

retina. This maybe necessary to see a dim star in the night sky.

1.3.4 Color processing in the retina

Cones belong to the class of photoreceptors which are activate by day light. In human vision, there

are red, green, and blue cone types, defined by their selective sensitivity to the predominantly red,

green, or blue parts of the visible light spectrum, so that they are most activated by image locations

emitting light that are more red, green, or blue respectively, see Fig. (5A). It is interesting to note

that the sensitivity curves of the red and green cones overlap a lot, making the responses of the

two cones very correlated. At the ganglion cell level, the different cones can contribute to different

spatial regions of the receptive fields. For example, the red cone input can excite the center of

the receptive field and the green cone inhibit the surround, giving red-on-center and green-off-

surround receptive field, see Fig. (5B), making this cell most sensitive to a small red disk of light.

It will be explained later in the book (section ??) that such a receptive fiel organization serves a

computational goal of efficient color coding, decorrelating the responses from the red and green

cones. Other ganglion cells can be of the type blue-center-yellow-surround, giving blue-yellow

opponency. The color tuned ganglion cells are the P cells, while the M cells are not color tuned.

1.4 The primary visual cortex (V1)

The optic nerve carries the responses of the retinal ganglion cells to a region of the thalamus called

the lateral geniculate nucleus, or LGN for short, see Fig. (6. As mentioned above, the function of

the LGN is unclear. It has been seen as a relay station for retinal signals on route to the primary

visual cortex mainly because the receptive fields of the LGN cells resemble very much those of the

retinal ganglion cells in aneathetized animals, and because there is a lack of concensus regarding its

function due to our current ignorance, except that the brain is unlikely to waste resources on a relay
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A: Density of photoreceptors (×103 /mm2) vs. eccentricity

B: Visual acuity illustrated in an eye chart

Figure 4: A: The density of human cones and rods versus visual an-
gle from the center of vision according to Osterberg95 (1935), adapted from
http://www.webvision.med.utah.edu/phhoto2.html#cones. Note that sampling density of
cones drops dramatically with eccentricity, densest at the fovea where there is no room for the
rods, whose density peaks slightly off fovea. B: visual acuity drops dramatically with increasing
eccentricity: fixating at the center of the eye chart, all the letters are equally visible, from Stuart
Anstis, http://www.psy.ucsd.edu/∼sanstis/SABlur.html.

station for no other reasons. More details about the LGN can be found in a chapter by Sherman

and Guillery (2004).108 The primary visual cortex receives retinal inputs via LGN.

1.4.1 The retinotopic map

Neighboring points in a visual image evoke activity in neighboring regions of the primary visual

cortex. The retinotopic map refers to the transformation from the coordinates of the visual world

to that on the cortical surface, see Fig. (7). It is clear that the cortex devote more surface areas to

the central part of visual field, just as the retina devote more receptors and ganglion cells to the

fovea region. There is also a transformation of the visual space in angles ecentricity e and azimuth
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Figure 5: A: Spectrum sensitivity of the cones as a function of the wavelength of light. B: schematics
of two retinal ganglion cells with center-surround color opponency in their receptive fields.

a into the cortical Cartesian coordinates X going along the horizon and Y going perpendicular to

it. The correspondence between the visual space in degrees e and a and cortical surface X and Y

in millimeters (mm) is approximately:

X = λ ln(1 + e/e0) Y = − λeaπ

(e0 + e)180o
(16)

where lambda ≈ 12 mm and e0 ≈ 1o, and the negative sign in the expression for Y comes from

the inversion of visual image in the image formation process. For visual locations much beyond

the foveal region, i.e., e ≫ e0 ≈ 1, we have X ≈ λ ln(e/e0) growing linearly with log eccentricity

ln e and Y ≈ −λπa/180o growing linearly with azimuth a. Denoting z ≡ (e/e0) exp(−iπa/180o)

and Z ≡ X + iY (with i =
√
−1), we have Z = λ ln(z) for large eccentricity locations. Hence, the

cortical map is sometimes called a complex logarithmic map. A scaling of image e → γe on the

retina corresponds to a shift on the cortex X → X + λ ln(γ) for large e. This of course applies only

approximately for large e. The cortical magnification factor

M(e) ≡ dX

de
=

λ

(e + e0)
(17)

characterizes the degree to which cortical areas are devoted to visual space at different eccentricity

e. Its similarity to how retinal receptor density D ∝ 1/(e + e0) depends on e in equation (12),

perhaps with a different but similar numerical value of e0, is apparent.
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Figure 6: The retina sends information the primary visual cortex via LGN, from Fig. 2.5 of Dayan
and Abbott’s book.23 Information from the two eyes are separated in separate layers within LGN,
but combined in the primary visual cortex. Information from two different hemifields of the visual
space, left and right hemifields, are sent to right and left part of the primary visual cortical regions.

2 The higher visual areas

3 Behavioral studies on vision

4 Etc
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